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Abstract: This paper proposes facial expression recognition (FER) with the wild data set. In particular,
this paper chiefly deals with two issues, occlusion and intra-similarity problems. The attention
mechanism enables one to use the most relevant areas of facial images for specific expressions, and
the triplet loss function solves the intra-similarity problem that sometimes fails to aggregate the
same expression from different faces and vice versa. The proposed approach for the FER is robust to
occlusion, and it uses a spatial transformer network (STN) with an attention mechanism to utilize
specific facial region that dominantly contributes (or that is the most relevant) to particular facial
expressions, e.g., anger, contempt, disgust, fear, joy, sadness, and surprise. In addition, the STN
model is connected to the triplet loss function to improve the recognition rate which outperforms the
existing approaches that employ cross-entropy or other approaches using only deep neural networks
or classical methods. The triplet loss module alleviates limitations of the intra-similarity problem,
leading to further improvement of the classification. Experimental results are provided to substantiate
the proposed approach for FER, and the result outperforms the recognition rate in more practical
cases, e.g., occlusion. The quantitative result provides FER results with more than 2.09% higher
accuracy compared to the existing FER results in CK+ data sets and 0.48% higher than the accuracy
of the results with the modified ResNet model in the FER2013 data set.

Keywords: facial expression recognition; spatial transformation network; attention mechanism;
triplet loss function; intra-similarity problem

1. Introduction

Recognition problems have always been issues in computer vision and pattern recog-
nition. In particular, face or facial expression recognition is considered the most widely
explored topic in research and industrial fields. Computer vision, pattern recognition,
and imaging-related technologies have achieved impressive performance from quantitative
and qualitative perspectives in recent years with the appearance of end-to-end learning
frameworks, such as deep neural network models. Among numerous practical applications
of computer vision and pattern recognition, image-based, automatic, and intelligent facial
expressions are considered one of the most popular topics because facial expression conveys
emotional states and can play a key role in detecting, analyzing, and predicting emotional
or behavioral states. In facial expression recognition (FER), researchers have usually dealt
with discrete facial expressions, such as happiness, surprise, neutral, sadness, fear, disgust,
and anger [1]. Thus, FER aims to achieve accurate classification among different facial
expressions, i.e., maximize inter-class distance and minimize intra-class distance.

Over a few decades, numerous approaches have been proposed, and they are cat-
egorized into two groups, conventional ones, and deep-learning-based ones. Similar to
a field of object recognition, conventional FER is usually composed of three major steps:
(1) preprocessing of an image containing a facial image followed by detection of the face
region, (2) extracting features of a face, and (3) classification and recognition of expressions.
From a technological perspective, FER is similar to face recognition (FR) [2], but FER is
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different from FR in that FER chiefly deals with the seven target expressions mentioned
above. Moreover, facial expressions play a more important role in human communication
or other interactions between human–machine and human–human. FR usually plays a key
role in human identification or authentication rather than interaction activities.

1.1. Traditional Methods

Pre-processing in FER requires reliable quality of image data so that feature extraction
and face detection can be accurately achieved. Noise reduction (or removal) is carried
out before detecting the region of interest, e.g., face detection. Various types of filters
usually categorize in low pass filters, such as Gaussian filter, Laplacian of Gaussian (LOG)
filter or bilateral filter. Histogram data are sometimes utilized to enhance image quality,
e.g., histogram stretching, histogram equalization, etc. If a facial image contains illumina-
tion, varying pose, or occlusion, more complex preprocessing techniques are required [3].
Furthermore, a face image can be acquired using various types of sensors or using a com-
bination of multiple sensors, e.g., fusion of RGB and IR (infrared red) sensors, leading to
increasing complexity of algorithms. In the course of recognition, it can successfully begin
with accurate detection of the region of interest (ROI). In FER, accurate detection of the
face region needs to be carried out before performing expression recognition. Human face
detection has also been one of the most important processes in face recognition, expression
recognition, gesture recognition, etc.

In conventional approaches of FER or FR (without using deep learning), tremendous
work for face detection was proposed [4], and it can be categorized into feature-based
and image-based approaches. The former includes active shape model (ASM), low-level
analysis (color, motion, or edge-based analysis), and feature analysis (Viola Jones detector,
AdaBoost, local binary pattern, Gabor feature-based method, constellation method, etc.).
The latter includes more recent approaches that use training and test data sets to perform
the matching procedure for the detection (neural network, principal component analysis
(PCA), and support vector machine (SVM) ).

