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Abstract: In the process of using the Distributed Radar Network Localization System (DRNLS)
further to improve the survivability of a carrier platform, the random characteristics of the system’s
Aperture Resource Allocation (ARA) and Radar Cross Section (RCS) are often not fully considered.
However, the random characteristics of the system’s ARA and RCS will affect the power resource
allocation of the DRNLS to a certain extent, and the allocation result is an essential factor determining
the performance of the DRNLS’s Low Probability of Intercept (LPI). Therefore, a DRNLS still has some
limitations in practical application. In order to solve this problem, a joint allocation scheme of aperture
and power for the DRNLS based on LPI optimization (JA scheme) is proposed. In the JA scheme,
the fuzzy random Chance Constrained Programmin model for radar antenna aperture resource
management (RAARM-FRCCP model) can minimize the number of elements under the given pattern
parameters. The random Chance Constrained Programmin model for minimizing Schleher Intercept
Factor (MSIF-RCCP model) built on this basis can be used to achieve DRNLS optimal control of LPI
performance on the premise of ensuring system tracking performance requirements. The results
show that when RCS has some randomness, its corresponding uniform power distribution result is
not necessarily the optimal scheme. Under the condition of meeting the same tracking performance,
the required number of elements and power will be reduced to a certain extent compared with the
number of elements in the whole array and the power corresponding to the uniform distribution.
The lower the confidence level is, the more times the threshold is allowed to pass, and the lower the
power is, so that the DRNLS can have better LPI performance.

Keywords: Distributed Radar Network Localization System (DRNLS); Schleher Interception Factor;
Low Probability of Intercept (LPI); Chance Constrained Programmin (CCP); Aperture Resource
Allocation (ARA); Radar Cross Section (RCS)

1. Introduction

At present, radar is developing rapidly in the direction of multifunction, digitalization,
and integration. In this context, the development cycle of new radar is becoming longer
and longer, and it is difficult for new radar to meet the requirements of system performance
in technology fully. To effectively solve this problem, the concept of a Distributed Radar
Network Localization System (DRNLS) came into being. The DRNLS can make up for the
above shortcomings and form a comprehensive, three-dimensional, and multilevel system,
significantly improving the system performance, which scholars favor. Since the Low Prob-
ability of Interception (LPI) performance is an essential factor affecting the survivability of
radar, it is of great theoretical and practical significance to use a DRNLS to allocate power
reasonably on the premise of ensuring that the DRNLS meets the LPI performance.

Generally, the influence of the radar network, aperture, and RCS uncertainty on power
allocation is the three main factors determining radar LPI performance. In recent studies,
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deep neural networks have been widely used in natural language processing [1,2], het-
erogeneous relational attention networks are used to embed learning knowledge maps
and computer vision [3,4], and some scholars have studied DRNLS resource allocation.
For example, Refs. [5–11] studied the problems related to a radar network. Refs. [12–16]
studied various problems related to allocating radar aperture resources. In Refs. [17–21],
relevant scholars studied the allocation of radar power resources.

A radar network is important for improving a radar systems’ detection and LPI per-
formance. Each radar node in a radar network can transmit independent quadrature
waveforms (to avoid interference) and receive and process all transmitted waveforms si-
multaneously [5]. In 2010, Godrich and others [6] studied the impact of different distributed
MIMO radar networks on target tracking performance. The research shows that higher
target tracking accuracy can be obtained by increasing the number of radar transmitters and
receivers and illuminating the target from multiple perspectives. In 2013, Hachour et al. [7]
proposed a multisensor multitarget joint tracking and classification algorithm based on
creed classification. According to the target motion state and acceleration information,
the creed classifier was used to obtain the type set of the target. In 2015, Yang et al. [8] stud-
ied the target tracking performance of radar network systems under deception jamming
and analyzed the impact of different system parameters on target tracking performance.
Sobhani et al. [9] proposed a particle filter algorithm for UWB radar network multitarget
tracking. In 2016, Liu et al. [10] proposed a coordinated track initiation algorithm for a radar
network system based on the target tracking information, which improved the target track
initiation probability of the system. In 2020, Yan et al. [11] proposed a cooperative detection
and power allocation strategy for radar network target tracking, which optimizes the
false alarm rate and transmission power of each radar node under the constraint of some
resource budgets.

DRNLS power resource allocation is an important way to improve LPI performance,
including optimizing the peak side lobe level (PSL) of the aperture, the number of elements
in the radar aperture, and the power of a single element. Because of the limitation of
the traditional radar concept, the traditional pattern synthesis research does not involve
the resource management of antenna aperture and the uncertainty of the radar system
and target environment. In 1990, Olen et al. [12] proposed an adaptive weight selection
algorithm for a given array element set to meet specific side lobe criteria. However, this is
only to optimize the weights with ten uniformly distributed elements. Compared with [12],
Zhou and Ingram [13] proposed a new adaptive pattern synthesis algorithm in 1999, which
can more easily control the main lobe shape of any array. In 2005, Shi et al. [14] proposed
a new array pattern synthesis algorithm based on the two-step least squares method. They
closed the array pattern by jointly modifying the phase of the desired pattern and the
weight vector of the composite pattern. In addition, by simultaneously optimizing the
sensor location and array complex weight coefficient to minimize PSLL and in order to
maintain the desired beam pattern, in 2011, Cen et al. [15] proposed an improved genetic
algorithm for beam pattern synthesis of linear aperiodic arrays with arbitrary geometry.
Considering the uncertainty of the radar system and target environment, Gong et al. [16]
introduced uncertainty in managing aperture resources in 2014. An optimal objective
function can be obtained without all elements being in a working state. However, due to
the uncertainty of the radar system and target environment, the aperture length and array
element number that determines the pattern quality are uncertain.

