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Abstract: The manner of walking (gait) is a powerful biometric that is used as a unique fingerprinting
method, allowing unobtrusive behavioral analytics to be performed at a distance without subject
cooperation. As opposed to more traditional biometric authentication methods, gait analysis does not
require explicit cooperation of the subject and can be performed in low-resolution settings, without
requiring the subject’s face to be unobstructed/clearly visible. Most current approaches are developed
in a controlled setting, with clean, gold-standard annotated data, which powered the development
of neural architectures for recognition and classification. Only recently has gait analysis ventured
into using more diverse, large-scale, and realistic datasets to pretrained networks in a self-supervised
manner. Self-supervised training regime enables learning diverse and robust gait representations
without expensive manual human annotations. Prompted by the ubiquitous use of the transformer
model in all areas of deep learning, including computer vision, in this work, we explore the use of
five different vision transformer architectures directly applied to self-supervised gait recognition.
We adapt and pretrain the simple ViT, CaiT, CrossFormer, Token2Token, and TwinsSVT on two
different large-scale gait datasets: GREW and DenseGait. We provide extensive results for zero-
shot and fine-tuning on two benchmark gait recognition datasets, CASIA-B and FVG, and explore
the relationship between the amount of spatial and temporal gait information used by the visual
transformer. Our results show that in designing transformer models for processing motion, using
a hierarchical approach (i.e., CrossFormer models) on finer-grained movement fairs comparatively
better than previous whole-skeleton approaches.

Keywords: gait recognition; biometric authentication; vision transformer; pose estimation; self-
supervised learning; contrastive learning

1. Introduction

How we move contains significant clues about ourselves. In particular, our gait
(manner of walking) has been closely studied in medicine [1], psychology [2], and sports
science [3]. Recently, gait analysis has received increased attention [4,5] from the com-
puter science community coinciding with the exponential progress of deep learning and
widespread availability of computing hardware. AI-powered gait analysis systems have
been able to successfully recognize subjects [6–10], estimate demographics such as gender
and age [11], and estimate external attributes such as clothing [12], without using any exter-
nal appearance cues. These results are not surprising, given the large amount of individual
differences in gait, which are due to differences in musculoskeletal structure, genetic and
environmental factors, as well as the walker’s emotional state and personality [13].

Current systems are only really trained and tested in controlled indoor environments.
Most methods use the CASIA-B dataset [6] as the standard benchmark for gait recognition
models, containing 124 subjects walking indoors in a strictly controlled manner captured
with multiple cameras. Complexity in the real-world cannot be fully modeled by such
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restrained scenarios. Only recently the focus has been on modeling gait "in the wild", with
datasets such as DenseGait [12], GREW [7], and Gait3D [14].

Gathering a large-scale dataset that is clean and fully annotated represents a tremen-
dous effort in terms of both financial resources and allocated time. The GREW dataset [7]
reportedly took 3 months of continuous work to be gathered and annotated. While such ap-
proaches have been useful in developing neural architectures for processing gait [8,9], they
are not sufficiently diverse to be properly used in more relaxed, real-world environments.
The AI community has been slowly moving away from this approach in other areas as well,
with methods for self-supervised learning for both vision [15] and language [16] gaining
significant traction, and often surpassing traditional supervised methods. Recent progress
in self-supervised learning showed that self-supervised models are more robust and exhibit
emerging behaviors, not explicitly defined during training. For instance DINO [17], a vision
transformer trained in a self-supervised regime, learned class-specific features enabling
unsupervised object segmentation without using any such labels during training. Cosma
and Radoi [10] proposed the first contrastive method for self-supervised learning for gait
analysis, by training a ST-GCN [18] on a smaller version of DenseGait [12]. Their method
obtained reasonable results on downstream gait recognition tasks and showed that there is
a strong correlation between the pretrained dataset size and zero-shot transfer performance.

While many approaches for gait analysis have been utilizing silhouettes extracted from
background subtraction [6,8,9], extracting silhouettes in real surveillance scenarios implies
the use of more advanced techniques, such as instance segmentation [19], which come
at a significant computational cost. Sequences of silhouettes occupy significant storage
space and are not sufficiently flexible to be used in other adjacent tasks, such as activity
recognition. Moreover, silhouettes encode subtle appearance cues, which makes it unclear
to what extent movement is utilized in the identification [20]. On the other hand, 2D pose
estimation models have become increasingly accurate and computationally efficient [21,22].
Skeletons are cheap to extract, currently more reliable than 3D meshes and 3D poses,
especially at a distance. Moreover, 2D skeletons are significantly more lightweight than
silhouettes in terms of long-term storage.

Current architectures for processing sequences of skeletons are utilizing the natural
spatial graph structure present in the human skeleton, introducing an inductive bias in
the model design. Models such as the popular ST-GCN [18] and MS-G3D [23] have seen
impressive results for skeleton-based action recognition.

Concurrently, there has been an explosion in the use of transformer models in almost
all areas of deep learning since their initial application for natural language processing.
Transformers are considered a more general architecture, with few inductive biases. Initially
transformers have struggled to match CNN models for image classification [24], but are
currently surpassing other models and are showing promising results in self-supervised sce-
narios and, more so than other types of architectures, transformers have shown impressive
learning capacity and emergent behaviors under self-supervision [17].

Cosma and Radoi [12] were the first to propose GaitFormer, a direct adaptation of the
vision transformer encoder model for gait recognition, utilizing individual skeletons as
input “patches”, essentially only performing temporal attention, ignoring spatial attention
relationships. GaitFormer was trained in a self-supervised fashion and surpassed other gait
recognition methods even without any fine-tuning. Such previous work is encouraging
and paves the way for a more in-depth study of the potential application of transformer ar-
chitectures for gait analysis. Can vision transformer models be adapted for self-supervised
learning of skeleton gait representations? The main architectural issue in vision transform-
ers is defining the proper relationships between image patches, which define local and
global information. When applied to gait, the choice of patch dimensions corresponds to
the amount of encoded temporal and spatial information of the skeleton sequence.

In this work, we present an extensive study of five different vision transformers,
adapted for gait recognition. We explore the classical ViT model [24], CaiT [25], Cross-
Former [26], TwinsSVT [27], and token-to-token ViT [28]. Each architecture is trained
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separately in a contrastive self-supervised manner on two large-scale "in the wild" datasets
of 2D gait skeleton sequences: DenseGait—an automatically gathered dataset from raw
surveillance streams, and GREW, a smaller dataset but containing clean human annotations.

We explore transfer capabilities across two controlled datasets for gait recognition,
CASIA [6], and FVG [29]. For each dataset, we analyze direct (zero-shot) transfer and data
efficiency during fine-tuning by training with progressively larger subsets of the datasets.
Moreover, we conduct an ablation study on the relationship between spatial and temporal
dimensions for patch sizes for SimpleViT and CaiT, the standard backbones for most of the
vision transformers to date.

The rest of the paper is organized as follows. We conduct a high-level overview of
related works pertaining to gait recognition models and vision transformers. We observe
that gait representation models highly benefit from self-supervised training to have more
robust and general embeddings, and transformer models have shown great modeling
capacity in self-supervised training regimes. Further, we mathematically describe the
five architectures that we benchmark and describe the data preprocessing and skeleton
transformations needed to be performed, such that vision transformers have to operate
seamlessly on skeleton sequences. We also describe data augmentations, training and
benchmarking datasets, and experimental setup. We showcase results on CASIA-B and
FVG for each of the five architectures and the two ’pretraining in-the-wild’ datasets. Finally,
we make an ablation study on the relationship between the spatial and temporal patch sizes
and provide a brief discussion of our results. We make our source code publicly available
on GitHub (https://github.com/cosmaadrian/gait-vit, accessed on 28 February 2023) for
transparency and reproducibility.

2. Related Work

In this section, we make a brief overview of existing methods for gait recognition in
controlled environments and "in the wild". Further, we describe main the developments of
transformer models and, in particular, their application in the vision domain.

2.1. Gait Recognition

Similarly to face-based identification, gait recognition relies on metric learning. As
opposed to traditional biometric authentication methods, which rely on a single image (e.g.,
face recognition) and require extensive cooperation (e.g., iris-based biometric authentica-
tion), gait features are processed as a sequence of motion snapshots. Such gesture dynamics
require more complexity in determining the most informative sub-sequence but enable the
use of unobtrusive authentication at a distance.

In this context, the task implies training an encoder network to map walking sequences
to an embedding space where the embedding similarity corresponds to the similarity of
the gait. Embeddings of walks that belong to the same person should be close to the
embedding space and those who come from different identities need to be more distant.
In this embedding space, inference can be made by obtaining the embedding of the gait
sequence and utilizing the nearest-neighbor approach on a database of known walks.

