
Citation: Nguyen, H.S.;

Cruz, F.; Dazeley, R. Towards a

Broad-Persistent Advising Approach

for Deep Interactive Reinforcement

Learning in Robotic Environments.

Sensors 2023, 23, 2681. https://

doi.org/10.3390/s23052681

Academic Editor: Nicola Pellegrini

Received: 8 February 2023

Revised: 27 February 2023

Accepted: 27 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Towards a Broad-Persistent Advising Approach for Deep
Interactive Reinforcement Learning in Robotic Environments
Hung Son Nguyen 1,* , Francisco Cruz 2,3 and Richard Dazeley 1

1 School of Information Technology, Deakin University, Geelong 3220, Australia
2 School of Computer Science and Engineering, University of New South Wales, Sydney 2052, Australia
3 Escuela de Ingeniería, Universidad Central de Chile, Santiago 8330601, Chile
* Correspondence: hungson.nguyen@research.deakin.edu.au

Abstract: Deep Reinforcement Learning (DeepRL) methods have been widely used in robotics to
learn about the environment and acquire behaviours autonomously. Deep Interactive Reinforcement
2 Learning (DeepIRL) includes interactive feedback from an external trainer or expert giving advice
to help learners choose actions to speed up the learning process. However, current research has been
limited to interactions that offer actionable advice to only the current state of the agent. Additionally,
the information is discarded by the agent after a single use, which causes a duplicate process at the
same state for a revisit. In this paper, we present Broad-Persistent Advising (BPA), an approach that
retains and reuses the processed information. It not only helps trainers give more general advice
relevant to similar states instead of only the current state, but also allows the agent to speed up the
learning process. We tested the proposed approach in two continuous robotic scenarios, namely a cart
pole balancing task and a simulated robot navigation task. The results demonstrated that the agent’s
learning speed increased, as evidenced by the rising reward points of up to 37%, while maintaining
the number of interactions required for the trainer, in comparison to the DeepIRL approach.

Keywords: reinforcement learning; deep reinforcement learning; interactive reinforcement learning;
persistent advice; broad-persistent advising

1. Introduction

Robot development has achieved big steps toward improvement and has gained more
attention in recent years. This success has not only come from industrial areas, where
robots are gradually replacing humans [1], but also in the domestic areas. Their presence
in domestic environments is still limited, mainly due to the presence of many dynamic
variables [2] and safety requirements [3]. Intelligent robots in the future should be able
to know and detect users, learn action objects, select opportunities, and learn to behave
in domestic scenarios. To successfully perform these complex tasks, robots face many
challenges such as pattern recognition, navigation, and object manipulation, all in different
environmental conditions. That is, robots in the domestic environment need to be able to
continuously acquire and learn new skills.

Reinforcement Learning (RL) is a method used for a robot controller in order to
learn the optimal policy through interaction with the environment, through trial and
error [4]. The use of RL in previous works showed that there is great potential for us-
ing RL in robots [2,5,6]. Especially, Deep Reinforcement Learning (DeepRL) has also
achieved promising results in manipulation skills [7,8], how to grasp, as well as legged
locomotion [9]. However, there is an open issue relating to the performance in the RL and
DeepRL algorithms, which is the excessive time and resources required by the agent to
achieve acceptable outcomes [10,11]. The larger and more complex the state space is, the
more computational costs will be spent to find the optimal policy.

Sensors 2023, 23, 2681. https://doi.org/10.3390/s23052681 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052681
https://doi.org/10.3390/s23052681
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0160-2869
https://orcid.org/0000-0002-1131-3382
https://doi.org/10.3390/s23052681
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052681?type=check_update&version=1


Sensors 2023, 23, 2681 2 of 15

Among the different approaches to speed up this process, there is one promising
method named Interactive Reinforcement Learning (IRL), which can improve the con-
vergence speed and has shown its feasibility [12]. IRL allows a trainer to give advice or
evaluate a learning agent’s behaviour [13], help the agent shape the exploration policy,
and reduce the search space in the early stages. Combining IRL with DeepRL results in
the model of Deep Interactive Reinforcement Learning (DeepIRL), which can be used in
continuous space with improved learning speed [14]. However, current techniques using
DeepIRL allow trainers to evaluate or recommend actions based only on the current state
of the environment. The advice from the trainer is discarded after a single use, which leads
to a duplicate process at the same state for a revisit.

This work introduces the Broad-Persistent Advising (BPA) approach for DeepIRL to
provide the agent a method for information retention and reuse of previous advice from a
trainer. The information will be efficiently retained, thereby facilitating expedited progress
in the machine learning process. This approach includes two components: generalisation
and persistence. This paper employed the k-means algorithm as a generalisation method to
represent continuous space in storable data and implemented a Probabilistic Policy Reuse
(PPR) sustainability model based on prior research [12]. To assess the effectiveness of the
proposed approach, evaluations were conducted in both a conventional environment and a
simulated robot one. Moreover, various advisor models were surveyed and compared for
a comprehensive evaluation. In short, agents using the BPA approach have better results
than their non-using counterparts while keeping the number of interactions required for
the trainer.

The remaining sections of this paper are organised as follows: Section 2 presents a
review of related literature, while Section 3 presents the proposed scheme. The experiments
and results are discussed in Sections 4 and 5, and finally, Section 6 presents the conclusion
of the study.

2. Preliminary
2.1. Deep Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning in which artificially in-
telligent agents learn behaviours by interacting with their surroundings [4]. Reinforcement
learning tools learn through trial and error by repeatedly interacting with the surround-
ing environment and learning which actions will and which actions will not produce the
expected results.