Several scholars have studied the problem of DRNLS power resource allocation [17–21],
aiming to enable the DRNLS to dynamically coordinate the transmission parameters of
all radars and improve the utilization efficiency of resources. Godrich et al. [17] proposed
a performance-based power allocation algorithm on the platform of distributed multiple
input multiple outputs (MIMO) radars. The main idea of this algorithm is to make the
DRNLS consume the least transmit power under the condition of achieving preset local-
ization accuracy. Yan et al. [18] applied the idea of power allocation to 3D target tracking
and proposed a cognitive DRNLS target tracking algorithm. However, these algorithms
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assume that the target’s Radar Cross Section (RCS) information is known before. However,
in the actual target location, the RCS information of the target at the next time cannot
be obtained at the current time because it is related not only to the type, attitude, and
position of the target but also to the angle of view, polarization, incident wavelength, and
other factors [22]. In this case, Chavali et al. [19] proposed an antenna selection and power
allocation algorithm for multitarget tracking. The algorithm adds the target RCS to the
state variable to be estimated and sets its transition model as a first-order Markov process.
By recursion of state variables, the RCS of the target at the next time can be predicted
at the current time. Then, the BCRLB at the next time can be calculated iteratively and
used as the cost function of power allocation. Liu et al. [20] proposed an access control
and power allocation algorithm based on CCP by establishing time-varying channels as
random variables under the application background of cognitive radio. Yan et al. [21]
proposed a DRNLS robust power allocation algorithm based on nonlinear CCP (NCCP)
for the random factor of RCS in target tracking. The purpose is to enable the DRNLS to
dynamically coordinate the transmission parameters of all radars, thereby saving power
resources as much as possible under the condition of meeting opportunity constraints.

In solving optimization problems, Liu et al. [23,24] used the data generated by fuzzy
random simulation or random simulation to train a neural network and combined it with a
genetic algorithm to form a hybrid intelligent algorithm. Han et al. [25] combined the fuzzy
random simulation method with the nondominated sorting genetic algorithm (NSGA) to
form a hybrid intelligent optimization algorithm for the fuzzy random Chance Constrained
Programmin model of aperture resource management of the antenna array. Compared
with the genetic algorithm in Refs. [23,24], the hybrid intelligent optimization algorithm
can obtain the optimal solution of the optimization problem without relying on the training
of the neural network and can reduce the amount of computation. Therefore, based on
the given constraints, it can find the number and layout of array elements that make the
objective function optimal. In addition, Godrich et al. [26] creatively proposed an iterative
algorithm for the local search of minimum value, which can bridge the nonconvex optimiza-
tion problem and the corresponding relaxed convex optimization problem. This algorithm
can ensure that the optimal solution of the unrelaxed convex optimization problem can
be further searched after using CVX to find the optimal solution of the relaxed convex
optimization problem.

By combing the above documents, it was found that there are references that analyze
how a certain factor in radar netting, aperture, and power affects LPI performance sepa-
rately, but there is no research that comprehensively considers how these three factors affect
LPI performance together. At the same time, in the aspect of solving optimization problems,
there is no literature that combines a genetic algorithm to solve the optimal value without
training the neural network with the iterative optimization algorithm (IOA) to ensure that
the real optimal solution can be found smoothly with moderate calculation. Therefore, this
paper proposes a joint allocation scheme of aperture and power for the DRNLS based on
LPI (JA scheme). In this scheme, on the one hand, considering the fuzziness and random-
ness of the array element distribution, the fuzzy random Chance Constrained Programmin
model is used to model the aperture optimization problem. On the other hand, due to
the randomness of RCS, the stochastic-constrained programming model is used to model
the power optimization problem. At the same time, because of the nonconvex nature
of most optimization problems, based on properly expanding the IOA, the JA scheme
can ensure that the optimal solution of the optimization problem can be found, and it
can improve the LPI performance of the DRNLS. In addition, the optimal solution of the
aperture optimization problem as one of the initial conditions of the power optimization
problem is the key to realizing the joint allocation of aperture and power.

The content of this paper is organized as follows. Section 2 introduces the system
model and the comprehensive content of the pattern. Section 3 analyzes the Schleher Inter-
ception Factor of the DRNLS. Section 4 establishes the fuzzy random Chance Constrained
Programmin model for radar antenna aperture resource management (RAARM-FRCCP
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model) and the random Chance Constrained Programmin model for minimizing Schleher
Intercept Factor (MSIF-RCCP model) to minimize the number of array elements and the
system’s Schleher Interception Factor. Section 5 describes the fuzzy random simulation
technology with genetic algorithm (FRS-GA) of the RAARM-FRCCP model and the random
simulation technology with genetic algorithm (RS-GA) and iterative algorithm for locally
searching the minimum (LSMIA) of the MSIF-RCCP model. Section 6 conducts numerical
simulations. In this section, the LPI performance of the DRNLS is analyzed first. Then,
the resource consumption of the antenna array is minimized under the condition of meeting
the chance constraints of the desired pattern parameters. Finally, when the MSE is given,
the power allocation strategy with random RCS is compared with the uniform power
allocation, and the low intercept performance at different confidence levels is analyzed.

2. System Model and Preliminaries
2.1. System Model

Consider a DRNLS with M transmitting radars and N receiving radars. Suppose the
DRNLS tracks a target whose position is at (x, y) in the coordinate. The transmitting and
the receiving radars are distributed in the same two-dimensional space, and the positions
of each radar are arbitrarily distributed. The coordinates of the M transmitters and the
N receivers can be denoted as (xmT , ymT), m = 1, · · · , M and (xnR, ynR), n = 1, · · · , N,
respectively.