Current approaches in gait-based recognition are divided into two categories: appearance-
based [8,9] and model-based [10,12,30]. Appearance-based methods first obtain the silhou-
ettes of the walking subjects with background subtraction or segmentation algorithms from
each video frame. Then the sequence of silhouettes is fed into CNN-based architectures
which extract spatial and temporal features which are aggregated into a final embedding
for recognition. Model-based approaches extract the skeletons from RGB videos with pose
estimation models [21,22]. Sequences of skeletons are usually processed by models which
rely on graph convolutions [10,30] for obtaining the embedding of the gait.

GaitSet, the work of Chao et al. [8], regards the gait as an unordered set of silhouettes.
The authors argue that this representation is more flexible than a silhouette sequence
because it is robust to different arrangements of frames or the combination of multiple
walking directions and variations. They utilize convolution layers for each silhouette
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in order to obtain image-level features and combine them into a set-level feature with
Set Pooling. They obtain the final output by employing their own version of Horizontal
Pyramid Matching [31].

Fan et al. [9] noticed the fact that specific parts of the human silhouette should have
their own spatiotemporal expression as each one has a unique pattern. Their architecture,
GaitPart, utilizes focal convolution layers (FConvs), which are a specialized type of convo-
lution with a more restricted receptive field. The authors argue that the FConvs aid their
architecture in learning more fine-grained features for different parts of the moving body.
They also introduce the micro-motion capture modules, which are employed to extract the
features of small temporal sequences.

Teepe et al. [30] propose GaitGraph, which leverages an adapted graph convolutional
network called ResGCN [32] for encoding the spatiotemporal features obtained from the se-
quence of skeletons. Li et al. [33] propose PTP, which is a structure that aggregates multiple
temporal features from one gait cycle based on their analysis of the most important stages
of walking. They also utilize a graph convolutional network for spatial feature extraction,
which works together with PTP. The authors introduce a novel data augmentation method
that modifies the gait in order to have multiple paces in a cycle which is more realistic.

However, different from previous works, we are aiming to explore the performance
of gait recognition architectures in self-supervised scenarios. Inspired by tremendous
progress in the computer vision domain, we propose to adapt existing vision transformer
architectures to operate on skeleton sequences instead of images and to test their mod-
eling capacity in self-supervised scenarios. Most other works [8,9,30] focus their efforts
on developing neural architectures that achieve impressive results on gait recognition on
controlled datasets. However, we intend to remove the need for highly expensive man-
ual annotations for gait datasets and explore ways in which self-supervised learning is
appropriate for gait analysis pretraining. Previous works in this domain [10,12] showed
potential for learning good gait representations from weakly annotated datasets. Cosma
and Radoi [12] proposed GaitFormer, the first transformer-based architecture for processing
skeleton sequences, inspired by the ViT [24] model. Similar to [12], we attempt to explore
the performance of other vision transformer models, with different spatial and temporal
dynamics in the patch processing mechanism. Large-scale datasets for gait recognition have
been proposed in the past [7,12], which allows for the development of general architectures
for representation learning.

2.2. Vision Transformers

While initially proposed for NLP tasks [16,34] with immense success, transformers
have become widely utilized in computer vision in recent years [24,25,28,35–37]. Both
domains have enjoyed unprecedented performances by using various variations of trans-
formers, partially due to the increased model capacity and the transformers’ ability to
benefit from self-supervision much more than previous models [17].

Dosovitskiy et al. [24] were the first to propose the utilization of transformer encoders
for image classification, introducing the Vision Transformer (ViT). The architecture divides
the input image into fixed-size patches of 16x16, flattens, and projects them with a linear
layer to the embedding dimension. An extra class token (CLS) is inserted into the sequence
and positional encodings are added to each vector. The resulting sequence of embeddings
is given as input to a transformer encoder, which has the same structure as the one in [34]
but uses the LayerNorm operator before each block instead of after (pre-norm). An MLP
head is utilized in order to obtain the class label from the globally aggregated information
in the class token.

The self-attention mechanism introduced by Vaswani et al. [34] takes a sequence
of items as input and estimates the interaction between all of them by aggregating the
global information for each individual element in the sequence. In order to compute
different interactions between the elements of a sequence, the multi-head self-attention
(MSA) module concatenates the results of multiple self-attention blocks and projects the
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output onto a learnable weight matrix. The transformer encoder introduced in [34] is
composed of multiple stacked layers consisting of a MSA block, a feedforward (FFN) block,
residual connections between each block, and a LayerNorm (LN) after each block.

Touvron et al. [25] propose two architectural changes in order to improve the per-
formance of deep vision transformers. Their first contribution, LayerScale, facilitates the
training of deeper models by adding a learnable diagonal matrix which is multiplied by
the output of the residual blocks. Because the matrix is initialized with small values, it
forces the results of the transformer encoder layers to have a small contribution to the
output of the residual block at the beginning of training. Their second contribution is the
class-attention mechanism. Instead of initially appending the CLS token, such as in the
standard ViT, it is appended after a number of encoder blocks. After this stage, only the
class token is updated and the patch tokens are kept frozen. This mechanism helps in
decoupling the self-attention operations between patches from aggregating the information
that will be used for classification.

Yuan et al. [28] argue that the simple tokenization of patches in the vanilla ViT has the
limitation of not being able to model the local structure of the image and the interaction
between neighboring patches. Consequently, they introduce a progressive tokenization
process that combines neighboring tokens into a single one. This process consists of
the Reshape module, which takes the sequence of tokens from the previous layer and
constructs an image from them based on spatial closeness. The Soft Split module divides
the constructed image into overlapping patches of tokens and feeds them to the next
encoder. The generated tokens after the tokenization process are fed into a deep narrow
ViT backbone for classification.

As noted by Wang et al. [35] the standard Vision Transformer was specifically de-
signed for image classification and is not suited for other tasks such as object detection
or segmentation. Because of this, they propose the Pyramid Vision Transformer (PVT)
which takes inspiration from CNN architectures by producing intermediary feature maps
with decreasing spatial dimensions and an increasing number of channels. This pyramid
structure helps the model in learning multi-scale features which can be used for various
tasks. The model first processes tokens were obtained from patches of dimensions 4 × 4,
and at each stage, the tokens correspond to larger spatial dimensions of patches.

The computational cost of classic self-attention is O(N2 · d) where N is the number
of tokens in the sequence and d is the vector dimension. The quadratic computational
cost in terms of the number of tokens becomes a practical problem with increasing input
image resolution since each token in a sequence corresponds to a patch in the image. In the
literature, there are a number of techniques with which to reduce the computational cost of
vanilla self-attention [26,35,36]. PVT [35] uses the spatial reduction attention, which reduces
the spatial size of the Key and Value vectors before the self-attention with a reshaping
operation and a linear projection.

The Swin transformer [36] which also has a pyramid structure replaces the self-
attention block with a module that approximates it. The module groups neighboring
patches in local windows and performs the self-attention operation only inside these win-
dows. In order to communicate the information with other windows, it shifts the local
windows so that they also contain patches from neighboring windows and computes self-
attention again. Chu et al. [27] adopted the PVT architecture and proposed a similar method
for approximating self-attention. They also performed local attention between patches in a
window, similar to the Swin transformer. In order to communicate information with other
windows, they conducted self-attention between a representative of each window and
all other windows. CrossFormer [26] also builds upon the PVT. It utilizes short distance
attention, which is similar to the local attention in the Swin transformer, but for leaking
information to other windows it employs long-distance attention, which computes the
interaction between patches, which have a fixed distance between them. It also combines
multi-scale patches centred around the same pixel in order to obtain the tokens for the
transformer blocks, which helps the model in learning cross-scale interactions.
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Yang et al. [37] propose the focal attention mechanism for learning both short and
long-range interactions between tokens which makes vision transformers able to process
high-resolution images. For each image patch, the focal self-attention module computes
interactions with spatially close patches and with summarized windows of patches that are
more distant. The summarization of windows of patches is done via pooling and it captures
less information when the patches are far away. The RegionViT [38] utilizes the PVT
architecture and adds two tokenization paths for each feature map. The first tokenization
path obtains regional tokens which consist of patches that cover a large number of pixels.
The second tokenization path obtains local tokens which capture low-level information
by containing few pixels. These two types of tokens are fed as input to the regional-to-
local transformer encoder in which first self-attention between regions is computed, then
between each regional token and its corresponding local tokens.