The image-based approach also contains a sub-space-based method and statistical
approach (PCA and SBVM are also included in this category). In feature-based face detec-
tion, accurate feature extraction (invariant feature points) is desired, while the image-based
approach achieves accuracy and computational efficiency by performing dimensionality
reduction. Once the region of a face is detected, feature extraction is carried out. Accurate
feature extraction is crucial for diverse applications of image processing and computer
vision. Almost all imaging and vision technologies require highly accurate feature extrac-
tion results. Feature extraction has been one of the most significant contributions to FER,
and there have been extensive research activities to propose accurate feature extraction
algorithms. In FER or FR, feature extraction and face detection are very closely related
and highly correlated, and some of the algorithms are overlapped. In addition, extracted
landmarks are important in many facial tasks [5,6]. In feature extraction of a facial image,
applying proper spatial filters to a facial image is a very basic and simple approach. The
Gabor filter, local binary pattern (LBP), scale-invariant feature transform (SIFT), speed-up
robust features (SURF), and histograms of oriented gradients (HOG) are the most popularly
used ones. Encoding based on a code-book is another approach for feature extraction, com-
posed of a training phase and an encoding phase. K-means algorithm, Gaussian mixture
model (GMM), and Fisher Vector (FV) are encoding-based approaches. Spatial pooling and
holistic encoding also play roles in feature extraction.

Classification is the final stage for recognition. In the recognition, inter-class distance is
to be maximized, while intra-class distance is to be minimized. Numerous conventional ap-
proaches have been used for recognition recently, e.g., Hausdorff distance (HD), Euclidean
distance (ED), SVM, PCA, hidden Markov model (HMM), hidden conditional random
fields (HCRF), etc. [7–11].
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1.2. Deep-Learning-Based Methods

Although tremendous efforts have been made to improve performance of traditional
FER from qualitative and quantitative perspectives, it still lacks recognition accuracy when
used in an uncontrolled experimental environment, with images that belong to a wild
setting, or with unrefined input images. Similar to other image processing, computer
vision, and pattern recognition problems, recent FER has shown remarkable improvements
by employing deep learning models [12]. Deep-learning-based FER uses a deep neural
network that has various types of structures each of which has its strengths. Proper selection
of the model can significantly improve the performance of face detection, feature extraction,
and classification for the recognition. A deep neural network (DNN), with a sufficiently
large amount of data, provides an end-to-end framework for FER tasks. The recent state-of-
the-art approaches have verified the advantages in the fields of visual object recognition,
pose estimation, depth estimation and others [13]. Deep-learning-based FER aims at
classifying facial expressions using a single image or sequence of images, and the neural
network structures learn characteristics or information contained in image data sets. Even
if not under controlled experimental environments, deep-learning-based FER provides
accurate and reliable recognition results. In other words, in contrast to the traditional
methods, deep-learning-based FER shows less dependence on data sets. Moreover, deep-
learning-based FER, in contrast to the traditional methods, does not have to consider
three major steps (face detection or localization, feature extraction, and classification)
separately because the DNN model has the capability to learn a sufficient amount of
information to classify seven facial expressions in an end-to-end manner. Among several
DNN models, the convolutional neural network (CNN) model is the most popularly
employed, especially in the case of static input images. Convolution is a very well-known
arithmetic operation in signal processing and image processing when spatial and time-
domain data are directly utilized. Before the CNN model was popularly used, frequency
domain analysis, e.g., Fourier Transform, was one of the most popular approaches. The
CNN model enables direct use of spatial numeric data, i.e., pixel values, for detection,
feature extraction, recognition, and classification work. In addition to these, almost all
of the fields related to computer vision, image, and signal processing have significant
benefits from the CNN model. Usual CNN-based FER takes static images or a set of static
images as an input to the network model that is composed of more than three layers,
called hidden layers, each of which provides convolution results with the output data of
the previous steps. Various structures of filters are convolved with the input data or the
output data of the previous layer, leading to an increase in computational complexity which
has been resolved with the improvement of hardware infrastructures and the algorithms
for developing a light structure of DNN models. Each layer contains the result of the
convolution operation providing feature maps followed by generating fully connected
layers to proceed to conduct classification. In the recognition work that uses static images as
input data, CNN-based approaches have been considered a main method [14]. In practice,
recognition tasks in a wild environment may require detection followed by classification
in a real-time manner because the input image data varies over time. If DNN models
are required to train input face (or facial expression) images with the variation of the
expressions over time, i.e., input data has spatiotemporal features, the recurrent neural
network (RNN) model is considered more appropriate for the recognition work [15]. In this
case, sequences of facial expression data have a temporal dependency in addition to a
spatial one, so the additional dependency is taken into account during the classification
and recognition process.