Let τm,n represent the total time used for transmitting the signal from the mth radar
and reflecting it through the target until it is received by the radar n, which is also called
the signal propagation time, and its expression is

τm,n =
DmT + DnR

c
(1)

where c is the speed of light, DmT represents the distance between Transmitter m and the
target, and DnR represents the distance between Receiver n and the target. The calculation
formulas of DmT and DnR ares as follows

DmT =

√
(xmT − x)2 + (ymT − y)2 (2)

DnR =

√
(xmR − x)2 + (ymR − y)2 (3)

According to the definition of τm,n, the baseband signal of the (m, n)th channel com-
posed of transmitter m and receiver n can be expressed as

rm,n(t) =
√

αm,n pmthm,nsm(t− τm,n) + ωm,n(t) (4)

where αm,n represents the impact of path propagation loss on signal strength, hm,n repre-
sents the random variable RCS obeying exponential distribution in the Swerling I model,
and ωm,n(t) represents the complex white Gaussian noise with circular symmetry and zero
mean value. Its autocorrelation function is σ2

ωδ(τ), and pmt is the power of the mth trans-
mitter.

2.2. Pattern Synthesis

Assuming that there are S antenna elements with a known distribution, di indicates
the working state of the ith array element: one indicates that the array element is in the
open state, and zero indicates that the array element is in the closed state. Due to the
randomness of the excitation state of the array element and the arbitrariness of the array
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element position, the number of elements participating in the beam synthesis is uncertain.
The decision vector is as follows

D = [d1, d2, · · · , dS]
T (5)

where di = 0, 1, and i = 1, 2, · · · , S.
Suppose that all elements are isotropic, and the coordinates of each element are

(xi, yi, zi). Thus, the pattern function of the array is

p(El, Az) =
N

∑
i=1

di Ii exp
[

j2πcτi(El, Az)
λ

]
exp(jψi) (6)

where λ represents the wavelength of the signal; El and Az denote the pitch angle and
azimuth angle, respectively; Ii represents the current amplitude of the ith array element,
whose default value is one; and ψi represents the current phase of the ith array element,
whose default value is zero. Relative to the phase reference point, the expression of time
delay τi(El, Az) of the ith array element is

τi(El, Az) =
xi sin El cos Az + yi sin El sin Az + zi cos El

c
(7)

3. Schleher Interception Factor Analysis of Radar Network System

Based on the analysis of the Schleher Interception Factor and the relationship between
the Schleher Interception Factor and various parameters, various ways to improve the LPI
performance of the DRNLS are obtained.

3.1. Calculation of Schleher Interception Factor

For a DRNLS, we assume that each radar receiver can distinguish all signals and all
antenna beams point to the same target. In addition, suppose that each radar is the same,
the transmitter–receiver pairs are formed in the same way, and there is D2

net , DmT · DnR.
Then, the range equation of the DRNLS can be written as [27]

Dnet =

[
Nr

PtGtGrλ2σ

SNRmon(4π)3PrdLrd

] 1
4

(8)

where Pt is the total peak power of the DRNLS. The range equation of monostatic radar is

Dmon =

[
PtGtGrλ2σ

SNRmon(4π)3PrdLrd

] 1
4

(9)

The range equation of the intercepting receiver is

Desm =

[
PtGt,esmGesmλ2

SNResm(4π)2PesmLesm

] 1
2

(10)

The interception receiver can realize the interception detection of its signal by receiving
the main lobe or side lobe radiation energy of the radar. According to Equations (8) and (10),
the main lobe interception factor αnet and side lobe interception factor α

′
net of the DRNLS

can be calculated as:

αnet =
Desm

Dnet
=

[
1

Nr
· λ2

4πσ
· PtGt,esm

Gr
· G2

esmPrdSNRmonLrd
P2

esmSNR2
esmL2

esm

] 1
4

(11)
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α
′
net =

Desm

Dnet
=

[
1

Nr
· λ2

4πσ
·

PtG2
t,esm

GtGr
· G2

esmPrdSNRmonLrd
P2

esmSNR2
esmL2

esm

] 1
4

(12)

where Nr is the number of DRNLS radar receivers, Pt is the total peak power of the radar-
transmitted signal, Gt is the gain of the radar transmitting antenna in the direction of the
target, Gr is the gain of the radar receiving antenna in the direction of the target, Gt,esm is the
gain of the radar transmitting antenna in the direction of the intercepting receiver, Gesm is
the gain of the intercepting receiver antenna, Prd is the sensitivity of the radar receiver, Pesm
is the sensitivity of the interception receiver, λ is the radar wavelength, σ is the effective
scattering area of the radar target, Lrd is the radar system loss, Lesm is the system loss
coefficient from the radar antenna to the interception receiver, SNRmon is the SNR at the
input of the signal processor of the monostatic radar receiver, and SNResm is the SNR that
intercepts the input of the receiver signal processor.

3.2. Relationship between Schleher Interception Factor and Parameters
3.2.1. Number Nr of Radar Network Receivers

According to Equation (9), the maximum detection range of the monostatic radar is

Dmax
mon =

[
Pmax

mon
SNRmon

· GtGrλ2σ

(4π)3PrdLrd

] 1
4

(13)

where Pmax
mon is the maximum transmission power of the monostatic radar. Similarly, for the

interception receiver, there is the following equation

Dmax
esm =

[
Pmax

mon
SNResm

· Gt,esmGesmλ2

(4π)2PesmLesm

] 1
2

(14)

where Dmax
esm represents the interception distance corresponding to the monostatic radar’s

maximum transmission power Pmax
mon . Therefore, by Equations (9), (10), (13), and (14), it can

be obtained that

αmon

αmax
mon

=

(
Desm

Dmon

)/(
Dmax

esm
Dmax

mon

)
=

(
Pt

Pmax
mon

) 1
4

(15)

where αmon is the Schleher Interception Factor of the monostatic radar, and αmax
mon is the

Schleher Interception Factor corresponding to the maximum transmission power Pmax
mon of

the monostatic radar. To simplify the calculation, when the monostatic radar transmits
the full power Pmax

mon , the Schleicher interception factor αmax
mon is normalized to one. Thus,

when the total transmission power of the radar network system is Pt, Equation (15) can be
simplified as follows

αnet =
Desm

DmonN1/4
r

=
αmon

N1/4
r

=

[
Pt

Pmax
mon · Nr

] 1
4

(16)

It can be seen from Equation (16) that with the increase of the number of radar
receivers Nr in the network and the decrease of the total transmission power Pt of the
system, the Schleher Interception Factor of the DRNLS also decreases.