The LeViT architecture [39] combines both CNNs and the self-attention mechanism.
An image is first fed into a CNN encoder, which decreases the spatial dimensions and
increases the channel dimension. The resulting feature maps are fed into a hierarchical
ViT that contains a shrinking attention module between its encoders in order to further
decrease the spatial dimensions and increase the channel dimension of the feature maps.
Architectures based on attention have also been employed in video-based tasks where
temporal information needs to be taken into account. Architectures, such as ViViT [40]
and TimeSformer [41], utilize the self-attention mechanism over both the spatial and the
temporal dimensions. Because of this, the model learns to capture the spatial information
from each individual frame and the change over time.

3. Method

In this section, we provide a detailed description of each architecture and chosen
hyperparameters. Further, we describe the data processing and the proposed design
decisions to adapt vision transformers to work with skeleton sequences. Lastly, we describe
the initialization methods, evaluation protocol, and evaluation datasets.

3.1. Architectures Description

We explored five different variants of the Vision Transformers (Figure 1), which
were developed for more optimized computation on images, in terms of downstream
performance and inference time. In particular, we explore the classic ViT [24], CaiT [25],
Token2Token ViT [28], Twins-SVT [27]. In general, the flavors of vision transformers are
dealing with improvements upon the “classic” way of processing images with transformers,
as proposed in ViT: images are split into equal-sized and non-overlapping patches which
are flattened and projected into a lower dimensional space to be then treated as “tokens”,
in a similar manner to NLP applications. In the case of gait analysis, a square patch
corresponds to a group of joints that vary across a small temporal window.

Figure 1. High-level overview of each of the five architectures in our study. The main particular-
ities/blocks of each model is shown. The final embedding for the skeleton sequence is shown in
mauve, which corresponds to average pooling across the sequence.

The standard transformer encoder takes as input a sequence of items (X ∈ Rn×d where
n—number of items, d—embedding dimension) and projects them onto three different
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learnable weight matrices obtaining the Queries (Q ∈ Rn×dq ), the Keys (K ∈ Rn×dk , dk = dq),
and values (V ∈ Rn×dv ), where dq, dk, and dv are the dimensions for the queries, keys and
values, respectively. Attention is computed as:

Attention(Q, K, V) = So f tmax(QKT/
√

dk)V (1)

Multi-head self-attention (MSA) employs multiple attention modules in order to
compute different interactions between the elements of a sequence. Usually, positional
encodings are added to the input to encode the order of the input tokens. An encoder layer
is made up of a MSA block and a feedforward (FFN) block. Residual connections and
LayerNorm (LN) are utilized after each block. Given a sequence of tokens (zl ∈ Rn×d) to
the input of a transformer encoder layer, the output zl+1 is computed as:

z′l = LN(zl + MSA(zl))

zl+1 = LN(z′l + FFN(z′l))
(2)

For most architectures, we fixed the number of layers, attention heads, and feature
dimensionalities whenever possible. As such, we choose 4 layers with 4 attention heads
each, a dimension of 512 for the feedforward network, and a final embedding size of 128.

ViT The Vision Transformer [24] obtains an input sequence of tokens by dividing the
image into patches and linearly projecting them to the embedding dimension. The resulting
sequence along with an extra class token (CLS) are given as input to a transformer encoder.
Moreover, the ViT encoder uses pre-norm, as opposed to post-normalization. The output
of a layer can be computed as:

z′l = zl + MSA(LN(zl))

zl+1 = z′l + FFN(LN(z′l))
(3)

For ViT, we chose a configuration with a spatial patch size of 64 and a temporal patch
size of 1, essentially each patch being represented as a single skeleton. We delve into more
detail about different patch configurations in Section 4.3.

CaiT The CaiT [25] architecture incorporates a learnable diagonal matrix which is
multiplied with the output of the residual block. This facilitates the training of deeper
vision transformers by enforcing a small residual contribution at the start of training. The
output of a CaiT layer can be calculated with the following formula:

z′l = zl + diag(λl,1, . . . , λl,d)×MSA(LN(zl))

zl+1 = z′l + diag(λ′l,1, . . . , λ′l,d)× FFN(LN(z′l)),
(4)

where λl,i and λ′l,i are learnable parameters. The model also decouples the computation
of interactions between input tokens from the computation of the class embedding which
aggregates all the global information. This is done with class attention which introduces
the CLS token to the input sequence after the interactions have been obtained and freezes
all the other tokens. For the CaiT encoder, we used the same configuration as in ViT, but
for the CLS encoder, we used a depth of 2 layers.

Token2Token ViT The Token2Token architecture [28] contains a progressive tokeniza-
tion process that models the local structure of an image by combining neighboring tokens.
The tokenization process first constructs an image-like structure from an input sequence of
tokens with the help of the Reshape module. Then the image is divided into overlapping
patches of tokens via the Soft Split (SS) module. The resulting output from the tokenization
module is computed as:

z′l = FFN(MSA(zl))

Il = Reshape(z′l)

zl+1 = SS(Il)

(5)
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For Token2Token, we used 2 layers with patch sizes of {2, 8} and {2, 4} for the first
layer, and {4, 16} for the second layer.

Twins-SVT The Twins-SVT [27] architecture replaces classic self-attention block with
a module called spatially separable self-attention (SSSA) that approximate the operation.
SSSA consists of a locally-grouped self-attention (LSA) which computes the interaction only
between tokens inside the same local window and the global sub-sampled attention (GSA)
which aggregates global information by doing self-attention between all representatives of
each local window computed by convolving the neighboring tokens. The operations of a
Twins layer can be written as:

z′l = zl + LSA(LN(zl))

zl+1 = z′l + FFN(LN(z′l))

z′l+1 = zl+1 + GSA(LN(zl+1))

zl+2 = z′l+1 + FFN(LN(z′l+1))

(6)

For the Token2Token encoder, we used dimensions of {16, 32, 64, 128} for the layers,
uniform patch dimensions of 2, local patch sizes of 4 and global window of 4 for every layer.

CrossFormer CrossFormer [26] utilizes a cross-scale embedding layer, which concate-
nates patches of different sizes centred around the same pixel and linearly projects the
result to the embedding dimension in order to obtain tokens. This helps the architecture
in learning both low-level and high-level features. Similar to the case of the Twins archi-
tecture, the CrossFormer approximates self-attention with two complementary modules:
short distance attention (SDA) and long distance attention (LDA). The SDA module works
the same as the local attention in Twins and the LDA module computes the interactions
between tokens at a certain fixed distance. The operations of the CrossFormer layers can be
written as:

z′l = zl + SDA(LN(zl))

zl+1 = z′l + FFN(LN(z′l))

z′l+1 = zl+1 + LDA(LN(zl+1))

zl+2 = z′l+1 + FFN(LN(z′l+1))

(7)

For the CrossFormer encoder, we used dimensions of {16, 32, 64, 128} for the layers,
global window sizes of {4, 2, 2, 1}, local window size of 2, cross-embedding strides of 2, and
cross-embedding kernel sizes of {{2, 4, 8, 16}, {2, 4}, {2, 4}, {2, 4}}.

3.2. Data Preprocessing

For both DenseGait and GREW datasets, we employ the same preprocessing procedure.
For each extracted and tracked skeleton sequence containing 18 joints with x, y coordinates
and an additional confidence score, we first normalize the sequence by centring at the
pelvis coordinates (xpelvis, ypelvis) and by scaling horizontally and vertically, according to
human body proportions (i.e., the distance between shoulders: |xR.shoulder − xL.shoulder| and
the distance from the neck to the pelvis: |yneck − ypelvis|). For each coordinate (xjoint, yjoint)
of each of the 18 joints in the COCO pose format, we apply the following normalization
procedure:

xjoint =
xjoint − xpelvis

|xR.shoulder − xL.shoulder|
(8)

yjoint =
yjoint − ypelvis

|yneck − ypelvis|
(9)

Through the normalization process, differences between camera resolutions and the
subject’s distance from the camera are eliminated. Moreover, we eliminate appearance
information regarding the height and width of a subject, which do not pertain to move-
ment information. This step is similar to the alignment step in modern face recognition
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models [42]. Moreover, we also employ a batch normalization [43] layer at the beginning of
each model to further normalize the resulting image.

Given the temporal dimension T (i.e., number of frames) and the skeleton spatial
dimension J (i.e., number of joints), naive skeleton sequences are encoded as images of
shape (T, J, 3), where, in our case, T = 64 and J = 18. Most vision transformers, however,
assume that the images are square. Therefore, we propose multiple variants of resizing the
spatial dimension such that the image is transformed to (T, T, 3), which is equivalent to
artificially increasing the number of joints (see Figure 2).

Figure 2. Preprocessing procedure. Skeleton sequences are treated as an image that is sent through a
batch normalization layer. To transform the image square dimensions, we propose several methods
for spatially resizing the skeleton sequence.