In this paper, we present a novel approach to automatic FER using a spatial transformer
network with a triplet loss function. To this end, the proposed method aims at accurate
and efficient FER by focusing on the relevant region for each facial expression while robust
to occlusion. A flow diagram of the proposed approach is shown in Figure 1.
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Figure 1. An overview of the proposed model for FER that solves the intra-similarity problem and is
robust to occlusion. (a) Three classes of facial images with occlusion (anchor, positive and neutral)
are classified using the proposed model, STN-TL. (b) Architecture of spatial transformer network is
basically used in the proposed FER.The images in this figure are from public data set (CK+) [16].

The rest of this paper is organized as follows. Section 2 briefly introduces related work
to the field of FER using deep neural networks and STN. This section also introduces the
loss functions that have been applied to the recognition work. In Section 3, we introduce
our proposed model TL-STN in detail. Then in Section 4, we introduce the data set used
in our experiments. In addition in this section, we describe a comparison between the
cross-entropy loss function and triplet loss function and also between occlusion data and
non-occlusion data. Then, we compare the state-of-the-art model and TL-STN.

2. Related Work

Transformer architecture that has been widely used in the field of natural language
processing (NLP) shows exceptionally well-performed results in the recognition task, espe-
cially in the case of using sequences of images as input data [17]. Recently, a new learnable
module, spatial transformer network (STN) was proposed to provide robust performance
by allowing spatial manipulation of input image data. STN is inserted into existing network
models, e.g., CNN, and it enables one to achieve robust training results from invariance
to the spatial transformation of input data, e.g., translation, rotation, warping, etc. [18].
The STN model has been applied to many practical problems among numerous cases of
the recognition problems with encouraging results [19].

Another transformer model, vision transformer (ViT) [20], has gained attention in the
recognition field and has been proposed as an alternative to the existing DNN models.

Although the existing FER work has achieved significantly improved results from
quantitative and qualitative perspectives, it is still a challenging task due to the existence
of uncontrolled external environments, pose variations, or occlusion that degrade the
performance of FER results. More complex scenarios of FER need to be dealt with for
high-quality FER from practical perspectives. Thus, it is worth investigating FER methods
using STN, which has gained attention in the area of deep learning. In this paper, inspired
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by a spatial transformer network module, FER is performed efficiently by selecting the most
relevant part of a facial image followed by applying the triplet loss function. The result
is compared to the results using cross-entropy and to the other FER results using state-
of-the-art algorithms. The proposed method shows superior recognition results in FER,
particularly in the case of facial images having occlusion areas. A spatial transformer
network that is included in standard neural network structure has advantages in case of
rotation, cropping, scaling, and non-rigid deformation of images that sometimes happen to
face images in practice.

As very well-known, traditional methods for the FER employ pixel-level, geometric
model, or object-level-based approaches. Recent approaches are usually categorized as
deep-learning-based approaches. In the past few years, learning-based approaches have
witnessed a significant improvement in recognition tasks, especially in the areas of face
recognition, facial expression recognition, activity recognition, etc. In the deep-learning-
based approaches, convolutional neural networks and recurrent neural network models
are the most widely used. More recently, a transformer network has been considered one
of the alternatives to the CNN and RNN-based approaches. In this paper, we are interested
in FER using deep-learning-based approaches and the spatial transformer network (STN)
with a triplet loss function which improves the success rate of the recognition. The deep
neural network (DNN) model enables one to perform automated FER that has long been an
interesting and challenging task in the field of recognition problems. Instead of extracting
feature points from facial images using a specific mathematical or statistical model, the
DNN-based recognition approach extracts diverse and numerous feature points using large
numbers of hidden layers that contribute to feature extraction with a brain-like mechanism.

Contrary to the traditional approach that always tries to achieve minimum intra-class
distance and maximum inter-class distance in the recognition problem using an analytical
model (mathematics, statistics, etc), the recent deep-learning-based approach is able to find
abstraction and complex patterns that are inherent in real facial images.