RL is appropriate for studying tasks that may be modelled as Markov Decision Pro-
cesses (MDPs) [4,15,16]. An MDP is specified by the tuple (S,A,T,R, γ), where S is a finite
set of states in the environment, A is a set of actions available in each state, T is the transition
function T : Sn × A→ Sn+1, R is the reward function R : S× A→ R, and γ is a discount
factor, which is 0 ≤ γ ≤ 1

In the RL setup, a machine-learning-algorithm-controlled agent observes a state st from
its environment at time step t. In state st, the agent communicates with the environment
by performing action at. Then, the agent moves to a new state st+1 and receives reward
rt+1 as feedback from the environment based on the previous state and the chosen action.
Therefore, the reward collected by policy π at time step t is shown in Equation (1):

rt + γrt+1 + γ2rt+2 + ... = ∑
k=0

γkrt+k (1)

where rt is the reward at time step t. The discount rate γ stands for the importance of
rewards in the future. The agent’s aim is to find a policy π that maximises the anticipated
profit (reward).

In conventional RL algorithms, most of the time, only MDP with discrete state and
action spaces is considered. However, in many real-world applications, the state space
is not really discrete, but rather a continuous domain [17]. Therefore, to be usable in the
continuous state space, neural networks are also considered as function approximators,



Sensors 2023, 23, 2681 3 of 15

which are especially useful in RL when the state space or action space is too broad to fully
comprehend [18–20]. Neural nets can discover ways to map states to values in this way.
When the problem state space is too big or considered as a continuous space, we cannot
use a lookup table to store and update all possible states and actions. In that case, one
alternative is to train a neural network with samples from the state and the environment
and expect it to predict the value of the next action as the target in RL. More formally, we
used a neural network to approximate the optimal action–value function, which is the
maximum sum of rewards in Equation (2):

Q∗(st, at) = max
π

E[∑
0

γkrt+k|st = s, at = a, π]) (2)

A vast variety of recent advanced robot applications have been accomplished using
deep reinforcement learning to teach agents complex activities including cube play [21],
ambidextrous robot gripping [7], categorised objects [14], and the table-cleaning task [22].
For instance, Cruz et al. [22] used an associative neural architecture to learn the available
action possibilities of the agents with the objects in the current context. Levine et al. [23]
proposed a learning-based approach to hand–eye coordination for robotic grasping from
monocular images using a large Convolutional Neural Network (CNN) to learn the way to
grasp objects.

2.2. Reinforcement Learning with Interactive Feedback

In Interactive Reinforcement Learning (IRL), there is an external trainer involved in
the agent’s learning process [13,20,24,25]. Figure 1 depicts the IRL solution, which includes
an advisor, who observes the learning process and offers guidance on the way to improve
the decision-making [26]. The advisor can be an expert human or an artificial agent.

Environment

Agent

ac
tio

n 
a t

External Trainer

advice

st
at

e 
s t 

 , r
ew

ar
d

r t

st+1

rt+1

Reinforcement Learning

Interactive Reinforcement Learning

Figure 1. At state st, the agent performs action at, obtains reward rt+1, and reaches the next state st+1

in conventional RL. In the IRL model, the involvement of an external trainer gives the agent more
options to chose which action to perform next in the following iteration.

Adaptive agent behaviour is needed in domestic environments. IRL enables a parent-
like tutor to facilitate learning by providing useful guidance in some particular situation,
allowing the apprenticeship process to be accelerated. In contrast to an agent exploring
completely autonomously, this makes for a smaller search space and, hence, quicker
learning of the mission [27].

When operating alone, the next step is chosen by selecting the better-known action at
the current time, defined by the highest state–action pair, while IRL accelerates the learning



Sensors 2023, 23, 2681 4 of 15

process by incorporating additional guidance into the apprenticeship loop. Using IRL, a
trainer with prior experience of the target goal is required [28].

There is a difference between the two main methods dedicated to feedback learning:
reward shaping and policy shaping. While in reward shaping, external trainers can assess
the quality of the actions performed by the RL agent, as good or bad [28,29], using policy
shaping, the actions proposed by the RL agent can be replaced by more appropriate actions
selected by the external trainer before implementation [30,31].

An open problem that can significantly affect the agent’s performance is inaccurate
advice from the trainer [13], since a lack of accuracy and repetitive mistakes will result in a
longer training time. Human advice, on the other hand, is not 100% correct [32]. When an
advisor gives too much guidance, the agent will have limited experience in exploration
because the trainer makes almost all of the decisions [33]. To address the problem, a prior
study [34] applied to the agent a strategy of discarding or refusing advice after an amount
of time, endowing the agent with the ability to work with potentially incorrect information.

3. A Broad-Persistent Advising Approach

In this section, we give more details about the proposed Broad-Persistent Advising
(BPA) approach, which includes a generalisation model along with a persistent approach.
These details are described next.

3.1. Persistent Advice

A recent study [34] suggested a permanent agent that records each interaction and
the circumstances around particular states. The actions are re-picked when the conditions
are met again in the future. As a consequence, the recommendations from the advisor are
used more effectively, and the agent’s performance improves. Furthermore, as the training
step has no need to provide advice for each repeated state, less interaction with the advisor
is required. However, in this experiment, we limited the research to keeping the same
number of interactions with the trainer to investigate the effectiveness of the BPA approach
in the continuous domain.

As previously mentioned, there is an issue relating to inaccurate advice. After a certain
amount of time, a mechanism for discarding or ignoring advice is needed. Probabilistic
Policy Reuse (PPR) is a strategy for improving RL agents that use advice [35]. Where
various exploration policies are available, PPR uses probabilistic bias to decide which
one to choose, with the intention of balancing between random exploration, the use of a
guideline policy, and the use of the existing policy.