We use a simple upsample to interpolate between neighboring joints (Figure 3). How-
ever, naively doing so on the skeleton results in spurious joints across the skeleton, regard-
less of the choice of skeleton formats (e.g., OpenPose or COCO), since the joint ordering
does not preserve any semantic meaning. This observation is in line with the work of
Yang et al. [44], which proposes a tree structure skeleton image (TSSI) to propose the spa-
tial relationships between joints. It is based on a depth-first tree traversal ordering of
joints, which preserves the skeleton’s structural information. Figure 3 (right), showcases
the effects of different skeleton formats and upsample methods. For this resizing method,
we used TSSI format and bicubic interpolation.

Furthermore, we experimented with two upscaling methods, which were learnable
during training. We used a simple linear layer applied to each flattened skeleton to increase
the number of joints. This is the most straightforward manner to transform each skeleton,
but it does not account for any spatial relationships between joints. To address this, we
also employ a set of 2D deconvolutional layers on the skeleton sequence for resizing while
also taking the structural information into account; for this method, we also employ the
TSSI format.

Table 1 showcases the results for each resizing method for all architectures. The models
were trained and evaluated on CASIA-B for 200 epochs, and we show results for normal
walking. For the rest of our experiments, we chose to upsample the skeleton sequence with
bicubic interpolation.

Table 1. Results for normal walking (NM) by training on CASIA-B utilizing different resizing methods
for the skeleton sequence.

Architecture

Resize Type ViT CrossFormer TwinsSVT Token2Token CaiT

Linear 75.80 68.40 66.86 77.71 49.63
Deconv 73.90 65.24 70.96 71.26 55.05

Upsample Bilinear 80.49 78.66 67.66 79.32 55.20
Upsample Bicubic 80.57 81.01 62.60 78.73 50.36
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Figure 3. Example of upsampling the skeletons using traditional image resizing methods. A naive
skeleton representation does not provide an interpretable result. By utilizing the tree structure
skeleton image (TSSI) format, spatial resizing corresponds to artificially increasing the number of
joints in a skeleton.

3.3. Training Details

While there are several possible self-supervised pretraining procedures, we opted for
a contrastive pretraining approach since it is the same procedure for the actual retrieval
task of gait recognition. Contrastive approaches encourage representations belonging to
the same class to be close in latent space, while simultaneously being distant from repre-
sentations belonging to different classes. In particular, we use Supervised Contrastive [45]
for pretraining. SupCon loss operates on a multi-viewed batch: each sample in the batch
has multiple augmented versions of itself. It was shown to naturally be more robust to
data corruption, it alleviates the need for careful selection of triplets since the gradient
encourages learning from hard examples and is less sensitive to hyperparameters.

Let i ∈ I ≡ {1 . . . 2N} be the index of an arbitrary augmented sample. SupCon loss is
defined as

Lsup = ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp(zi · zp/τ)

∑a∈A(i) exp(zi · za/τ)
(10)

Given a encoder backbone Enc(·), we extract zl = Proj(Enc(xl)), the projected em-
bedding for skeleton sequence xl . The anchor indices are A(i) ≡ I \ {i} and the positive
indices are defined as P(i) ≡ {p ∈ A(i) : ỹp = ỹi}. We used a two-view sampler, in which
each skeleton sequence is augmented in two different ways. One important parameter for
SupCon loss is the temperature τ, which substantially affects optimization. Lower tempera-
tures improve training performance, as it is equivalent to optimizing for hard examples [45],
while higher values promote loss smoothness as samples are better separated. We chose
a temperature of τ = 0.001 in all our experiments. As indicated by Chen et al. [46], we
utilize a linear projection layer to a lower dimensional space, to diminish the course of
dimensionality. Particularly, we linearly project the gait embedding as outputted by the
encoder Enc(·) into a 128-dimensional space with a simple feedforward layer Proj(Enc(·)).

Furthermore, in all our experiments we employ an Adam optimizer with a batch size
of 256 and with a variable learning rate ranging from 0.001 to 0.0001 using a triangular
cyclical learning rate schedule [47]. Experiments were performed on 2x NVIDIA RTX 3060
GPUs, with 12 GB of VRAM each.

3.4. Data Augmentation

Training in a self-supervised contrastive manner with SupCon loss implies the use of
data augmentation to provide multiple augmented “views” of the same skeleton sequence.
Augmentations used for our walking skeleton sequences are in line with other works in
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this area [10,12,30]. The main augmentation used is random temporal cropping with a
period length of T = 64 frames. Given that skeletons are tracked for a variable duration
of time, we use cropping to ensure that all sequences have the same length. Moreover,
a walking person might change direction and perform other actions across the tracked
duration; consequently, cropping induces more variability for the same sequence.

Furthermore, we modify the walking pace by slowing down or speeding up the walk.
We used speed modifiers of {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.0}. This is adapted from the work
of Wang et al. [48] for self-supervised learning of video representations. Moreover, pace
modification has been used in gait analysis in the past [33].

We also use random flipping with a probability of 0.5, sequence reversal with a
probability of 0.5, additive Gaussian noise for each joint with σ = 0.005, and random
dropout of 5% of joints with a probability of 0.01 to simulate missing joints from the pose
estimation model.

3.5. Initialization Methods

To gauge the impact of self-supervised pretraining performance on the proposed archi-
tectures, we explore three different initialization methods. Table 2 showcases the various
datasets used in the literature. While CASIA-B [6] and FVG[29] are controlled datasets,
mostly used for evaluation, we use DenseGait [12] and GREW [7] for self-supervised pre-
training for the five architectures. DenseGait and GREW are two of the largest realistic
gait databases, collected in outdoor settings, which presumably contain the majority of
gait variations, behaviors, and complexities present in everyday life. We choose these
datasets to have more general gait representations, to allow for gait authentication in
general surveillance scenarios.

Table 2. Comparison of existing datasets for gait analysis. FVG, CASIA-B, and OU-ISIR are collected
in controlled environments and are mainly used for benchmarking. GREW, UWG, and DenseGait are
collected in realistic environments and offer more walk variability. * Number of IDs is approximate,
as given by the pose tracker
.

Dataset # IDs Sequences Views Env. Note

FVG [29] 226 2857 1 Outdoor Controlled
CASIA-B [6] 124 13,640 11 Indoor Controlled
OU-ISIR [49] 10,307 144,298 14 Indoor Controlled

GREW [7] 26,000 128,000 - Outdoor Realistic
UWG [10] 38,502 * 38,502 - Outdoor Realistic
DenseGait [12] 217,954 * 217,954 - Outdoor Realistic

DenseGait Pretraining DenseGait is a large-scale “in the wild” gait dataset collected
automatically from surveillance streams. It contains 217 K tracked skeleton sequences,
extracted using AlphaPose [22], in various environments and camera angles from multiple
geographical locations. Since DenseGait is collected automatically, its annotations in terms
of the tracking identifier are noisy, and the dataset might contain sequences pertaining to
the same subject, although this is a rare occurrence. However, this is the case for the majority
of large-scale unlabeled datasets that contain samples belonging to the same semantic class,
which is considered unrelated during training. We pretrain each architecture on DenseGait
and use the trained parameters for further downstream performance evaluation of the
controlled datasets.

GREW Pretraining GREW is another outdoor “in the wild” dataset but is carefully
annotated such that it contains walking subjects across multiple days and different types
of clothing. However, to conform to the requirements of the self-supervised regime, we
discard the annotations and treat each walking sequence as a separate person. GREW is
2× smaller than DenseGait, containing 128 K skeleton sequences, while also having each
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pedestrian tracked for a smaller average duration [12]. We also pretrain each architecture
on GREW and use the trained parameters for downstream performance evaluation.

Random Initialization This initialization method corresponds to no pretraining (i.e.,
training from scratch). Each architecture is trained with random weight initialization on
the downstream datasets. This method is a baseline to compare the performance gains by
pretraining.

3.6. Evaluation

Downstream task performance is evaluated in two different manners for gait recog-
nition. We directly test the retrieval capabilities of pretrained architectures, without fine-
tuning for a specific task. This method corresponds to zero-shot transfer. Further, we
fine-tune each architecture using a 10× smaller learning rate than during pretraining, with
a progressively smaller learning rate at the beginning of the network, corresponding to
layer-wise learning rate decay (LLRD) [50] policy.

The evaluation of the downstream performance is performed on two popular gait
recognition datasets: CASIA-B [6] and FVG [29]. Both datasets feature a small number of
subjects under strict walking protocols, which are controlled over various confounding
factors: camera angle, clothing, accessories, and walking speed.