3.2.2. Gain Gt,esm of the Radar Transmission Antenna in the Direction of the
Reconnaissance Receiver

According to Equation (11), the relationship between the interception factor and radar
parameters is as follows
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αnet ∝ (Gt,esm)
1
2 (17)

It can be seen from Equation (17) that a lower interception factor can be obtained by
reducing the gain of the radar transmitting antenna in the direction of the interception
receiver. This gain may be the main lobe gain of the radar antenna or the side lobe gain
of the radar antenna. Due to the discrete scanning of the phased array radar, the time for
the intercepting receiver to intercept the main lobe of the radar is very short. Therefore,
reducing the side lobe of the radar transmitting antenna is one of the effective measures to
achieve low interception.

The time for the intercepting receiver to intercept the main lobe of our radar in the
airspace is much less than the time for the side lobe. For example, the radar tracks the
target, and the target is equipped with a self-defense jammer. The radar tracks the target
for only a few tracking frames in a cycle, i.e., the radar’s main lobe illuminates the target,
and the radar side lobes illuminate the target at other times. For an intercepting receiver,
the probability of signal interception is defined as:

P = 1−
(

1− Pf a

)T/τ

(18)

where Pf a is the interception probability in time τ, and T is the total interception time.
Therefore, suppose that τ is the dwell time of the main lobe illuminating the target, and T is
an airspace scanning period of the radar. If the low side lobe antenna is adopted, the radar
will not be intercepted in time T− τ, and the probability of interception will be significantly
reduced. The interception probability under different conditions is shown in Table 1.

Table 1. Probability of interception in different situations.

Pf a

T
/

τ
a

1 2 5 10 20

15.00% 15.00% 27.75% 55.60% 80.31% 99.90%
30.00% 30.00% 51.00% 83.20% 97.18% 99.90%

a T/τ is the ratio of the total radar scan time to the time the main lobe is intercepted. For example, when T/ι = 1,
it means that only the main lobe of the radar is intercepted, and it is not intercepted at other times; if T/ι = 20, it
means that there are 20 intercepted times of the main lobe of the radar is intercepted in total in one scan period,
including the case where the main lobe is intercepted only once.

3.2.3. Radar Power Gain Product PtGt

According to Equation (11), the relationship between the interception factor and the
radar parameter is as follows

αnet ∝ (PtGt)
1
4 (19)

As shown in Equation (19), low transmission peak power and transmission antenna
gain are adopted, and the low interception factor can be effectively reduced by controlling
the radar power gain product. From the analysis result of the interception factor, reducing
the radar transmission peak power is one of the effective low interception measures. If
we reduce the peak power of radar transmission, increase the duty cycle of the radar
waveform, and ensure the average power of the radar transmission has no impact on radar
detection performance, we can effectively reduce the interception distance of the other
party. In practical engineering, when the signal-to-noise ratio of the target echo is too large,
i.e., the radar does not need to use too large a peak power gain product, this measure can
be taken to reduce the power gain product of the radar peak, reducing the intercepted
distance while ensuring the radar detection range.

The above analysis shows that under the condition of a certain radar receiver sensitiv-
ity, the methods to improve the radar interception factor include: increasing the number of
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radar network receivers, reducing the radar transmit power gain product, and reducing
the radar transmit antenna side lobe level.

4. Joint Optimal Control Algorithm of Aperture and Power

In this section, a JA scheme is proposed to improve the low interception performance
of a DRNLS by reducing the number of radar excitation elements and the radiation power
of each excitation element in the target location process under the low side lobe constraint.
Section 4.1 establishes the RAARM-FRCCP model; Section 4.2 is the CRB of target posi-
tioning; in Section 4.3, based on the optimization of the number of elements in Section 4.1,
considering the randomness of RCS, the MSIF-RCCP model is established to minimize the
system Schleher interception factor.

4.1. Establishment of RAARM-FRCCP Model for Aperture Distribution

If all the elements are in the excited state, it will waste antenna array resources. Due to
the array elements’ arbitrary distribution and the working state’s uncertainty, the radar
system can synthesize beams that meet the requirements of NPSLL and main lobe width
when the number of excitation elements is less than SS. However, when the number of
array elements participating in pattern synthesis is too small, the far-side lobe level will be
very high. Therefore, the number of array elements in the excitation state is distributed
in an appropriate interval. The number and location of elements selected each time to
participate in pattern synthesis are random. However, due to too many combinations
between elements, it is difficult to obtain their random distribution function through
repeated experiments. Then, fuzzy random variables can be introduced to represent the
number of exciting elements, and the RAARM-FRCCP model can be established [28].
Because of the arbitrary distribution of array element positions and the uncertainty of the
working state of the array element, the calculation results sometimes cannot fully achieve
the desired optimization goal. Only when the chance measure of the constraint conditions
is greater than or equal to the pre-given confidence level can the optimization goal be met.

The optimal number of elements in the working state ξ(ω) represents the number
of elements in the excited state, where ω is a random number. PNPSLL(D, ξ) and B(D, ξ)
are the normalized peak side lobe level and the calculated first zero main lobe width,
respectively. Establish the following Chance Constrained Programmin model

min f̄
s.t. Ch

{
ξ 6 f̄

}
(γ) > δ,

Ch{PNPSLL(D, ξ)− PNPSLL 6 0}(γ) > β1,
Ch{B(D, ξ)− BW}(γ) > β2,
D = [d1, d2, · · · dS]

T ,

∑S
i=1 di = ξ.