Figure 2 denotes an example of IRL using PPR. The advising user has the opportunity
to engage with the agent at each time point. When there is an interaction, the model is
updated. At the time advice is firstly recommended, it is assumed that the agent will carry
out the suggested action, regardless of the setting of PPR. PPR is used at the time step
when the agent did not receive advice from the trainer, the flow of which is denoted by red
arrows. First, the agent’s policy is examined to see whether any advice is applicable to the
existing state. If the current policy suggests an action, the action is taken as determined by
the PPR selection policy.

3.2. Broad Advice

To use PPR, we need a system to store the used state–action pairs. When the agent
arrives at a certain state at a time step, agents using PPR need to check with the system if
this state has been suggested by the trainer in the past. If there is advice in the memory of
the model, the agent can use the option to reuse the action. However, there is a problem
when using PPR in infinite domains. We cannot build a system that stores state–action
pairs with infinite state values. In addition, when the amount of states becomes too large
in the space, which is equivalent to infinity, the possibility that agents revisit exactly the
same state will be very small. Therefore, building this model will become cumbersome and
inefficient in large spaces.



Sensors 2023, 23, 2681 5 of 15

Agent Trainer

Agent’s action

Recommend an action

PPR

Environment

States, rewards

Update current PPR 
system with trainer 
recommended action

Take 
recommended 
action

Ask for 
advice at 
the state

Figure 2. Process flow of an interactive reinforcement learning agent using the PPR system. After
receiving advice from the trainer, the agent will store the action in the PPR model. In the iteration not
receiving advice from the trainer, the agent will check and reuse the old advice (red arrows) from
the past.

BPA includes a model for clustering states and then building a system for cluster–
action pairs instead of traditional state and action pairs. The proposed model is shown
in Figure 3. When the agent receives current state information from the environment and
it does not receive any advice from the trainer, the agent will use PPR by injecting the
state into the generalisation model and defining its cluster. Then, it proceeds to consider
whether any advice pertains to the current cluster. If there was an action recommended in
the past, the agent can reuse it with the PPR selection probability or use the default action
as ε-greedy.

Agent

Generalise model

States in 
continuous form 

PPR
(cluster-action pairs)

Clusters

Environment

Figure 3. Broad advice transforms continuous states into finite clusters. Hence, the state–action pair
becomes the cluster–action used in the PPR model.

The generalisation model we used in this paper is the k-means algorithm. k-means
is one of the most-popular clustering methods [36]. k-means is simple to implement, and
its complexity scales well with a higher number of data. However, the user must decide
on the number of clusters beforehand [37]. We used the elbow technique to specify the
number of clusters [38]. It is the visual graphic approach that was generated from the Sum
of Squares Error (SSE) computation. This technique is based on the idea that the number
of clusters should be chosen so that adding another cluster does not cause significantly
improved modelling. The early clusters will provide much information, but at some point,
the marginal gain will drop drastically, giving the graph an angle. At this angle, the correct
k-number of clusters is determined, thus called the “elbow criteria”. In other words, the
value of k is chosen at the point where increasing k does not significantly decrease the
value of the Sum of Squares Error (SSE).



Sensors 2023, 23, 2681 6 of 15

4. Experimental Environments
4.1. Cart Pole Gym Environment

The deep reinforcement learning environment was implemented using the well-known
library of AI gym environments [39]. First, we built the cart pole environment [40]. In this
environment, there is a pole that is attached to a cart. The carriage can move by applying
force to the left or right. The purpose of this problem is to prolong the time while avoiding
the pole falling down. The terminal condition is that the pole deviates more than 15 degrees
from the vertical or the wagon moves 2.4 units from the centre. The cart pole MDP is
defined as follows:

• State: The state vector has a continuous representation with four attributes, which
represent the cart position, cart velocity, pole angle, and pole velocity.

• Action: The cart can perform two actions on the track: go to the left or the right.
• Reward function: As long as the agent holds the pole in a vertical position, a reward

equal to 1 is awarded, and if it drops or goes beyond the boundaries of the track, the
reward is equal to 0.

Figure 4 below denotes a graphic of the cart pole in the AI gym environment.

Figure 4. A graphical representation of the cart pole environment. The goal is to keep the pole
balanced while applying forces to the carriage. The terminal condition is that the pole deviates more
than 15 degrees from the vertical or the wagon moves 2.4 units from the centre.

4.2. Domestic Robot Environment

Additionally, we also built an environment for domestic robots using Webots. In
this environment, the goal is to train the robot to go from the initial position to the target
position. Figure 5 gives a graphic of our experimental environment in Webots.

The robot is equipped with distance sensors on its left and right eyes. The robot is
completely unaware of its current position in the environment. The robot can only choose
one of three actions: go straight at 3 m/s, turn left, or turn right. At each step, the robot
will be deducted 0.1 points if it uses the action of turning left or right, while no points will
be deducted if it chooses to go straight. This is to optimise the robot’s straight movement
and avoid the robot running in circles by turning left or right continuously. The robot is
equipped with a few touch sensors next to it, to detect the collision with the environment.
The robot will be returned to its initial position and receive 100 penalty points every time it
collides on the way. The robot does not know where the touch sensor is located relative to
itself; the only information it receives is whether it is a collision with obstacles or not. When
the robot goes to the finish position located in the lower-right corner of the environment,
the robot is considered to have completed the task and will be rewarded 1000 points.