CASIA-B is an indoor dataset containing 124 subjects captured from 11 synchronized
cameras. Each individual walks in three different conditions: normal walking, clothing
change, and bag carrying. Since its release, it has been a staple for benchmarking gait
analysis models, being one of the most used datasets in this area. We use the first 62 subjects
as the training set and the remainder of the 62 for performance evaluation. For gait
recognition, we choose to evaluate performance on a per-angle basis in a “leave-one-out”
setting, in which the gallery set contains all walking angles except the probe angle.

Front-View Gait is another popular dataset for gait recognition, having 226 subjects
walking outdoors under various protocols. Different from CASIA-B, FVG features addi-
tional confounding factors: walking speed, cluttered background, and the passage of time
(i.e., some subjects have registered walks that span a year). Furthermore, all subjects are
captured with a front-facing camera angle, which is considered the most difficult angle
for gait recognition since it contains the smallest amount of perceived joint movement
variation. We used the first 136 subjects for training and the rest for performance evalua-
tion. Performance evaluation for gait recognition adheres to the protocols outlined by the
authors, in which we use the normal walking sequence in the gallery set and use the other
conditions in the probe set.

For all evaluation scenarios, we use deterministic cropping in the centre of the walking
sequence and do not use any test-time augmentations.

4. Experiments and Results
4.1. Evaluation of CASIA-B

We pretrain each architecture on DenseGait and GREW, respectively, and evaluate
the performance on CASIA-B and FVG. In the first set of experiments, we are interested in
evaluating the performance on CASIA-B in a fine-tuning scenario after pretraining, with
progressively larger training samples. We train each network on the first 62 identities,
with all available walking variations, and kept the rest for testing. Recognition evaluation
was performed using the first 4 normal walking samples as the gallery set, and the rest
as a probe set. Figure 4 showcases the accuracy for each of the three walking variations
(normal—NM, clothing—CLm and carry bag—BG) for CASIA-B. For this scenario, we
randomly sampled K = {1, 2, 3, 5, 7, 10}walks per subject, per angle, and trained the model.
While the performance is relatively similar between architectures, it is clear that pretraining
offers a significant boost in performance compared to random initialization, regardless of
the pretraining dataset choice. Moreover, SimpleViT, CrossFormer, and Twins-SVT seem
to have similar high performance, while Token2Token is slightly lagging. This suggests
that the progressive tokenization method used in Token2Token, which was specifically
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designed for image-like structures, does not effectively capture the characteristics of gait
sequences. There is a noticeable difference between the pretraining datasets: DenseGait
seems to offer a consistent performance increase in the two walking variations (CL and
BG) when compared to GREW. This is indicative of the fact that DenseGait includes more
challenging and realistic scenarios that better prepare the model for conditions where the
walking pattern is affected by external factors.

Figure 4. Results on CASIA-B after fine-tuning each architecture on progressively larger samples of
the training data. Models are pretrained in a self-supervised manner on DenseGait (left-hand side)
and GREW (centre). Lines represent average accuracy over all angles, shades represent standard
deviation values. Compared to random initialization (right-hand side), pretraining on diverse
datasets offers a significant boost of performance, especially in low-data regimes. Best viewed in
color.

Table 3 showcases a fine-grained comparison between all the tested architectures on
CASIA-B. We compared the performance for pretrained networks in a zero-shot (i.e., direct
transfer) scenario and a fine-tuned scenario with 100% of the available training data. We
also included a randomly initialized network trained from scratch on CASIA-B. Consistent
with results from Figure 4, we find that the difference between the pretraining dataset
in the zero-shot scenario is largely reduced when fine-tuned with all the available data,
which is an indication of the fact that the fine-tuning process is able to adapt the weights of
the models to the distribution of the dataset. Furthermore, SimpleViT, CrossFormer, and
Twins-SVT consistently outperform CaiT and Token2Token across variations.
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Table 3. Fine-grained comparison for each architecture on CASIA-B, for each of the three walking variations and 11 viewpoints. For each model, we compared the
performance between zero-shot (ZS) and Fine-Tuned (FT) for models pretrained on DenseGait and GREW, respectively, and no pretraining (Rand. Init.).

Method Kind Pretraining Dataset 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

NM

SimpleViT Rand. Init. − 73.39 82.26 81.45 76.61 55.65 51.61 62.10 70.97 72.58 66.94 59.68 68.48
SimpleViT ZS DenseGait 69.35 62.90 69.35 71.77 48.39 49.19 50.00 68.55 71.77 72.58 58.06 62.90
SimpleViT ZS GREW 59.68 76.61 70.16 69.35 38.71 40.32 47.58 64.52 63.71 60.48 54.03 58.65
SimpleViT FT DenseGait 82.26 91.94 97.58 95.16 82.26 86.29 89.52 90.32 88.71 91.13 82.26 88.86
SimpleViT FT GREW 88.71 91.13 91.94 92.74 79.03 72.58 82.26 83.87 87.10 92.74 74.19 85.12
CaiT Rand. Init. − 65.32 70.97 58.87 51.61 39.52 49.19 58.06 68.55 55.65 42.74 43.55 54.91
CaiT ZS DenseGait 76.61 67.74 70.16 60.48 48.39 61.29 65.32 64.52 75.00 75.00 61.29 65.98
CaiT ZS GREW 70.97 66.13 67.74 62.10 39.52 37.90 37.10 50.81 54.03 65.32 54.84 55.13
CaiT FT DenseGait 87.90 91.94 97.58 91.94 87.10 82.26 90.32 93.55 90.32 87.10 78.23 88.93
CaiT FT GREW 85.48 91.94 92.74 93.55 76.61 81.45 88.71 85.48 82.26 86.29 84.68 86.29
Token2Token Rand. Init. − 50.00 58.87 58.87 58.06 51.61 53.23 58.06 54.03 61.29 54.03 31.45 53.59
Token2Token ZS DenseGait 61.29 79.84 73.39 74.19 54.84 43.55 54.84 74.19 71.77 83.87 79.84 68.33
Token2Token ZS GREW 54.03 69.35 75.00 66.94 26.61 22.58 33.06 60.48 57.26 48.39 49.19 51.17
Token2Token FT DenseGait 80.65 90.32 93.55 93.55 90.32 85.48 91.13 92.74 89.52 90.32 76.61 88.56
Token2Token FT GREW 70.16 83.87 91.13 90.32 78.23 76.61 82.26 83.87 80.65 80.65 67.74 80.50
Twins-SVT Rand. Init. − 33.87 41.94 33.06 34.68 21.77 30.65 26.61 29.84 30.65 21.77 20.97 29.62
Twins-SVT ZS DenseGait 66.94 56.45 71.77 64.52 45.16 42.74 50.81 70.16 72.58 66.94 68.55 61.51
Twins-SVT ZS GREW 50.81 70.97 66.13 60.48 36.29 33.87 29.03 54.03 59.68 51.61 47.58 50.95
Twins-SVT FT DenseGait 71.77 85.48 87.10 87.90 74.19 83.87 79.03 89.52 88.71 88.71 70.97 82.48
Twins-SVT FT GREW 74.19 88.71 95.16 91.94 86.29 82.26 88.71 87.10 90.32 92.74 72.58 86.36
CrossFormer Rand. Init. − 65.32 67.74 78.23 78.23 65.32 70.97 71.77 70.16 68.55 56.45 49.19 67.45
CrossFormer ZS DenseGait 87.10 91.94 95.97 91.94 70.16 60.48 72.58 86.29 89.52 83.87 75.81 82.33
CrossFormer ZS GREW 54.84 63.71 62.90 61.29 54.03 40.32 25.00 41.94 37.90 42.74 39.52 47.65
CrossFormer FT DenseGait 75.00 94.35 95.97 93.55 85.48 87.90 91.13 92.74 95.97 92.74 68.55 88.49
CrossFormer FT GREW 75.81 88.71 95.16 91.13 92.74 85.48 88.71 88.71 89.52 86.29 69.35 86.51

SimpleViT Rand. Init. − 20.97 23.39 19.35 15.32 13.71 12.90 16.94 18.55 19.35 27.42 16.13 18.55
SimpleViT ZS DenseGait 12.90 29.03 23.39 16.13 10.48 11.29 13.71 17.74 22.58 15.32 18.55 17.37
SimpleViT ZS GREW 7.26 20.97 12.10 8.06 8.06 6.45 11.29 18.55 13.71 12.90 6.45 11.44
SimpleViT FT DenseGait 31.45 43.55 40.32 33.06 27.42 20.16 27.42 30.65 29.84 22.58 32.26 30.79
SimpleViT FT GREW 34.68 33.87 26.61 20.16 16.94 17.74 25.81 27.42 20.97 31.45 25.00 25.51
CaiT Rand. Init. − 12.90 20.16 11.29 10.48 10.48 7.26 12.10 16.13 9.68 17.74 12.10 12.76
CaiT ZS DenseGait 6.45 19.35 11.29 11.29 4.84 11.29 20.16 12.10 15.32 12.10 10.48 12.24
CaiT ZS GREW 8.06 20.97 8.87 13.71 6.45 9.68 10.48 14.52 9.68 12.10 7.26 11.07
CaiT FT DenseGait 25.00 30.65 29.84 21.77 20.16 20.97 24.19 24.19 22.58 25.00 25.00 24.49
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Table 3. Cont.