Traditional approaches for the recognition of a face, facial expression, activity, or object
lack generalizability due to the variations of a pose or scale and randomly additive noise.
In addition, due to the non-existence of data sets, almost all of the recognition task was
based on the manual or analytic model-based extraction of feature points. Inspired by the
advent of deep learning, CNN-based models have shown robustness to the abovementioned
variations, so FER has employed a CNN model to achieve higher accuracy of the recognition
rate. CNN-based analysis of facial data has appeared in the work by Lawrence [21],
LeCun [22] and Fasel [23] whose work has utilized less than five hidden layers in their
network models. Almost all of the FER algorithms also use those works as a baseline
to propose novelty or further improvement in the accuracy of the recognition. Since the
work of FER in the early stages, significant progress has been achieved in more practical
and wild-setting circumstances by utilizing the DNN model. The CNN model is one
of the earliest ones that deeply learns and extracts facial feature points that have subtle
expression changes that are difficult to extract using traditional recognition methods. Since
the introduction of CNN for the recognition work, FER has also employed CNN structure
by adding more layers, leading to deep CNN architectures that improved FER results [24].
In the beginning stage of FER using CNN, a limited number of image data sets were
used and a specific expression was a target to be recognized. Subject independence and
translation, rotation, and scale-invariant FER using CNN has been proposed to discriminate
smiling from talking based on the saliency of visual cues [25]. Inspired by the expressions
of real emotion, FER has been extended to micro-expression (ME) recognition using deep
learning methods [26]. A single deep learning network structure that consists of two
convolution layers followed by max pooling and four inception layers was introduced in
the early stages of FER using DNN, but this work uses a registered face image data-set and
the landmark is extracted a priori [27]. Much research has been conducted to solve wild data
set FER problems. The work in [28], proposes a multi-task learning (MTL) framework that
exploits the dependencies between these two models using a graph convolutional network
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(GCN) to recognize facial expressions in the wild. The work in [29], proposes a visual-
based end-to-end emotion recognition framework, which consists of the robust pre-trained
backbone model and temporal sub-system to model temporal dependencies across many
video frames. In addition, facial expressions can be applied in many applications. The work
in [30] used facial expression recognition to analyze students’ behavior in the e-learning
environment. They used EfficientNet-B2 to extract emotional features in each frame. The
sequence of facial images (video sequence) can be used as inputs to the DNN model, and in
this case, the temporal relations between frames need to be taken into account, leading to
the necessity of a long short-term-memory (LSTM) unit being additionally employed [31].
Another popular deep learning model is the recurrent neural network (RNN) model that
is more suitable to temporal, sequential data, such as video, voice, text, etc., leading
to the superior performance of the prediction task [32]. Transformer architecture was
first proposed as a sequence transduction model based only on attention, and the spatial
transformer network (STN) model chiefly deals with images with spatial transformation,
so it shows a geometric invariant generalization of differentiable attention that is robust to
any spatial transformation. Basic CNN models have the inevitable drawbacks of precise
localization of important parts, particularly in the case of small objects. To the best of the
authors’ knowledge, there have been fewer research activities on STN-based FER with
adaptive loss function. Thus, this section introduces STN-based recognition work (not
limited to FER) focusing on the recent literature. The beginning state of deep-learning-based
FER could be enhanced by adding an attention mechanism because it can focus on the most
important sub-region of a facial image. In FER, the need for an attention mechanism has
consequently brought the proposal of the STN model [18]. In [33], the attention mechanism
uses a semi-supervised localizer that precisely detects salient regions, and the STN model
is inserted into the existing DNN model (e.g., CNN model) to solve the recognition and
detection problem in case of spatially transformed input images. The work shows STN
incorporates into the basic CNN model, and the whole architecture is composed of three
parts, localization, sampling grid, and image sampling. However, it can localize the rough
position of the target (e.g., the jersey number of a soccer player), and there is no work
on selecting an adaptive loss function for optimization. An attentional convolutional
network has been introduced to classify facial expressions where the number of classes is
smaller than the usual cases of classification problems [34]. In the work of [34], the authors
used less than 10 hidden layers and added an attention mechanism for efficient FER, and
the proposed approach reported better accuracy than state-of-the-art results. However,
the accuracy shows oscillations, and the work reports that there is a trade-off between the
recognition rate and the speed of convergence. Occlusion or pose variations are two major
factors that degrade recognition accuracy, so region attention networks (RAN) have been
employed for robust FER by adaptively capturing the important facial regions [35]. As
FER in the wild is a challenging task, an attention mechanism with a basic CNN model
(ACNN) has been proposed to perceive occlusion regions while focusing on the most
unoccluded facial regions [36]. In [37], an extension to the basic STN model is proposed
by adding procedures for capturing effective attentional regions using facial landmarks
or facial visual saliency maps. In [38], STN-based FER was added to the CNN model
with spatial and channel attention, and further improvement could be possibly achieved
using the proposed GELU (Gaussian error linear unit) activation function. Multimodal
emotion recognition that uses speech and facial images has been proposed. In this approach,
pre-trained STN for saliency maps and bi-LSTM for the attention mechanism is proposed
for emotion recognition [39]. However, in this work, the input image is transformed into
mel-spectograms, leading to an increase in computational complexity.