To decide on the next action the robot will take, the robot’s supervisor will use the
image taken from the top of the environment to enter the Convolutional Neural Network
(CNN) system to decide. The CNN system built in this environment is a system whose
input is 64 × 64 image RGB channels. This architecture was inspired by similar networks
used in other DeepRL works [14,41–44]. In more detail, we used 4 kernels with a size of
8 × 8. The second layer has 8 kernels with a size of 4 × 4, and the last layer convolution is
16 kernels with a size of 2 × 2. Following each convolutional network layer is a 2 × 2 max-
pooling layer. Finally, there is a flatten and dense layer with 256 neurons fully connected
with the output layer. The network architecture is described in Figure 6.



Sensors 2023, 23, 2681 7 of 15

Figure 5. An example of the Webots environment with the initial position and final position. The
robot has the goals of going from the initial position to the final position while avoiding obstacles.
The robot will be returned to its initial position after any collision.

conv1 (4@8x8) 

conv2(8@4x4)

conv3(16@2x2)

64x64x3

32x32x4

16x16x8

8x8x16

1 x 1 x 1024 1 x 1 x 256

convolutional layer

max pooling

dense

softmax

Figure 6. CNN architecture with a 64 × 64 RGB image as the input, three convolutional layers, three
max-pooling layers, two dense fully connected layers, and a softmax function at the output.

The environment MDP is defined as follows:

• State: RGB image size 64 × 64 taken from the top of the environment.
• Action: Three actions: go straight at 3 mm/s, turn left, or turn right.
• Reward function: Turn left, right: −0.1; go straight: 0; collision: −100; reach final

position: 1000.



Sensors 2023, 23, 2681 8 of 15

4.3. Interactive Feedback

While the interactive agent’s human-related approach to learning is one of its greatest
strengths, it may also be its greatest weakness [45–47]. Advice with good accuracy given
in the proper time will help the agent greatly to increase the speed of finding the optimal
solution. However, in the case when the agent only gives advice with low accuracy and at
a high frequency, that not only does not help the agent, but also brings it to a dead end and
is much more time-consuming than the non-interaction situation. Furthermore, human
experiments are costly, time-consuming, have problems of repeatability, and can be difficult
to recruit volunteers for. Therefore, during the early stages of developing the agent, we
suggested that simulating human interactions would be much more convenient.

To compare the agent’s performance, information about the agent’s steps, rewards,
and interactions were recorded. To identify the efficiency of BPA, we needed to test the
experiment with three cases: no interactive action, interactive actions without BPA, and
interactive actions with BPA.

Each use case of the simulated user will have different advice accuracy and frequency.
Accuracy is a measure of the precision of advice provided by an advisor. When the advisor’s
precision is high, the action will be proposed precisely as the advisor’s knowledge of the
environment. On the contrary, the advisor will propose a non-optimal action based on
what it knows about the environment. Frequency is the availability of the interaction of the
advisor at the given time step. The higher the frequency is, the higher the advisor’s rate of
giving advice to the agent is. The accuracy and frequency of three kinds of agents were used
with the values described in Table 1. Optimistic simulated agents have 100% accurate advice
and always provide advice at every time step. Realistic simulated agents use accuracy and
frequency values from the results of a human trial [32,34]. The pessimistic value of the
frequency is 0%; however, it works the same as in the case without interactive feedback.
Therefore, we used half of the realistic values for the case with the least interaction of
the advisor. The accuracy and frequency values of the advice were beyond the scope of
this study.

Table 1. The three simulated users designed for the experiments. These users are not intended to be
compared against each other, rather with a persistent counterpart.

Agent Frequency Accuracy

Pessimistic Advisor 23.658% 47.435%
Realistic Advisor 47.316% 94.87%
Optimistic Advisor 100% 100%

The corresponding frequency and accuracy values above are pessimistic values, realis-
tic values, and optimistic values, respectively.

Experiments were performed for each case, and the indicator of the amount of accu-
mulated reward to achieve the optimal policy was recorded to compare the results between
many approaches. The more reward the agent has, the better the result of the method is.

4.4. Generalised Model and Probabilistic Policy Reuse

Next, we demonstrate the use of broad advice and persistent advice using Probabilistic
Policy Reuse (PPR). The flow of using PPR is depicted in Figure 7. Initially, the agent reuses
the action using PPR with a certain chance if the current state has been recommended by
the trainer in the past. In this work, we used a chance value of 80%, which has also been
used in previous research [34]. This probability decreased by 5% for each step. With the
remaining 20%, the greedy action policy was selected.



Sensors 2023, 23, 2681 9 of 15

Received 
advice from 

trainer?

Update 
persistent advice (PPR)

Get cluster by
broad advice (k-mean)

Use advice from trainer

Take action

Get cluster by
broad advice (k-mean)

Has past 
advice?

Get action from
persistent advice (PPR) Take e-greedy action

START

Yes with 
prob 80%*

No

No

Yes

Figure 7. Flow of using broad-persistent advising. The agent will reuse previously obtained advice
with an 80% chance (which decays over time) and perform its exploration policy for the remaining
change (20%).

Algorithm 1 shows the process flow for selecting an action using the BPA approach to
assist a learning agent.

Algorithm 1 Interactive reinforcement learning with BPA.

1: Build k-means model with states from trainer
2: Initialise environment selecting st
3: for all (episodes) do
4: repeat
5: if (have feedback) then
6: Get recommended action at
7: Get cluster ct by using k-means
8: Add pair (ct, at) to PPR
9: else

10: if (rand(0, 1) < ε) then
11: Get ct by using k-means
12: if (ct is available in PPR) then
13: Get at is reuse action from PPR
14: else
15: Random action ct from environment
16: end if
17: else
18: Choose action at using π
19: end if
20: end if
21: Perform action at
22: Observe next state st+1
23: until (s is terminal)
24: Update policy π
25: end for

The model was tested with the following agents listed below:

• Baseline reinforcement learning: The model is trained in a basic manner and collects in-
formation from the environment without using any interactive feedback or evaluation
from the trainer. It was used as a benchmark.