Method Kind Pretraining Dataset 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

CL

CaiT FT GREW 18.55 16.94 21.77 16.94 13.71 18.55 25.00 20.16 19.35 26.61 14.52 19.28
Token2Token Rand. Init. − 8.87 17.74 17.74 12.90 9.68 15.32 16.13 19.35 16.13 11.29 8.87 14.00
Token2Token ZS DenseGait 8.87 25.81 15.32 16.13 4.03 11.29 14.52 18.55 20.16 15.32 16.13 15.10
Token2Token ZS GREW 9.68 20.16 20.97 19.35 7.26 4.84 8.87 9.68 8.87 8.06 8.06 11.44
Token2Token FT DenseGait 21.77 33.06 31.45 29.03 29.03 36.29 30.65 31.45 30.65 35.48 31.45 30.94
Token2Token FT GREW 16.13 16.13 22.58 20.16 18.55 20.97 24.19 21.77 17.74 19.35 10.48 18.91
Twins-SVT Rand. Init. − 7.26 4.03 6.45 7.26 4.84 8.06 9.68 6.45 6.45 6.45 5.65 6.60
Twins-SVT ZS DenseGait 8.87 25.81 15.32 15.32 11.29 8.87 13.71 15.32 15.32 11.29 14.52 14.15
Twins-SVT ZS GREW 9.68 24.19 8.06 10.48 12.10 8.87 8.87 16.13 11.29 11.29 7.26 11.66
Twins-SVT FT DenseGait 23.39 33.06 33.87 27.42 21.77 25.00 29.03 34.68 29.03 27.42 17.74 27.49
Twins-SVT FT GREW 20.16 26.61 24.19 29.84 21.77 21.77 29.03 29.84 20.16 22.58 16.94 23.90
CrossFormer Rand. Init. − 9.68 17.74 18.55 18.55 18.55 18.55 17.74 21.77 12.10 11.29 12.10 16.06
CrossFormer ZS DenseGait 16.94 29.84 23.39 20.16 11.29 8.06 16.94 20.97 15.32 19.35 18.55 18.26
CrossFormer ZS GREW 16.94 14.52 13.71 11.29 7.26 8.87 11.29 11.29 11.29 11.29 8.87 11.51
CrossFormer FT DenseGait 25.00 42.74 39.52 40.32 29.84 25.00 32.26 37.90 33.06 26.61 20.97 32.11
CrossFormer FT GREW 20.97 29.03 39.52 23.39 23.39 22.58 25.81 31.45 24.19 26.61 15.32 25.66

BG

SimpleViT Rand. Init. − 46.77 55.65 50.00 44.35 31.45 40.32 30.65 35.48 37.90 36.29 26.61 39.59
SimpleViT ZS DenseGait 54.03 53.23 55.65 45.16 37.90 25.81 37.10 45.16 44.35 44.35 40.32 43.91
SimpleViT ZS GREW 49.19 50.81 50.81 46.77 41.13 25.81 27.42 43.55 36.29 29.84 29.03 39.15
SimpleViT FT DenseGait 58.87 73.39 78.23 69.35 51.61 54.84 50.81 53.23 55.65 53.23 44.35 58.51
SimpleViT FT GREW 61.29 68.55 70.97 61.29 47.58 44.35 49.19 42.74 49.19 53.23 38.71 53.37
CaiT Rand. Init. − 46.77 43.55 45.97 34.68 20.97 28.23 33.06 32.26 35.48 29.03 25.00 34.09
CaiT ZS DenseGait 60.48 55.65 58.06 41.13 35.48 28.23 37.10 47.58 49.19 50.81 42.74 46.04
CaiT ZS GREW 55.65 45.16 55.65 37.90 35.48 20.97 20.16 31.45 40.32 29.03 32.26 36.73
CaiT FT DenseGait 74.19 71.77 75.81 58.87 49.19 54.03 52.42 55.65 54.03 55.65 45.97 58.87
CaiT FT GREW 62.10 66.94 73.39 58.87 53.23 48.39 51.61 42.74 49.19 50.81 38.71 54.18
Token2Token Rand. Init. − 28.23 33.06 37.90 30.65 32.26 22.58 29.03 24.19 28.23 24.19 20.16 28.23
Token2Token ZS DenseGait 45.97 61.29 66.13 52.42 35.48 25.00 35.48 47.58 53.23 55.65 53.23 48.31
Token2Token ZS GREW 42.74 46.77 49.19 41.94 12.10 15.32 17.74 34.68 37.90 29.84 27.42 32.33
Token2Token FT DenseGait 66.13 70.16 70.16 61.29 57.26 52.42 55.65 56.45 46.77 51.61 44.35 57.48
Token2Token FT GREW 50.81 55.65 59.68 50.81 41.13 37.90 47.58 50.00 48.39 53.23 34.68 48.17
Twins-SVT Rand. Init. − 20.16 26.61 24.19 18.55 12.90 12.10 10.48 12.10 9.68 12.90 12.90 15.69
Twins-SVT ZS DenseGait 45.97 50.00 49.19 38.71 25.00 31.45 33.87 38.71 50.81 47.58 48.39 41.79
Twins-SVT ZS GREW 37.90 45.16 39.52 30.65 25.81 13.71 18.55 24.19 28.23 33.87 27.42 29.55
Twins-SVT FT DenseGait 45.97 56.45 61.29 50.00 43.55 37.10 53.23 52.42 50.81 58.87 42.74 50.22
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Table 3. Cont.

Method Kind Pretraining Dataset 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

Twins-SVT FT GREW 59.68 58.06 64.52 54.84 46.77 49.19 50.81 52.42 43.55 56.45 37.90 52.20
CrossFormer Rand. Init. − 40.32 42.74 41.94 45.16 34.68 34.68 38.71 40.32 34.68 42.74 31.45 38.86
CrossFormer ZS DenseGait 75.00 70.16 70.97 62.10 44.35 39.52 39.52 51.61 56.45 45.16 50.00 54.99
CrossFormer ZS GREW 41.94 41.13 40.32 28.23 33.06 17.74 22.58 26.61 26.61 25.81 20.16 29.47
CrossFormer FT DenseGait 59.68 70.16 70.16 66.13 56.45 54.84 49.19 56.45 59.68 62.90 48.39 59.46
CrossFormer FT GREW 58.06 62.90 63.71 50.81 51.61 48.39 46.77 41.13 50.81 52.42 40.32 51.54



Sensors 2023, 23, 2680 17 of 23

The architectures are trained to map walking sequences to an embedding space,
where the proximity between points reflects the similarity of the corresponding walking
sequences. This means that the embeddings of unseen gait sequences from the same
identity should be close to each other in the embedding space and form clusters, while the
embeddings of different identities should be further away from each other and form distinct
clusters. This is important as it allows the model to generalize to unseen gait sequences and
accurately identify the individual by employing a nearest-neighbor approach. In Figure 5,
we present the clustering for the embeddings for each identity in the test set of CASIA-B
after dimensionality reduction with t-SNE [51]. We used the 256-dimensional embedding
vector and project it into two dimensions. SimpleViT and CrossFormer seem to have the
best separation of identities, irrespective of camera viewpoint.

Figure 5. Qualitative visualizations of the network embeddings after fine-tuning on CASIA-B for
each architecture using t-SNE projections. Each color represents an individual identity. Multiple dots
per identity represent the various walking viewpoints. We omit uninformative axis dimensions.

4.2. Evaluation of FVG

Similarly, we evaluated the performance of each architecture on FVG, which is qualita-
tively different from CASIA-B, as it contains only a single viewing angle. We fine-tuned
each pretrained network on a fraction f = {0.1, 0.2, 0.3, 0.5, 0.7, 1.0} of the 12 runs per
person in the training set. Fine-tuning results are presented in Figure 6. Results follow a
similar trend to those for CASIA-B: SimpleViT and CrossFormer have consistently high
performances, and the use of a pretraining dataset is clearly beneficial for downstream
performance. Further, pretraining on DenseGait seems to carry on a constant accuracy
improvement. As noted by Cosma and Radoi [12], DenseGait contains subjects tracked for
a longer duration, and this provides more variation in the contrastive learning objective,
similar to random cropping for self-supervised pretraining for natural images. Similar to
the results on CASIA-B, the clothing variation severely lags behind the normal walking
scenario.