(20)

where PNPSLL and BW are the expected normalized NPSLL and the first zero main lobe
widths, respectively, assume that γ, δ, β1, and β2 are confidence levels. ξ(ω) is a fuzzy
random variable, and f̄ is the threshold of the number of elements in the working state.

4.2. CRB for Target Localization

CRB provides a lower bound for mean square error (MSE) of unbiased estimation of
unknown parameters. Given a parameter vector u, the component is ui, and its unbiased
estimate ûi satisfies the following inequality [26]

Eu

{
(û− u)(û− u)T

}
> J−1(u) (21)

where parameter vector u
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u =
[

x, y, hT
]T

(22)

In the above formula, h = [h1,1, h1,2, · · · , hM,N ]
T represents the target RCS observed

by different receiving and transmitting paths.
In Equation (21), J(u) is the Fisher information matrix (FIM), which has the following

formula [26]

J(u) = E r|u

{
∂

∂u
log f (r|u)

(
∂

∂u
log f (r|u)

)T
}

(23)

where f (r | u) is the condition of observation vector r = [r1,1, r1,2, · · · , rM,N ]
T and the joint

probability density function. As an exponential random variable, the target RCS is more
consistent with the real situation than a deterministic variable. Meanwhile, Equation (4)
shows that the target RCS with randomness affects the baseband distribution to a certain
extent. See Appendix A for f (r | u) conditional probability density function.

CRB matrix Cx,y, defined as the 2× 2 matrix of the upper left block of FIM’s inverse
matrix J−1(u), is expressed by the following matrix [29]

Cx,y(u, pt) =

{
M

∑
m=1

pmt

[
Ξam Ξcm
Ξcm Ξbm

]}−1

(24)

The component elements Ξam, Ξbm. and Ξcm are, respectively, defined as [26]

Ξam = ξm

N

∑
n=1

αm|hm,n|2
(

xmT − x
DmT

+
xnR − y

DnR

)
(25)

Ξbm = ξm

N

∑
n=1

αm|hm,n|2
(

ymT − x
DmT

+
ynR − y

DnT

)
(26)

Ξcm = ξm

N

∑
n=1

αm|hm,n|2
(

xmT − x
DmT

+
xnR − y

DnT

)(
ymT − x

DmT
+

ynR − y
DnT

)
(27)

Among them, ξm = 8π2(β2
m/(σ2

wc2)). βm is the effective bandwidth of the mth transmit-
ting radar. The elements of the CRB matrix depend on the azimuth of the transmitting and
receiving antennas relative to the target (taking the x axis as the standard). The trace of the
Cx,y matrix represents the lower bound of the MSE sum estimated in all directions of the
target position, such as in the two-dimensional plane, tr

(
Cx,y

)
6 σ2

x + σ2
y , where σ2

x and
σ2

y represent the MSE estimated in the x and y axes, respectively. After a series of matrix
calculations, the trace of the CRB matrix Cx,y can be expressed as [26]

σ2
x,y(pt) = tr

(
Cx,y

)
=

bTpt

pT
t Apt

(28)

Among them, pt = [p1t, p2t, · · · , pMt]
T, b = (Ξa + Ξb), A = ΞaΞT

b − ΞcΞT
c . The com-

ponent elements in Ξa = [Ξa1, Ξa2, · · · , ΞaM]T, Ξb = [Ξb1, Ξb2, · · · , ΞbM]T, and Ξc =

[Ξc1, Ξc2, · · · , ΞcM]T vectors are defined in Equations (25), (26) and (27), respectively.

4.3. MSIF-RCCP Model Construction for Minimizing Schleher Interception Factor

The relationship between the transmission power and the number of elements is
pmt = p

′
mt · ξ∗, where ξ∗ is the optimal number of elements obtained in Section 4.2, p

′
mt is

the power of a single element, and m is the transmitter number. The above influencing
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factors are included in the CRB matrix defined by Equation (28) through vectors b, pt,
and A. The transmit power of each radar is limited between pmt min and pmt max.

This section will introduce how to allocate the power of each transmitter to minimize
the Schleher Interception Factor of the system under the condition of given MSE, ηmax of
the target location. It can be summarized as follows

minpt αnet
s.t. pmt − pmt max 6 0, m = 1, · · · , M,

pmt min − pmt 6 0, m = 1, · · · , M,
tr
(
Cx,y(ũ, pt)

)
= ηmax.

(29)

where Cx,y(ũ, pt) is the CRB matrix of 2× 2 defined in Equation (28), and ũ =
[

x̃, ỹ, h̃T
]T

is
the prior estimation of the target position and RCS obtained through previous multiple ob-
servations.

For each power vector pt, the small increment 0 <
a

p 6 pmt of transmission power
will cause MSE to decrease [26]. Therefore, Equation (29) can be rewritten as follows

minpt αnet
s.t. pmt − pmt max 6 0, m = 1, · · · , M,

pmt min − pmt 6 0, m = 1, · · · , M,
ηmaxpT

t Aept − bT
e pt = 0.

(30)

The vector be = b(ũ) and matrix Ae = A(ũ) are calculated using the estimation vector
ũ. The optimization problem of Equation (30) is nonconvex because the third constraint in
Equation (30) is an equality constraint [30].

Solving constrained, nonlinear, and nonconvex optimization problems is a challenging
task that usually requires much computation. The common solution to such problems is to
relax the original problem convexly and then find a local minimum [31] with the optimal
solution. The constraint relaxation and power allocation algorithm will be described in
detail below.