Despite efforts in FER using DNN with an attention mechanism, there is room for
further improvement, and our proposed method yields FER that is robust to occlusion
and efficient by focusing on the most relevant facial region for specific expression by
adding STN. In addition to the methods using STN, our approach employs an adaptive loss
function and a triplet loss function that improves recognition accuracy in case of occlusion.
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3. Proposed Method

Deep-learning-based facial expression recognition research shows high accuracy and
performance. Nevertheless, there is still a problem in that it is hard to accurately recognize
wild data sets due to external factors such as occlusion, pose, and illumination. Our
proposed method is robust to occlusion using STN with an attention mechanism and triplet
loss function that achieves optimized recognition accuracy. In practical cases, in addition to
the occlusion problem, FER struggles with minimizing intra-class distance, i.e, existing FER
algorithms sometimes fail to recognize the same expression. Some examples are depicted
in Figure 2a,b.

Different from previous FER images, Figure 2a contains non-formalized FER images.
In this case, although the facial images belong to the same class (e.g., fear, happiness,
and neutral) the existing FER methods do not successfully classify or recognize the expres-
sion. Figure 2b shows another difficult classification problem between “sad” and “angry”.
Our proposed method solves this classification problem as well as the occlusion problem
using a model called TL-STN which combines the spatial transformer network (STN) and
a triplet loss function. In this section, the proposed model TL-STN is briefly explained,
and the spatial transformer network and triplet loss are described in detail in Section 3.1
(Figure 1).

Figure 2. In practice, existing FER algorithms sometimes struggle with intra-similarity problems:
(a) same expressions from different peoples’ faces, and the existing algorithms sometimes consider
them as different expressions; (b): different expressions from the same person’s face. Existing work
sometimes considers them as the same expressions. The images in this figure are from public data set
(FER2013) [40].

3.1. Overview of TL-STN

In this section, we introduce an overview of a model that combines a spatial trans-
former network and triplet loss to solve problems affected by external environments,
such as occlusion, pose, and illumination among facial recognition problems. In addition,
the proposed method alleviates the limitation of recognizing the same expressions of wild
data sets by combining STN and the triplet loss function. In particular, the triplet loss
function contributes to aggregation of similar expressions.

As shown in Figure 1a, anchor (Ai), positive (Pi), and negative (Ni) images are used as
input data for training the triplet loss function. Anchor data (Ai) stands for the original
data which we want to classify. Positive data stands for the data belonging to the same
class as the anchor data. Negative data stands for different class data from the anchor
data. In this study, we used three input data for training. Positive and negative data were
sequentially picked randomly from the same class and different classes.

Each facial data image is fed to the spatial transformer network followed by a triplet
loss function so that the distance between Pi and Ai is minimized and the distance between
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Pi and Ni is maximized. Furthermore, input image (Ai, Pi and Ni) with occlusion is fed
to the STN that is combined with ResNet [41]. To this end, the classification of facial
expression with occlusion and under the wild circumstance can be achieved with high
accuracy in place of using only deep neural networks (e.g., CNN-based, RNN-based, STN
only, etc) with the facial data acquired under the controlled circumstances.

3.2. Spatial Transformer Network

When carrying out the classification of facial images based on deep learning technolo-
gies, it is important that accurate classification be performed in realistic conditions, such as
pose change, occlusion, and missing some parts of the facial image. CNN-based models use
a pooling layer to solve these spatial variance problems. The spatial transformer network is
a recent classification method [18], which can be utilized in the fields of image classification,
co-localization, and spatial attention, and it can solve the spatial invariance problem by
transforming specific parts that are required in the learning tasks. Our proposed approach
to facial expression recognition combines STN and triplet loss instead of only using a single
deep neural network model so that robust recognition can be performed in case of occlusion.
In addition to robustness to occlusion, the triplet loss function alleviates the limitation of
the existing FER methods that sometimes fail to categorize the same expression as shown in
Figure 2. The combination of STN and triplet successfully aggregates the same expression
that is captured in wild-set environments.