In Table 4, we present more fine-grained results on the testing set of FVG between
pretrained models, similar to the CASIA-B scenario. Pretraining results are consistent:
pretraining on DenseGait directly correlates to the improvement in the downstream ac-
curacy. While pretraining on both datasets improves performance in all scenarios, the
improvement is particularly significant in the CBG (Cluttered Background) scenario which
usually consists of having more people in the video, similar to what would be expected in
realistic settings. This improvement likely comes from the fact that DenseGait and GREW
were gathered in natural, uncontrolled environments, making them more realistic and
challenging, thus better preparing the model for similar conditions to the ones in the CBG
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scenario. The ranking between models is similar to CASIA-B: SimpleViT, CrossFormer, and
Twins-SVT consistently outperform CaiT and Token2Token. For both CASIA-B and FVG,
CaiT slightly lags behind other models.

Figure 6. Results on FVG after fine-tuning each architecture on progressively larger samples of the
training data. Models are pretrained in a self-supervised manner on DenseGait (left-hand side) and
GREW (centre). Compared to random initialization (right-hand side), pretraining on diverse datasets
offers a significant boost of performance, especially in low-data regimes. Best viewed in color.

Table 4. Fine-grained comparison for each architecture on FVG, for all walking variations. For each
model, we compared the performance between Zero-Shot (ZS) and Fine-Tuned (FT) for models
pretrained on DenseGait and GREW, respectively, and no pretraining (Rand. Init.)

FVG

Architecture Kind Pretraining Dataset WS CB CL CBG ALL Mean

SimpleViT Rand. Init. − 69.33 81.82 36.32 70.51 69.33 65.46
SimpleViT ZS DenseGait 71.00 57.58 43.16 70.09 71.00 62.57
SimpleViT ZS GREW 68.67 69.70 27.78 65.81 68.67 60.13
SimpleViT FT DenseGait 88.33 90.91 49.57 87.18 88.33 80.86
SimpleViT FT GREW 87.67 90.91 44.44 91.45 87.67 80.43

CaiT Rand. Init. − 57.67 72.73 25.21 65.81 57.67 55.82
CaiT ZS DenseGait 75.00 72.73 43.16 80.77 75.00 69.33
CaiT ZS GREW 66.33 54.55 32.48 68.80 66.33 57.70
CaiT FT DenseGait 86.00 90.91 45.73 86.32 86.00 78.99
CaiT FT GREW 82.00 78.79 45.30 82.05 82.00 74.03

Token2Token Rand. Init. − 66.33 81.82 32.48 72.65 66.33 63.92
Token2Token ZS DenseGait 73.33 63.64 43.16 81.20 73.33 66.93
Token2Token ZS GREW 53.00 57.58 24.79 58.55 53.00 49.38
Token2Token FT DenseGait 87.00 93.94 49.15 88.46 87.00 81.11
Token2Token FT GREW 82.33 78.79 34.62 84.62 82.33 72.54

Twins-SVT Rand. Init. − 30.67 48.48 16.67 32.05 30.67 31.71
Twins-SVT ZS DenseGait 70.33 60.61 42.74 78.21 70.33 64.44
Twins-SVT ZS GREW 61.00 66.67 25.21 53.85 61.00 53.55
Twins-SVT FT DenseGait 87.67 90.91 43.59 84.62 87.67 78.89
Twins-SVT FT GREW 85.33 69.70 33.76 84.62 85.33 71.75

CrossFormer Rand. Init. − 74.00 87.88 41.45 78.63 74.00 71.19
CrossFormer ZS DenseGait 77.67 72.73 45.30 79.49 77.67 70.57
CrossFormer ZS GREW 54.33 48.48 17.09 50.85 54.33 45.02
CrossFormer FT DenseGait 89.33 93.94 50.85 92.74 89.33 83.24
CrossFormer FT GREW 87.00 90.91 47.44 85.90 87.00 79.65

4.3. Spatiotemporal Sensitivity Test

One particularity of vision transformers is the arbitrary choice of patch dimensions,
which can prove to be crucial in the final performance. In the case of image processing,
patch dimensions are not especially important, due to the translational invariance of
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the semantic content in an image. For skeletons sequences, however, patch dimensions
correspond to specific and interpretable features of the input: patch height represents the
amount of spatial information contained in a patch (i.e., number of skeletal joints included),
while the temporal dimensions represent the amount of included temporal information
(i.e., number of frames). The balance between the two should be carefully considered in the
use of adapted vision transformers for gait analysis. In Figure 7, we showcase a heatmap in
which every cell is the performance of a trained model (randomly initialized) on CASIA-B
for normal walking. We train each model for 50 epochs for a fair comparison, and to gauge
the convergence speed at a fixed number of steps. We constructed two heatmaps, one
for SimpleViT and one for CaiT, since they have a similar underlying backbone, and it is
straightforward to modify the patch sizes. The same process can be performed for the other
tested architectures. We conclude that smaller patch sizes correspond to a positive increase
in modeling performance for skeleton sequences, while the trade-off between spatial and
temporal dimensions is not crucial, since performance is similar—the heatmap matrix is
fairly symmetric by the second diagonal. Therefore, smaller square patch sizes such as
(2, 4) across spatial and temporal dimensions fare best for this task, while larger patch sizes
such as (32, 32) contain too little discriminative information. However, smaller patch sizes
imply increasing the number of patches, which does require more computing power. For
our setup of two NVIDIA RTX 3060 GPUs, we reported out-of-memory errors for some
combinations of smaller patch sizes.

Figure 7. Sensitivity test on SimpleViT and CaiT for different configurations of patch sizes. Spatial
patch size corresponds to the number of skeletal joints included in a particular patch, while temporal
patch size corresponds to the number of frames in a patch. Since smaller patch sizes require more
GPU memory to process, missing cells represent out-of-memory errors.

The most likely reason for the improved performance with smaller patch sizes is that
the architecture can better capture the complexity of the walking pattern by computing
more intricate interactions between patches. Patches with the largest possible spatial sizes
and smallest possible temporal sizes can be considered full representations of skeletons,
whereas patches with the largest possible temporal sizes and smallest possible spatial
sizes capture the entirety of an individual joint’s movements. As can be observed, the
highest accuracy is achieved when the patch size incorporates a balance of both spatial and
temporal information, which correspond to small movements of closely connected joints.

5. Discussion and Conclusions

In this work, we provided a comprehensive evaluation of five popular variants of the
vision transformer adapted for skeleton sequence processing. Our efforts are in line with the
recent advancements in deep learning to essentially unify the different modalities under the
transformer architecture. We proposed a spatial upsampling method for skeletons (bicubic
upsampling with TSSI skeleton format) to artificially increase the number of joints, such
that the sequence can be properly consumed by the transformer encoders. Furthermore,
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each architecture was trained under the self-supervision training paradigm on two general
and large-scale gait datasets (i.e., DenseGait and GREW), and subsequently evaluated on
two datasets for gait recognition in controlled environments (i.e., CASIA-B and FVG). We
chose to adopt the self-supervised learning paradigm to obtain general gait features, not
constrained to a particular walking variation or camera viewpoint.

Our results imply the need for high quantity, high quality, and diverse datasets
for pretraining gait analysis models. We showed that pretraining on DenseGait offers
consistent accuracy improvements over GREW, due to the increase in size, the number of
variations, and the average walking duration [12]. The most significant benefit, however, is
in situations with low amounts of training data available. Our results show that training
from scratch leads to significantly worse results than fine-tuning even with modest amounts
of data (i.e., 10 sequences per person). Currently, most gait approaches are performed
indoors in strictly controlled environments, which cannot generalize to the complexities
of real-world interactions. Diverse training datasets are crucial for performing accurate
in-the-wild behavioral analysis, especially since gait is a biometric feature easily influenced
by external environmental factors, as well as internal and emotional components.

Our ablation study shows that smaller spatial-temporal patches are beneficial for
better downstream results. This insight informs future developments of architectures for
skeleton sequences, which have previously relied on processing an individual skeleton on
a single patch [12].