In order to solve the optimization problem in Equation (30), the third equation
ηmaxpT

t Aept − bT
e pt = 0 in the problem can be relaxed first. Since there is transmis-

sion power pmt 6= 0 for ∀m = 1, 2, · · · , M, the third equation constraint can be replaced
by ηmaxAept − be = 0. The gradual reduction of transmission power will make MSE
gradually larger. After multiple iterations, MSE will be infinitely close to the threshold
value ηmax of the given positioning error. Then, the equality constraint ηmaxAept − be = 0
can be replaced by the inequality constraint pT

t (be − ηmaxAept) 6 0. The relaxed convex
optimization problem is given below

minpt αnet
s.t. pmt − pmt max 6 0, m = 1, · · · , M,

pmt min − pmt 6 0, m = 1, · · · , M,
be − ηmaxAept 6 0.

(31)

In practical applications, target RCS is related to target recognition, attitude, and po-
sition and is also affected by azimuth, wavelength, polarization, and other factors [32],
which are unknown and uncertain. Therefore, this paper considers the target RCS a ran-
dom variable. Therefore, the deterministic resource allocation model cannot reflect the
characteristics of the target well and truly. Because of the above situation, the random CCP
method of resource management is introduced [24]. Therefore, according to Equation (31),
the MSIF-RCCP model can be expressed as
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minpt αnet

s.t. pmt − pmt max 6 0, m = 1, · · · , M,
pmt min − pmt 6 0, m = 1, · · · , M,
Pr(be − ηmaxAept 6 0) > α.

(32)

The probability symbol Pr(·) is obtained from the random variable hm,n, and α repre-
sents the confidence level.

5. Joint Optimal Control Algorithm of Aperture and Power

For the fuzzy random Chance Constrained Programmin model of array aperture
resource management, the fuzzy random simulation can solve the constraint interval of
the number of array elements satisfying the confidence level and then combined with the
genetic algorithm to form a hybrid intelligent algorithm (FRS-GA), so that the optimal
number and arrangement of array elements can be found under the optimal NPSLL con-
straints [25]. The random simulation algorithm [28] is embedded into the genetic algorithm
to form a hybrid intelligent algorithm (RS-GA) so that the optimal solution p∗t,opt can be
obtained by solving the relaxed convex optimization problem in Equation (29) under the
constraint condition of meeting the given tracking error.

For the optimization process, the detailed steps are shown in Algorithm 1.

Algorithm 1 Hybrid Intelligent Algorithm

Require: The population size pop_size, the initialized chromosome set V = {d1, d2, · · · , dS},

the

probability Pc and Pm of crossover and mutation, and the number of evolution iterations

N.

Ensure: The optimal number of array elements ξ∗ and minimum LPI α∗net.

1: function FRS-GA ALGORITHM

2: Screen out the feasible initial chromosomes from the set V using the fuzzy random

simulation

method, and denote the set composed of all the screened initial chromosomes as V1;

3: Verify the feasibility of the chromosomes in the set V1 through the fuzzy random

simulation

method, correct the unfeasible chromosomes, and denote the corrected new set as V2;

4: Calculate the objective function value of all chromosomes in the set V2 and further

calculate

the fitness function value of each chromosome from the obtained objective function

value;

5: Select chromosomes by the roulette method;

6: Repeat Step3–Step5 until the given number N of evolution iterations is met;

7: Take the best chromosome as the optimal number of array elements ξ∗ for the

optimization problem (20) and return;
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8: end function

9:

10: function RS-GA ALGORITHM

11: Initialize the population size pop_size and the chromosome set V3 = {p1t, p2t, · · · , pMt}

according to the relationship pmt = p
′
mt · ξ∗ and the optimal number of array elements

ξ∗

in the FRS-GA algorithm;

12: Screen out the feasible initial chromosomes from the set V3 using the random

simulation

method, and denote the set composed of all the screened initial chromosomes as V4;

13: Verify the feasibility of the chromosomes in the set V4 through the random simula-

tion

method, correct the unfeasible chromosomes, and denote the corrected new set as V5;

14: Calculate the objective function value of all chromosomes in the set V5 and further

calculate

the fitness function value of each chromosome from the obtained objective function

value;

15: Select chromosomes by the roulette method;

16: Repeat Step13–Step15 until the given number N of evolution iterations is met;

17: Take the best chromosome as the globally optimal power p∗t,opt for the relaxed

optimization problem (32) and return;

18: end function

19:

20: function LSMIA ALGORITHM

21: Initialize iteration step size ∆p0 and termination condition ε;

22: Assign p∗t,opt to the starting point pt0
to calculate σ2

x,y(pt0
) in Equation (28);

23: if Pr(|ηmax − σ2
x,y(pt(k−1))| < ε) > α then

24: repeat the following procedure:

25: pt(k) = arg min σ2
x,y(pt(k−1))| < ε)− ηmax

s.t. pmt,min 6 pmt(k−1)

∆p(k) = ∆p(k−1)[1
Tpt(k)/1Tpt(k−1)]

26: else Pr(|ηmax − σ2
x,y(pt(k−1))| < ε) < α
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27: Let pt,opt = pt(k−1) be the globally optimal power for the optimization prob-

lem (30);

28: end if

29: Substitute pt,opt into Equation (16) to obtain the minimum system interception

factor α∗net.

30: end function

Based on the above hybrid intelligent algorithm, the corresponding RAARM-FRCCP
model and MSIF-RCCP model can be simulated and analyzed in the next section.

6. Numerical Simulation

This section will verify and analyze the JA scheme proposed above through simulation
experiments. The experimental scenario is a 5× 1(M = 5, N = 1) distributed radar system
layout. The antenna of each radar is a square with a side length of 27λ, and 784 array
elements are scattered inside. In order to analyze the impact of the power optimization
algorithm in the JA scheme on radar LPI performance, this paper uses fixed power radar
assignment (FPRA) for performance comparison. In FPRA mode, the power of a single
radar to illuminate the target is fixed at 40 kW. The hardware of the experiment is a high-
performance computer.