Sensors 2023, 23, 2681 10 of 15

• Non-persistent reinforcement learning: The agent is assisted by multiple types of users
as mentioned before in Table 1. After taking the recommendation from the trainer and
executing the action, the agent will discard the advice. When the agent comes to a
similar state again in the future, it cannot recall the previous recommendation and
performs an ε-greedy action instead.

• Persistent reinforcement learning: This agent is supported by a trainer and a PPR
system. The trainer can suggest an action in each time step for the agent to take.
If recommended, the learning agent will perform on that time step and retain the
recommendation for reusing when it visits a similar state in the future. When an agent
accesses a similar state it has previously suggested, it will perform that action with
the probability determined by the PPR action selection rate.

5. Results
5.1. Cart Pole Domain

In this section, we proceed by displaying the results of the three types of agents pro-
posed above: baseline RL for benchmarking, non-persistent RL, and persistent RL. For
agents of the types non-persistent RL and persistent RL, we conducted tests at different
frequencies and accuracies of the feedback, called the optimistic user, the realistic user, and
the pessimistic user. The method for all the agents were tested with the same hyperpa-
rameters as follows: initial value of ε = 1, ε decay rate of 0.99, learning rate α = 0.01, and
discount factor γ = 0.99 during 500 episodes. To better display the results, we computed
the average value of the last 100 rewards instead of the current episode’s reward. We were
inspired by the idea from an article with the same result for the cart pole environment [48].

The results obtained are shown in Figure 8. The optimistic, realistic, and pessimistic
agents were run five times and are represented by red, green, and blue lines, respectively.
The shaded area indicates the standard deviation of the agent’s reward after multiple
training times. Overall, all interactive agents outperformed the autonomous one (baseline
RL in yellow), except the pessimistic agents. The agents that received advice from the
instructor made fewer mistakes, especially in the early stages of the learning process, and
could learn the task in fewer episodes. However, in this work, we wanted to compare pairs
of non-persistent and persistent agents with the same style delivered advice to verify if the
BPA approach implementation was indeed effective.

The agents assisted by optimistic advisors achieved the maximum score of the DeepIRL
algorithms very early after a few episodes, given that the trainer always made decisions
for the agent (100%), and this decision was absolutely correct (100%). In this experiment,
the agents did not even have a chance to make their own decisions or use PPR; the trainer
made all the decisions.

On the contrary, the agents supported by pessimistic users had different results, but in
fact, neither of them could solve the problem. On many runs in both the non-persistent and
persistent cases, the agent failed to achieve convergence. Both cases were considered worse
than the baseline. This can be explained by the accuracy of the advice for the pessimistic
agents being only 23.658%.

On the graph of the agents being helped by realistic trainers, we can see that using
PPR produced slightly better results than the non-using counterpart. The persistent agents
not only had a better initial reward, but also could achieve convergent results 100 episodes
earlier than the non-persistent agents. The average reward points earned by a realistic agent
with PPR were higher than 2.8%, as evidenced by an average of 183.65 points compared to
an average of 178.9 points. This difference in the learning rates was due to the fact that the
agent retained and reused the advice. In this experiment, the realistic agent had a 47.3%
chance to interact with the trainer and the agent would withhold or not withhold the advice
given by the trainer depending on whether it is a persistent agent or a non-persistent agent.
However, the persistent agent retained and reused the advice with an 80% probability
(decreasing over time) for any state in which it had received the advice in the past. As long



Sensors 2023, 23, 2681 11 of 15

as the stored advice was accurate enough, the persistent agent would learn faster because
they used the advice more often.

0 50 100 150 200 250 300 350 400
Episodes

80

100

120

140

160

180

200

Av
g 

Re
wa

rd

Baseline RL
Non-persistence RL Op
Persistence RL Op

(a) Optimistic agents

0 50 100 150 200 250 300 350 400
Episodes

80

100

120

140

160

180

200

Av
g 

Re
wa

rd

Baseline RL
Non-persistence RL Realistic
Persistence RL Realistic

(b) Realistic agents

0 50 100 150 200 250 300 350 400
Episodes

25

50

75

100

125

150

175

200
Av

g 
Re

wa
rd

Baseline RL
Non-persistence RL Pessmistic
Persistence RL Pessmistic

(c) Pessimistic agents
Figure 8. The comparison of the persistent agents, non-persistent agents, and baseline for each
kind of agent in deep reinforcement learning built with the cart pole environment. The shaded area
indicates the deviation between the minimum and maximum values of the agent value after multiple
training times.

In this experiment, we focused on implementing persistent advice in a continuous
environment. The ratio of the number of interactions with our trainers remained the same:
for example, 47.316% with the realistic agent. When receiving advice from the trainer, the
agent will always prioritise executing this recommended action. Therefore, the number
of interactions using the BPA method was equivalent to not using it. Table 2 shows the
average number and percentage of interactions that occurred for each agent. Both the
non-persistent and persistent agents used the interaction rate according to Table 1. We can
see that the numbers of interactions of every pair of optimistic, realistic, and pessimistic
agents were similar in the experiment.

Table 2. The average number of interactions in the experiment for each kind of agent and the percent
compared with the total steps taken.

Agent
Interaction

Non-Persistent Persistent

Optimistic Advisor 99,796 (100%) 99,846 (100%)
Realistic Advisor 40,976 (47.15%) 41,832 (47.1%)
Pessimistic Advisor 18,034 (23.62%) 16,685 (23.76%)

Figure 9a shows a graph using the elbow method to specify the number of clusters as
a parameter of k-means, using the data of 50,000 states, the same number as the experiment
for the cart pole, in the actual running environment. The elbow method showed the best
value for using k at a value of three. Figure 9b displays the data distribution in the cart
position and cart velocity attributes’ axes at a value k = 3.