Figure 1b shows the STN in detail. It consists of a localization network, a grid gen-
erator, and a sampler. Conv, MP, ReLU, Linear, and CNN stand for convolution layer,
max pooling layer, ReLU activation function, fully connected layer, and CNN model,
respectively. ResNet has been used in the STN because it shows the best accuracy of
classification in case of occlusion and wild-set environments. The localization network
returns parameters required for spatial transformation, and the grid generator returns
the grid required for transformation. In the course of transformation, we used affine
transformation. The sampler samples the grid and input image generated through the
grid generator. The localization network is constructed by adding max pooling and ReLU
activation functions with convolution layers and one fully connected layer (Figure 1b).

Through the localization network, six parameters required for the affine grid (Aθ),
written as Equation (1), are returned as outputs.

Aθ =

[
θ11 θ12 θ13
θ21 θ22 θ23

]
(1)

The affine grid (Aθ) is generated through the six parameters returned from the local-
ization network. The generated grid and input image are sampled through grid sampling
to generate a final conversion grid necessary for learning, as written by Equation (2). In
Equation (2), xi and yi stand for the coordinates of a horizontal and vertical axis of the
generated grid. Tθ(Gi) stands for the grid generator, and Aθ stands for the affine grid.

(
xi
yi

)
= Tθ(Gi) = Aθ

xi
yi
1

 (2)

3.3. Triplet Loss

FER frequently shows limitations in that different classes (e.g., expressions) of the
same person do not show maximized distance, i.e, the existing methods fail to classify
different expressions if those are from the same person. FER also shows a limitation in that
the existing method fails to aggregate the same expressions of different people. The triplet
loss function alleviates this limitation.
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Triplet loss is a loss function for metric learning. Based on the anchor data, the triplet
loss function enables one to minimize the distance between the same expressions of different
people and to maximize the distance between the different expressions of the same person.
By using this triplet loss, the Euclidean distance is decreased for facial expression data
belonging to the same class, and the Euclidean distance is increased for facial expression
data belonging to different classes. Data are organized as follows. The data belonging to
the same class as the anchor data are composed of positive data, the data belonging to
the other class are composed of negative data, the three sets of data are learned by each
STN model, and the output result value is calculated as the Euclidean distance through the
triplet loss function, written as

N

∑
i
[|| f (xa

i )− f (xp
i )||2 − || f (xa

i )− f (xn
i )||2 + α] (3)

where N is the number of data; f is the STN model; a, p, and n are anchor, positive,
and negative, respectively,||.||2 means L2 normalization. α is a hyperparameter representing
the margin, and in this experiment, it is set to 1.0. In the experiment, back-propagation
learning is performed through the above equation for positive data, negative data and
anchor data that have passed each STN model.

4. Experimental Results

This section details the results with the used data set for the experiments, experimental
setup, and environments. To validate the proposed approach in this work, we compare
various image data, e.g., occlusion and non-occlusion data. The comparison is carried out
through ablation studies, followed by a comparison with the state-of-the-art (SOTA) model.

4.1. Data Set

CK+: The Extended CohnKanada (CK+) database [16] is the most widely used labora-
tory control database in the field of FER. CK+ contains 593 video sequences of 123 topics.
The sequences vary in duration from 10 to 60 frames and show transitions from neutral
to peak facial expressions. In this video, seven basic facial expression labels (anger, con-
tempt, disgust, fear, happiness, sadness, surprise) are classified based on the FACS (Facial
Action Coding System). In this paper, a total of 981 frames were extracted and used in
the experiment. Here, 800 training images and 181 test images were randomly divided
into experiments.

FER2013: The FER2013 database [40] is the data used in ICML2013 Challenges in
Presentation Learning. FER2013 is a large database that is automatically collected by the
Google Image Search API. All images are scaled to a size of 48× 48 pixels and consist of
7 expression labels (anger, disgust, fear, happiness, sadness, surprise, neutrality). It consists
of 28,709 training images, 3589 verification images, and 3589 test images.