Refs. [23,24] point out that the genetic algorithm is very robust to the parameter setting
of population size, crossover probability, and mutation probability, and changing these
parameters will have little impact on the results. Therefore, this section sets the population
size of the FRS-GA algorithm and the RS-GA algorithm to 100, the crossover probability
and mutation probability are Pc = 0.9 and Pm = 0.1, respectively, and the genetic algebra is
300. The number of fuzzy random simulations and random simulations is 1000.

As for the statistical characteristics of the Radar Cross Section (RCS) of aircraft tar-
gets, when the aircraft flies in more curves and the flight course changes more frequently,
the radar will measure the RCS of the aircraft in more directions, and then the RCS can
be regarded as a random process under different attitudes. Under the condition that the
number of measurements is large enough and the aircraft attitude changes are large enough,
the situations involved are richer and more random [33]. According to the central limit
theorem, the RCS of the aircraft is a Gaussian process; in theory, that is, the echo ampli-
tude follows the Rayleigh distribution, and the RCS follows an exponential distribution.
In practical application, the independent variable usually takes value in a reasonably lim-
ited range, and many theoretical values of probability distributions tend to be positive or
negative infinity. Therefore, if the distribution interval is truncated properly, the theoretical
analysis results can be more consistent with the actual situation. See Appendix B for the
certification process.

Considering that the RCS of each transceiver path can be modelled as a random vari-
able subject to the Swerling I distribution, the RCS of five different transceiver paths is

|h|2 =
[
|h11|2, |h12|2, |h13|2, |h14|2, |h15|2

]
, and their mean hav is 0.1, 1, 0.5, 1, 0.1, respectively.

After the RCS is truncated, it still obeys the Swerling I distribution. Take |h11|2 as an ex-
ample. Let |h11|2 be x, the cumulative distribution function (CDF) be F(x), the probability
density function (PDF) be f (x), and the truncation interval is [0, 0.25]. Figure 1 shows the
comparison of theoretical and analog CDF values of |h11|2. Figure 2 shows that the PDF
form of |h11|2 is still an exponential distribution. It can be seen that the theoretical and
analog values are consistent.
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Figure 1. CDF of RCS model |h11|2.

Figure 2. PDF of RCS model |h11|2.

6.1. Low Interception Performance of Radar Network

In order to verify the feasibility and effectiveness of the radar network target location
based on low interception performance optimization, this section gives the relationship
curve between the CRB (Equation (28)) and the interception factor (Equation (16)) under
different radar network structures. According to Equation (28), σx,y

2(pt) is a function of
the RCS random variable, so it is still a random variable. According to the probability
theory, there are essential differences between the calculation methods of σx,y

2(pt) with
randomness and σx,y

2(pt) with certainty. On the one hand, considering the complexity of
Equation (28), it is very difficult to calculate the probability density function of σx,y

2(pt).
The use of digital features in practical applications is often better than the use of PDF [34].
On the other hand, to obtain the digital features of σx,y

2(pt), it is theoretically necessary to
know the specific form of its PDF, and the corresponding empirical PDF cannot be directly
calculated in the simulation process. However, an empirical CDF can often be obtained
directly during the simulation. Therefore, the method of calculating digital features using
the CDF is given in Appendix C.

Through observation, it is found that when the interception factor becomes larger
in the linear coordinate system, the CRB value tends to zero at a faster rate. This feature
makes the CRB values of different cases almost coincide, and it is not easy to distinguish the
differences between them. Because of this, this paper intends to use a double logarithmic
coordinate system to make the difference between CRB values more obvious in many cases
to facilitate observation.

It can be seen from Figure 3 that when the Schleher Interception Factor changes from
αnet = 0 to αnet = 2, the CRB also decreases. The reason is that when the Schleher Intercep-
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tion Factor increases, the system needs to transmit more power. According to Equation (28),
CRB will decrease with the increase of the system transmission power. In addition, it can be
seen from Figure 3 that under the same target tracking threshold, the Schleher Interception
Factor decreases greatly with the increase in the number of transmitters and receivers in the
netted radar system. Therefore, under the same target tracking performance, the increase
in the number of radar nodes in the system can effectively improve the low interception
performance of the radar network system.

Figure 4 shows the relationship curve (4× 4 Radar network) between CRB and Schle-
her Interception Factor under different target RCS. As shown in Figure 4, when the target
RCS mean hav increases from 1 m2 to 10 m2, the CRLB decreases accordingly. The reason is
that the radar network system is easier to locate targets with high scattering intensity in the
target location process.

Figure 3. Relation curve between CRB and Schleher Interception Factor under different radar
network structures.

Figure 4. Relation curve between CRB and Schleher Interception Factor under different target RCS
strengths (4× 4 Radar network).

6.2. Aperture Assignment

As shown in Figure 5, 784 antenna elements are scattered in the circle with radius 27λ.
Figure 6 shows that when all elements are working, a pattern with a main lobe width of
3.62° and a peak side lobe level of −13.19 dB is generated. The minimum power of each
array element is 0.001 (W), and the maximum power is 10 (W).
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Figure 5. Distribution of array elements before optimization.

Figure 6. Pattern of antenna array before optimization.

According to expert experience and some experimental data, the interval of the number
of excitation elements is determined by the bell-shaped fuzzy random variable ξ(ω), which
is expressed as follows

ξ =

(
1 +

∣∣∣∣ x− w
a1

∣∣∣∣2b1
)−1

(33)

where a1 = 4, b1 = 4. N
(
µ, σ2) refers to the normal distribution with mean µ and variance

σ2. The confidence level is γ = 0.8, δ = 0.8, β1 = 0.8, and β2 = 0.8.
The hybrid intelligent algorithm is used to solve Equation (20). The expected main

lobe width is 3.6°, and the optimal solution is obtained when the normalized peak side lobe
level is as small as possible.