Sensors 2023, 23, 2681 12 of 15

1 2 3 4 5 6 7 8 9
Values of K

5000

10,000

15,000

20,000

25,000

30,000

Su
m

 o
f s

qu
ar

ed
 d

ist
an

ce
s/

In
er

tia

Elbow Method For Optimal k

(a) Elbow method

2.5 2.0 1.5 1.0 0.5 0.0
Cart_Position

2.0

1.5

1.0

0.5

0.0

0.5

Ca
rt_

Ve
lo

cit
y

Data distribution

(b) Distribution
Figure 9. Total squared distance for the value of k from 1–9 and the distribution for 50,000 states with
a value of k = 3 for the cart position and cart velocity attributes.

5.2. Webots Domain

In this scenario, we focused only on examining the results for the realistic agent,
because this can be transferred to the real-world scenarios in a more rational manner. The
method was tested with the following hyperparameters: initial value of ε = 1, ε decay rate
of 0.99, learning rate α = 0.01, and discount factor γ = 0.99 during 500 episodes. We used
the average value of the last 100 rewards instead of the current reward only.

The results obtained are shown in Figure 10. The non-persistent RL agent is shown
by a green dashed line, while the persistent RL agent is shown by a green solid line. The
baseline RL is drawn with a yellow line used for benchmarking. Similar to the cart pole
environment, both agents supported by the trainer, regardless of whether or not they used
PPR, obtained better results than for the baseline RL. Then, the persistent agent achieved
convergent results slightly earlier than its non-persistent counterpart. The average reward
points obtained using PPR was 616, while the average reward points obtained without
using PPR was 451, representing a significant increase of 37%. The trainer’s accuracy and
frequency feedback was used the same as in the cart pole environment, so the results
reflect the use in the domestic robot environment as well and not just an ideal hypothetical
environment, such as the cart pole in the AI gym.

0 50 100 150 200 250 300 350 400
Episodes

400

200

0

200

400

600

800

Av
er

ag
e 

la
st

 1
00

 e
pi

so
de

s r
ew

ar
ds

Realistic agents
Baseline RL
Non-persistence
Persistence

Collected reward

Figure 10. Result for deep reinforcement learning with the autonomous agent, the non-persistent
agent, and the persistent agent built with the Webots domestic robot environment.



Sensors 2023, 23, 2681 13 of 15

Table 3 shows the average number and percentage of interactions that occurred for
each agent. We can see that the number of interactions was similar in the experiment.

Table 3. The average number of interactions in the experiment and the percent compared with the
total steps taken for the realistic agent in the Webots environment.

Agent
Interaction

Non-Persistent Persistent

Realistic Advisor 9077(47.64%) 8241(47.18%)

Figure 11a shows a graph using the elbow method to specify the number of clusters as
a parameter of k-means, using the data of 50,000 states in the actual running environment.
The elbow method showed the best value for using k at a value of four. Figure 11b displays
the data distribution in two axes of the distance sensor value at the value k = 4.

1 2 3 4 5 6 7 8 9
Values of K

1

2

3

4

5

6

Su
m

 o
f s

qu
ar

ed
 d

ist
an

ce
s/

In
er

tia

×109 Elbow Method For Optimal k

(a) Elbow method

0 200 400 600 800 1000
First

0

200

400

600

800

1000

Se
co

nd

Data distribution

(b) Distribution
Figure 11. Total squared distance for a value of k from 1–9 and the distribution for 50,000 states with
a value of k = 4 for two value attributes of the distance sensor.

6. Conclusions and Future Work

In this work, we proposed BPA, a broad-persistent advising approach to implement
the use of PPR and generalised advice in continuous state environments. Moreover, we
also performed a comparison between autonomous DeepRL, DeepIRL without the BPA ap-
proach, and DeepIRL with the BPA approach. Two environments were tested to investigate
the impact the BPA approach had on the performance.

Overall, the results obtained showed that the BPA approach with k-means as a gen-
eralised model and PPR as a model of persistence performed slightly faster and obtained
convergence earlier up to 100 episodes when the advice was withheld. There was a 37% in-
crease in the reward points observed in the robot simulator environment. Moreover, higher
accuracy for the advice and a longer time to retain it significantly increased the learning
speed. Our research demonstrated that implementing PPR in a continuous state space
environment is feasible and effective. Furthermore, k-means as broad advice inherited
advantages due to its characteristics, such as the fast running time and scalability over a
large state space, making it suitable for real-world environments.

In addition to k-means, exploring alternative generalisation models is necessary to
gain a more comprehensive understanding of their effectiveness when using PPR in a
reinforcement learning environment. Conducting thorough research is essential to de-
termine the most-suitable generalisation approach. The accuracy of the generalisation
model has a considerable impact on the speed and convergence of the IRL model, because
agents hardly achieve convergent results when faced with numerous incorrect suggested
actions. Additionally, we suggest reducing the number of interactions with the trainer by
reusing actions in the persistent model more frequently. If the agent reaches a new state
already in memory, it immediately reuses the recommended action without consulting the
trainer. However, this approach should only be applied when the generalisation model is



Sensors 2023, 23, 2681 14 of 15

good enough. Furthermore, we plan to transfer and evaluate our proposed approach in a
real-world setting that involves human and robot interaction.