4.1.1. Experimental Environment

In this paper, the image size of the data set was adjusted to 224 × 224. Anchor,
positive, and negative data were used with batch size eight. Based on the anchor data,
images belonging to the same or different classes were randomly extracted to form positive
and negative data, respectively. Each of the three data (anchor, positive, negative) is trained
through the STN model combined with modified ResNet-18. The triplet loss was calculated
through the three output values obtained by the model. We initialized the learning rate to
0.001, and the Adam optimizer was applied. The modified ResNet-18 layers are shown in
Table 1. The existing ResNet model is modified by removing the number of layers in the
model of ResNet-18, which includes the smallest number of layers among ResNet models.
Then, the number of layers becomes smaller.



Sensors 2023, 23, 2619 10 of 15

Table 1. Modified size of each layer of ResNet structure.

Layer Type Output Size Patch Size, Channel

Convolution layer 1 24 × 24 7 × 7, 64, stride 2
Convolution layer 2 12 × 12 3 × 3, 64, 3 × 3, 64
Convolution layer 3 6 × 6 3 × 3, 128, 3 × 3, 128
Convolution layer 4 3 × 3 3 × 3, 256, 3 × 3, 256
Convolution layer 5 2 × 2 3 × 3, 512, 3 × 3, 512

Average Pool 1 × 1 -

4.1.2. Ablation Studies

Figure 3 visualizes the distribution of image data used for the comparison experi-
ments. The comparison is performed from two perspectives. One is a comparison between
occluded facial images and non-occluded ones. The other is a comparison between using
cross-entropy and using the triplet loss function. Figure 3a,b represent the case of using
the cross-entropy loss function, and (c) and (d) represent the case of using the triplet loss
function. Here, (a) and (c) show the visualization of experimental results using occlusion
data, and (b) and (d) show the experimental results using non-occlusion data. It seems
that it is difficult to clearly distinguish between different classes when a cross-entropy
loss is used (Figure 3a,b). On the other hand, when triplet loss is used (Figure 3c,d), it
can be seen that classification is more successful. We can see Figure 3a,c show a more
clearly distinguished result than (b) and (d) show, which are trained by occlusion data.
Nevertheless, when using triplet loss, classes are more clearly distinguished in occlusion
data than when using the cross-entropy loss function, and we can see that they are more
clearly aggregated between the same classes (indices of vertical and horizontal axes just
present relative locations of points of each expression).

Figure 3. Visualization of data distribution under loss function and occlusion: (a,b) show classifica-
tion using the cross-entropy loss function; (c,d) show the result using triplet loss; (a,c) visualize the
result with non-occlusion data; (b,d) visualize the result with occlusion data.

Table 2 compares the accuracy of the original ResNet-18 and the modified ResNet-18
using randomly erased CK+ data and compares the accuracy of using cross-entropy loss
and triplet loss. Through the experiment, it is confirmed that when the modified ResNet-18
is combined with STN, the accuracy achieved is 2.09% higher than the model combined
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with STN and the original ResNet-18. Through this experiment, it can be confirmed that
when modified ResNet-18 is combined with STN, it shows better performance. In other
words, the results imply that the model with fewer layers in the network model shows
higher accuracy when combined with STN. In addition, through the experiment, it was
confirmed that the use of the triplet loss function showed a classification accuracy of 99.44%,
which is 0.48% higher than with the cross-entropy loss. Although our approach uses the
ResNet-18 structure, the result is comparable to the result using the ResNet-34 structure
(LHC-Net). Unfortunately, our approach struggles with the optimization of the recognition
result with an increase in the number of layers. These results verify that in the case of
facial expression recognition, using the triplet loss function further improves the accuracy
compared to using the cross-entropy loss function.

Table 2. Ablation study of ResNet model and using different loss function on CK+ data set.

ResNet Loss Function Accuracy (%)

Orignal ResNet-18 CrossEntropy 96.87
Modify ResNet-18 CrossEntropy 98.96
Modify ResNet-18 Triplet 99.41

4.1.3. Comparison Result

Experimental results using CK+ and FER2013 data sets are shown in Figure 3 and
Tables 2 and 3. Table 2 chiefly compares the accuracy between using the cross-entropy and
triplet loss function in the ablation study. Table 3 comprehensively shows the comparison
results between the SOTA models and our proposed approach. In the case of using the CK+
data set, the proposed model, TL-STN, is compared with FER-IK [42], IPA2LT [43] , lp-norm
MKL multiclass-SVM [44], twofold random forest classier [45], and the self-supervised
learning (SLL) puzzling model [46].