Alongside concurrent efforts to bring gait analysis into realistic settings, our work
further enables the transition of gait authentication and behavioral analysis from indoor,
controlled environments to outdoor, real-world settings. In-the-wild gait recognition will
become ubiquitous with the developments of smart sensors and efficient neural architec-
tures that process motion-driven behavior in real time.
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LDA long-distance attention
TSSI tree skeleton structure image
SupCon supervised contrastive
FVG front-view gait
GREW gait recognition in the wild
ViT vision transformer

References
1. Kyeong, S.; Kim, S.M.; Jung, S.; Kim, D.H. Gait pattern analysis and clinical subgroup identification: A retrospective observational

study. Medicine 2020, 99, e19555. [CrossRef] [PubMed]
2. Michalak, J.; Troje, N.F.; Fischer, J.; Vollmar, P.; Heidenreich, T.; Schulte, D. Embodiment of Sadness and Depression—Gait

Patterns Associated With Dysphoric Mood. Psychosom. Med. 2009, 71, 580–587. [CrossRef] [PubMed]
3. Willems, T.M.; Witvrouw, E.; De Cock, A.; De Clercq, D. Gait-related risk factors for exercise-related lower-leg pain during shod

running. Med. Sci. Sports Exerc. 2007, 39, 330–339. [CrossRef] [PubMed]
4. Singh, J.P.; Jain, S.; Arora, S.; Singh, U.P. Vision-based gait recognition: A survey. IEEE Access 2018, 6, 70497–70527. [CrossRef]
5. Makihara, Y.; Nixon, M.S.; Yagi, Y. Gait recognition: Databases, representations, and applications. Comput. Vis. Ref. Guide 2020,

1–13.
6. Yu, S.; Tan, D.; Tan, T. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition.

In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006;
Volume 4, pp. 441–444.

7. Zhu, Z.; Guo, X.; Yang, T.; Huang, J.; Deng, J.; Huang, G.; Du, D.; Lu, J.; Zhou, J. Gait Recognition in the Wild: A Benchmark. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021.

8. Chao, H.; He, Y.; Zhang, J.; Feng, J. Gaitset: Regarding gait as a set for cross-view gait recognition. In Proceedings of the AAAI
Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 8126–8133.

9. Fan, C.; Peng, Y.; Cao, C.; Liu, X.; Hou, S.; Chi, J.; Huang, Y.; Li, Q.; He, Z. Gaitpart: Temporal part-based model for gait
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19
June 2020; pp. 14225–14233.

10. Cosma, A.; Radoi, I.E. WildGait: Learning Gait Representations from Raw Surveillance Streams. Sensors 2021, 21, 8387. [CrossRef]
[PubMed]

11. Catruna, A.; Cosma, A.; Radoi, I.E. From Face to Gait: Weakly-Supervised Learning of Gender Information from Walking Patterns.
In Proceedings of the 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), Jodhpur,
India, 15–18 December 2021; pp. 1–5.

12. Cosma, A.; Radoi, E. Learning Gait Representations with Noisy Multi-Task Learning. Sensors 2022, 22, 6803. [CrossRef] [PubMed]
13. Kirkcaldy, B.D. Individual Differences in Movement; Kirkcaldy, B.D., Ed.; MTP Press Lancaster: England, UK; Boston, MA, USA,

1985; pp. 14, 309.
14. Zheng, J.; Liu, X.; Liu, W.; He, L.; Yan, C.; Mei, T. Gait Recognition in the Wild with Dense 3D Representations and A Benchmark.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–20 June
2022.

15. Liu, X.; Zhang, F.; Hou, Z.; Mian, L.; Wang, Z.; Zhang, J.; Tang, J. Self-supervised learning: Generative or contrastive. IEEE Trans.
Knowl. Data Eng. 2021, 35, 857–876. [CrossRef]

16. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; Association for
Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 4171–4186. [CrossRef]

17. Caron, M.; Touvron, H.; Misra, I.; Jégou, H.; Mairal, J.; Bojanowski, P.; Joulin, A. Emerging properties in self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17
October 2021; pp. 9650–9660.

18. Yan, S.; Xiong, Y.; Lin, D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proceedings of
the Thirty-second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

19. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017.

20. Xu, C.; Makihara, Y.; Liao, R.; Niitsuma, H.; Li, X.; Yagi, Y.; Lu, J. Real-Time Gait-Based Age Estimation and Gender Classification
From a Single Image. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa,
HI, USA, 3–8 January 2021; pp. 3460–3470.

21. Cao, Z.; Hidalgo Martinez, G.; Simon, T.; Wei, S.; Sheikh, Y.A. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part
Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 172–186. [CrossRef] [PubMed]

22. Li, J.; Wang, C.; Zhu, H.; Mao, Y.; Fang, H.S.; Lu, C. Crowdpose: Efficient crowded scenes pose estimation and a new benchmark.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 10863–10872.

http://doi.org/10.1097/MD.0000000000019555
http://www.ncbi.nlm.nih.gov/pubmed/32282704
http://dx.doi.org/10.1097/PSY.0b013e3181a2515c
http://www.ncbi.nlm.nih.gov/pubmed/19414617
http://dx.doi.org/10.1249/01.mss.0000247001.94470.21
http://www.ncbi.nlm.nih.gov/pubmed/17277598
http://dx.doi.org/10.1109/ACCESS.2018.2879896
http://dx.doi.org/10.3390/s21248387
http://www.ncbi.nlm.nih.gov/pubmed/34960479
http://dx.doi.org/10.3390/s22186803
http://www.ncbi.nlm.nih.gov/pubmed/36146152
http://dx.doi.org/10.1109/TKDE.2021.3090866
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1109/TPAMI.2019.2929257
http://www.ncbi.nlm.nih.gov/pubmed/31331883


Sensors 2023, 23, 2680 22 of 23

23. Liu, Z.; Zhang, H.; Chen, Z.; Wang, Z.; Ouyang, W. Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19
June 2020; pp. 143–152.

24. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

25. Touvron, H.; Cord, M.; Sablayrolles, A.; Synnaeve, G.; Jégou, H. Going deeper with image transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 32–42.

26. Wang, W.; Yao, L.; Chen, L.; Lin, B.; Cai, D.; He, X.; Liu, W. CrossFormer: A versatile vision transformer hinging on cross-scale
attention. arXiv 2021, arXiv:2108.00154.

27. Chu, X.; Tian, Z.; Wang, Y.; Zhang, B.; Ren, H.; Wei, X.; Xia, H.; Shen, C. Twins: Revisiting the design of spatial attention in vision
transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 9355–9366.

28. Yuan, L.; Chen, Y.; Wang, T.; Yu, W.; Shi, Y.; Jiang, Z.H.; Tay, F.E.; Feng, J.; Yan, S. Tokens-to-Token ViT: Training Vision
Transformers from Scratch on ImageNet. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
Montreal, BC, Canada, 11–17 October 2021; pp. 558–567.

29. Zhang, Z.; Tran, L.; Yin, X.; Atoum, Y.; Wan, J.; Wang, N.; Liu, X. Gait Recognition via Disentangled Representation Learning. In
Proceedings of the IEEE Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.

30. Teepe, T.; Khan, A.; Gilg, J.; Herzog, F.; Hörmann, S.; Rigoll, G. Gaitgraph: Graph convolutional network for skeleton-based gait
recognition. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22
September 2021; pp. 2314–2318.

31. Fu, Y.; Wei, Y.; Zhou, Y.; Shi, H.; Huang, G.; Wang, X.; Yao, Z.; Huang, T. Horizontal Pyramid Matching for Person Re-Identification.
In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial
Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, HI, USA, 27
January–1 February 2019. [CrossRef]

32. Song, Y.F.; Zhang, Z.; Shan, C.; Wang, L. Stronger, faster and more explainable: A graph convolutional baseline for skeleton-based
action recognition. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October
2020; pp. 1625–1633.

33. Li, N.; Zhao, X. A Strong and Robust Skeleton-based Gait Recognition Method with Gait Periodicity Priors. IEEE Trans. Multimed.
2022. [CrossRef]

34. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010.

35. Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
Montreal, BC, Canada, 11–17 October 2021; pp. 568–578.

36. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October
2021; pp. 10012–10022.

37. Yang, J.; Li, C.; Zhang, P.; Dai, X.; Xiao, B.; Yuan, L.; Gao, J. Focal attention for long-range interactions in vision transformers. Adv.
Neural Inf. Process. Syst. 2021, 34, 30008–30022.

38. Chen, C.F.; Panda, R.; Fan, Q. Regionvit: Regional-to-local attention for vision transformers. arXiv 2021, arXiv:2106.02689.
39. Graham, B.; El-Nouby, A.; Touvron, H.; Stock, P.; Joulin, A.; Jégou, H.; Douze, M. Levit: A vision transformer in convnet’s clothing

for faster inference. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17
October 2021; pp. 12259–12269.
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