Author Contributions: Conceptualization, F.C.; Methodology, H.S.N.; Software, H.S.N.; Vali-
dation, H.S.N.; Formal analysis, H.S.N.; Investigation, H.S.N.; Writing—original draft, H.S.N.;
Writing—review & editing, F.C. and R.D.; Visualization, H.S.N.; Supervision, F.C. and R.D.; Project
administration, F.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dahlin, E. Are Robots Stealing Our Jobs? Socius Sociol. Res. Dyn. World 2019, 5, 237802311984624. [CrossRef]
2. Cruz, F.; Wuppen, P.; Fazrie, A.; Weber, C.; Wermter, S. Action Selection Methods in a Robotic Reinforcement Learning Scenario.

In Proceedings of the 2018 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2018, Gudalajara, Mexico,
7–9 November 2018. [CrossRef]

3. Tadele, T.S.; De Vries, T.; Stramigioli, S. The safety of domestic robotics: A survey of various safety-related publications.
IEEE Robot. Autom. Mag. 2014, 21, 134–142. [CrossRef]

4. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018; p. 548.
5. Kolat, M.; Kővári, B.; Bécsi, T.; Aradi, S. Multi-Agent Reinforcement Learning for Traffic Signal Control: A Cooperative Approach.

Sustainability 2023, 15, 3479. [CrossRef]
6. Lu, X.; Jie, J.; Lin, Z.; Xiao, L.; Li, J.; Zhang, Y. Reinforcement learning based energy efficient robot relay for unmanned aerial

vehicles against smart jamming. Sci. China Inf. Sci. 2022, 65, 112304. [CrossRef]
7. Wang, C.; Zhang, Q.; Tian, Q.; Li, S.; Wang, X.; Lane, D.; Petillot, Y.; Wang, S. Learning mobile manipulation through deep

reinforcement learning. Sensors 2020, 20, 939. [CrossRef]
8. Nguyen, H.; La, H. Review of deep reinforcement learning for robot manipulation. In Proceedings of the 2019 Third IEEE

International Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019; pp. 590–595.
9. Ibarz, J.; Tan, J.; Finn, C.; Kalakrishnan, M.; Pastor, P.; Levine, S. How to train your robot with deep reinforcement learning:

Lessons we have learned. Int. J. Robot. Res. 2021, 40, 698–721. [CrossRef]
10. Cruz, F.; Parisi, G.I.; Wermter, S. Multi-modal Feedback for Affordance-driven Interactive Reinforcement Learning. In Proceedings

of the International Joint Conference on Neural Networks, Rio de Janeiro, Brazil, 8–13 July 2018. [CrossRef]
11. Ayala, A.; Henríquez, C.; Cruz, F. Reinforcement learning using continuous states and interactive feedback. In Proceedings of the

2nd International Conference on Applications of Intelligent Systems, Las Palmas de Gran Canaria, Spain, 7–12 January 2019.
[CrossRef]

12. Bignold, A.; Cruz, F.; Taylor, M.E.; Brys, T.; Dazeley, R.; Vamplew, P.; Foale, C. A conceptual framework for externally-influenced
agents: An assisted reinforcement learning review. J. Ambient. Intell. Humaniz. Comput. 2021, 1–24.. [CrossRef]

13. Cruz, F.; Magg, S.; Weber, C.; Wermter, S. Training Agents with Interactive Reinforcement Learning and Contextual Affordances.
IEEE Trans. Cogn. Dev. Syst. 2016, 8, 271–284. [CrossRef]

14. Moreira, I.; Rivas, J.; Cruz, F.; Dazeley, R.; Ayala, A.; Fernandes, B. Deep reinforcement learning with interactive feedback in a
human-robot environment. Appl. Sci. 2020, 10, 5574. [CrossRef]

15. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Sons: New York, NY, USA, 2014.
16. Bellman, R. A Markovian decision process. J. Math. Mech. 1957, 6, 679–684. [CrossRef]
17. Dulac-Arnold, G.; Mankowitz, D.; Hester, T. Challenges of real-world reinforcement learning. arXiv 2019, arXiv:1904.12901.
18. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep

reinforcement learning. arXiv 2013, arXiv:1312.5602.
19. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
20. Zhang, X.; Chen, P.; Yu, G.; Wang, S. Deep Reinforcement Learning Heterogeneous Channels for Poisson Multiple Access.

Mathematics 2023, 11, 992. [CrossRef]
21. Akkaya, I.; Andrychowicz, M.; Chociej, M.; Litwin, M.; McGrew, B.; Petron, A.; Paino, A.; Plappert, M.; Powell, G.; Ribas, R.; et al.

Solving rubik’s cube with a robot hand. arXiv 2019, arXiv:1910.07113.
22. Cruz, F.; Parisi, G.I.; Wermter, S. Learning contextual affordances with an associative neural architecture. In Proceedings of the

European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, 27–29 April 2016.
23. Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning

and large-scale data collection. Int. J. Robot. Res. 2018, 37, 421–436. [CrossRef]

http://doi.org/10.1177/2378023119846249
http://dx.doi.org/10.1109/LA-CCI.2018.8625243
http://dx.doi.org/10.1109/MRA.2014.2310151
http://dx.doi.org/10.3390/su15043479
http://dx.doi.org/10.1007/s11432-020-3170-2
http://dx.doi.org/10.3390/s20030939
http://dx.doi.org/10.1177/0278364920987859
http://dx.doi.org/10.1109/ IJCNN.2018.8489237
http://dx.doi.org/10.1145/3309772.3309801
http://dx.doi.org/10.1007/s12652-021-03489-y
http://dx.doi.org/10.1109/TCDS.2016.2543839
http://dx.doi.org/10.3390/app10165574
http://dx.doi.org/10.1512/iumj.1957.6.56038
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.3390/math11040992
http://dx.doi.org/10.1177/0278364917710318


Sensors 2023, 23, 2681 15 of 15

24. Griffith, S.; Subramanian, K.; Scholz, J.; Isbell, C.L.; Thomaz, A. Policy shaping: Integrating human feedback with Reinforcement
Learning. In Proceedings of the Advances in Neural Information Processing Systems 26 (NIPS 2013), Lake Tahoe, NV, USA, 5–10
December 2013; pp. 1–9.