In the CK+ data set, ViT+SE [47] and FAN [48] show high accuracy, but we excluded
it from the comparison table because ViT+SE uses 10-fold cross-validation and FAN uses
video sequences as input data which is a different setup from our proposed approach.
FER-IK is known as a knowledge-augmented image-based FER model, and IPA2LT is
known as inconsistent pseudo annotations to the latent truth model. The lp-norm MKL
multiclass-SVM is known as multiple kernel learning (MKL) in multiclass support vector
machines (SVM). Twofold random forest classier is known as a model which recognizes
AUs from image sequences using a twofold random forest classifier. SSL puzzling is known
as a nonlinear evaluation in supervised learning (SL) and the self-supervised learning (SSL)
puzzling model.

In the case of using the FER 2013 data set, our proposed model, STN with modified
ResNet-18 and cross-entropy, is compared to LHC-Net [49], CNN [50], GoogleNet [51] ,
ResNet [41], VGGNet [52], and STN with a cross-entropy loss function.

In the FER2013 data set, Ensemble ResMaskingNet with six other CNNs [40] and Local
Learning Deep+BOW [53] showed high accuracy, but we excluded it from the comparison
table because these models use machine learning, unlike our proposed model. In addition,
simple comparisons are impossible because we propose a loss function using attention-
focused mechanism-based models and metric learning.

In this experiment, our approach does not show an improved result, but the proposed
model shows superior accuracy compared to the result of using the original ResNet-18
model. TL-STN with the CK+ data set achieves the best recognition accuracy despite using
randomly erased facial images.
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Table 3. Performances comparison with state-of-the-art methods.

Model Datasets Accuracy (%)

FER-IK [42]

CK+

97.59

IPA2LT [43] 91.67

lp-norm MKL multiclass-SVM [44] 93.6

Twofold random forest classier [45] 96.38

Nonlinear eval on SL + SSL Puzzling [46] 98.23

TL-STN (ours) 99.41

LHC-Net [49]

FER2013

74.42

CNN [50] 62.44

GoogleNet [51] 65.20

ResNet [41] 72.4

VGGNet [52] 73.28

STN (w/orignal ResNet-18) + TL (ours) 72.30

STN (w/modified ResNet-18) + TL (ours) 73.31

5. Conclusions

This paper presents facial expression recognition based on deep learning technology.
Since the advent of deep neural network models, diverse applications using image data
have shown significant improvement from theoretical and practical perspectives. However,
a lot of challenges remain due to the unexpected factors that degrade the performance of
recognition. Furthermore, facial expression directly reflects human emotion which is a very
qualitative component. Facial expression and human emotion are very delicate, leading to
the technical difficulty in analysis and quantification. In this paper, the proposed approach
chiefly contributes to two problems, one is occlusion, and the other one is a classification
of expression (intra-class similarity problem) in practical cases (Figure 2). Exsiting FER
methods usually employ cross-entropy loss function which helps reduce the difference
between ground truth values and the estimated (or predicted) ones that are similar to other
image recognition fields. The cross-entropy loss function shows a high recognition accuracy
for objects that do not change the appearance of objects in the image, but it is difficult to
classify when there are various features in the same class, such as facial expressions. In this
paper, to solve these problems, the experiments were conducted by using the triplet loss
function which was the first suggested in the field of facial expression recognition, and the
proposed one can be applied to diverse practical fields. The triplet loss function with a STN
(w/modified ResNet-18) alleviates the abovementioned limitations. The proposed model
solves occlusion and illumination, poses change issues, and shows superior results to the
existing work. To verify the benefit of the modified ResNet-18 model, a comparison was
performed that showed a 1.01% improvement on the FER2013 data set. When the triplet
loss function and the modified ResNet-18 were combined, they yielded 99.41% accuracy.
The experiment with a randomly erased pre-processed CK+ data set showed the highest
accuracy compared to SOTA models which were performed with the original CK+ data set.
Through these experiments, it was confirmed that even for data with occlusion, our model
shows high performance in FER. In addition, the proposed model shows the availability of
a metric-learning-based loss function.

In future work, we will more deeply focus on enhancement of the recognition accuracy
with the more delicate differences of facial expression, as well as more practical issues in
recognition problems. Specifically, we will analyze the practical limitations existing in the
proposed approach and will try to solve them through contrastive loss functions such as
triplet loss. Through this, we plan to see if we can solve other recognition problems by
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applying our methods to fine-grain recognition problems that use small data sets, such as
medical diagnosis, gender classification, etc. [54–56].
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