25. Niv, Y. Reinforcement learning in the brain. J. Math. Psychol. 2009, 53, 139–154. [CrossRef]
26. Knox, W.B.; Stone, P. Interactively shaping agents via human reinforcement: The TAMER framework. In Proceedings of the Fifth

International Conference on Knowledge Capture, Redondo Beach, CA, USA, 1–4 September 2009; pp. 9–16.
27. Cruz, F.; Twiefel, J.; Magg, S.; Weber, C.; Wermter, S. Interactive reinforcement learning through speech guidance in a domestic

scenario. In Proceedings of the 2015 IEEE International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17
July 2015; pp. 1–8.

28. Thomaz, A.L.; Hoffman, G.; Breazeal, C. Real-time interactive reinforcement learning for robots. In Proceedings of the AAAI
2005 Workshop on Human Comprehensible Machine Learning, Pittsburgh, PA, USA, 9–10 July 2005.

29. Ng, A.Y.; Harada, D.; Russell, S. Policy invariance under reward transformations: Theory and application to reward shaping.
In Proceedings of the Sixteenth International Conference on Machine Learning, Bled, Slovenia, 27–30 June 1999; Volume 3,
pp. 278–287.

30. Cederborg, T.; Grover, I.; Isbell, C.L.; Thomaz, A.L. Policy shaping with human teachers. In Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015.

31. Herbert, D.; Kang, B.H. Intelligent conversation system using multiple classification ripple down rules and conversational
context. Expert Syst. Appl. 2018, 112, 342–352. [CrossRef]

32. Bignold, A.; Cruz, F.; Dazeley, R.; Vamplew, P.; Foale, C. Human engagement providing evaluative and informative advice for
interactive reinforcement learning. Neural Comput. Appl. 2022, 1–16. [CrossRef]

33. Taylor, M.E.; Carboni, N.; Fachantidis, A.; Vlahavas, I.; Torrey, L. Reinforcement learning agents providing advice in complex
video games. Connect. Sci. 2014, 26, 45–63. [CrossRef]

34. Bignold, A.; Cruz, F.; Dazeley, R.; Vamplew, P.; Foale, C. Persistent rule-based interactive reinforcement learning. Neural Comput.
Appl. 2021, 1–18. [CrossRef]

35. Fernández, F.; Veloso, M. Probabilistic policy reuse in a reinforcement learning agent. In Proceedings of the Fifth International
Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan, 8–12 May 2006; pp. 720–727.

36. Park, G.Y.; Kim, H.; Jeong, H.W.; Youn, H.Y. A novel cluster head selection method based on K-means algorithm for energy
efficient wireless sensor network. In Proceedings of the 2013 IEEE 27th International Conference on Advanced Information
Networking and Applications Workshops, Barcelona, Spain, 25–28 March 2013; pp. 910–915.

37. Madhulatha, T.S. An overview on clustering methods. arXiv 2012, arXiv:1205.1117.
38. Humaira, H.; Rasyidah, R. Determining The APPRopiate Cluster Number Using Elbow Method for K-Means Algorithm. In

Proceedings of the 2nd Workshop on Multidisciplinary and Applications (WMA) 2018, Padang, Indonesia, 24–25 January 2018;
EAI: Gent, Belgium, 2020.

39. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,
arXiv:1606.01540.

40. François-lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; François-lavet, V.; Pineau, J.; Bellemare, M.G. An Introduction to
Deep Reinforcement Learning. Found. Trends Mach. Learn. 2018, 11, 219–354. [CrossRef]

41. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

42. Bishop, C.M. Pattern Recognition and Machine Learning Springer Mathematical Notation Ni; Springer: New York, NY, USA, 2006; p. 9.
43. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
44. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
45. Bignold, A.; Cruz, F.; Dazeley, R.; Vamplew, P.; Foale, C. An Evaluation Methodology for Interactive Reinforcement Learning

with Simulated Users. Biomimetics 2021, 6, 13. [CrossRef]
46. Cruz, F.; Magg, S.; Nagai, Y.; Wermter, S. Improving interactive reinforcement learning: What makes a good teacher? Connect. Sci.

2018, 30, 306–325. [CrossRef]
47. Skinner, B.F. The Behavior of Organisms: An Experimental Analysis; BF Skinner Foundation: Cambridge, MA, USA, 2019.
48. Kumar, S. Balancing a CartPole System with Reinforcement Learning—A Tutorial. arXiv 2020, arXiv:2006.04938.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jmp.2008.12.005
http://dx.doi.org/10.1016/j.eswa.2018.06.049
http://dx.doi.org/10.1007/s00521-021-06850-6
http://dx.doi.org/10.1080/09540091.2014.885279
http://dx.doi.org/10.1007/s00521-021-06466-w
http://dx.doi.org/10.1561/2200000071
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.3390/biomimetics6010013
http://dx.doi.org/10.1080/09540091.2018.1443318

	Introduction
	Preliminary
	Deep Reinforcement Learning
	Reinforcement Learning with Interactive Feedback

	A Broad-Persistent Advising Approach
	Persistent Advice
	Broad Advice

	Experimental Environments
	Cart Pole Gym Environment
	Domestic Robot Environment
	Interactive Feedback
	Generalised Model and Probabilistic Policy Reuse

	Results
	Cart Pole Domain
	Webots Domain

	Conclusions and Future Work
	References