The element distribution and composite pattern of the optimized solution are given
below. Figure 7 shows the element distribution of 504 elements. Figure 8 shows the pattern
synthesis results: the main lobe width is 3.65°, and the normalized peak side lobe level is
−14.5 dB. Compared with the case where all antenna elements are working, the number
of elements in a working state is greatly reduced under the constraint of ensuring the
pattern performance.
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Figure 7. Distribution of array elements after optimization.

Figure 8. Pattern of the antenna array after optimization.

6.3. Minimize Schleher Intercept Factor

The simulation in this section adopts the distributed radar system layout
(5 × 1 (M = 5, N = 1)), as shown in Figure 9. The distance between radar and target
is equal, set as DmT = DnT = 50 km (m = 1, 2, 3, 4, 5, n = 1).

Considering that the RCS of each transceiver path can be modelled as a random
variable subject to the Swerling I distribution, the RCS of five different transceiver paths
is |h1|2. In order to make the theoretical analysis results more consistent with the actual
situation, the RCS distribution interval shall be properly truncated. The truncated RCS is
shown in Figure 10.

Figure 9. Radar target distribution situation.
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Figure 10. RCS model.

Given the MSE ηmax of the target location for the case of uniform power distribution
ptu = pu[1, 1, . . . , 1]TM×1, where pu is

pu =

(
1

ηmax

)
1Tbe

1TAe1
(34)

Define puTotal = pu ·M to represent the total transmit power under the uniform dis-
tribution. According to Equation (34), pu is a function of the RCS random variable, so it
is still a random variable. In Appendix C, this paper gives a method to calculate digital
features using the CDF in Equation (34).

In order to analyze the impact of the JA scheme proposed in this paper on the per-
formance of radar network LPI, Table 2 compares the power performance of four power
control algorithms under different confidence levels. The four algorithms are as follows:
(1) the proposed algorithm, (2) the fixed power radar assignment (FPRA) algorithm, (3) the
uniform power assignment (upa) algorithm, and (4) the adaptive noncooperative power
control (ANCPC) algorithm [35]. It can be seen from Table 3 that at the same confidence
level when the algorithm proposed in this paper is used for localization, the total power
of the radar network to all targets is the least, which is far lower than that of the FPRA
algorithm and the UPA algorithm. The ANCPC algorithm consumes more power than the
algorithm proposed in this paper because each participant maximizes its utility function
selfishly and rationally.

Table 2. Comparison of total power of radar network.

Algorithm
α 0.99 0.95 0.90 0.85

Proposed Algorithm 85 79 77 73
ANCPC 86 83 78 74
UPA 194 173 160 149
FPRA 200 200 200 200

The layout shown in Figure 9 eliminates the influence of radar range on power al-
location results. According to the target prior information obtained from the collective
awareness and situation sharing among radars, the hybrid intelligent algorithm and local
optimal iterative algorithm are used to solve the CCP problem of Equation (29). The power
optimization results are compared with the uniform power allocation results. The system’s
total power is Pmax

mon = pTotal = 400 (kW). The simulation results are shown in Table 3.
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Table 3. Comparison of optimization results of power allocation algorithms.

α 0.99 0.95 0.90 0.85
puTotal 194 173 160 149
E[puTotal ] 55 55 55 55
p∗optTotal 85 79 77 73

p∗optTotal

/
puTotal 0.43 0.46 0.48 0.49

α∗net 0.85 0.79 0.77 0.73

p∗t min


1
41
1
41
1




1
38
1

38
1




1
37
1
37
1




1
35
1

35
1



In order to analyze the influence of different confidence levels on the distribution
results, this paper sets the confidence levels α as 0.99, 0.95, 0.9, and 0.85, respectively. puTotal
represents the transmission power of each radar when it is evenly distributed under the
same chance constraint. E[puTotal ] is the expected value of uniform transmission power
puTotal . p∗optTotal is the optimal transmission power according to the power allocation algo-
rithm given in Section 5. The ratio of p∗optTotal/puTotal reflects the advantage and disadvantages
of optimal power compared with uniform power distribution; α∗net is a low interception fac-
tor for optimal power allocation; p∗t min represents the power allocation of each transmitter
during optimal allocation. Table 2 shows that the algorithm in this paper can save roughly
50% of the power resources. The higher the confidence level, the fewer power resources
saved, and the higher the low interception factor will be. Intuitively, when the total power
consumed is more, the low interception factor is also greater, the probability of not meeting
the constraint conditions is less, and the confidence level is higher. It can be seen from the
allocation results that more power is allocated to Transmitters 2 and 4 because they have
better RCS characteristics than Transmitters 1, 2 and 3.

7. Conclusions

For a DRNLS, a joint aperture and power allocation scheme for a radar network lo-
calization system based on a Low Probability of Interception optimization is proposed.
In order to improve the low interception performance, the RAARM-FRCCP model is es-
tablished according to the uncertainty of the number and distribution of elements in the
working state. Considering the randomness of the target RCS, a CCP is introduced to
balance the tracking performance and power resources at a given confidence level. Based
on obtaining the minimum number of elements, the MSIF-RCCP model is constructed to
minimize the Schleicher interception factor of the system. To meet the system tracking
performance requirements, we adjust the transmission power of each radar to improve
the low interception performance of the radar network system. Finally, FRS-GA solves the
Chance Constrained Programmin model of aperture; RS-GA and LSMIA algorithms are
used to solve the nonconvex, nonlinear, constrained, low probability Chance Constrained
Programmin model. The simulation results show that the uniform power distribution
of RCS with randomness is not necessarily the optimal scheme. Under the condition of
satisfying the positioning performance and peak side lobe level, the required number of
arrays and power will be reduced to a certain extent. The reduction range between different
confidence levels will differ so that the DRNLS has better low interception performance.

The advantage of the scheme proposed in this paper is that it considers the opti-
mal allocation of aperture and power of a radar network localization system under LPI.
However, with the increasing performance of hardware processing chips and the gradual
development of radar technology, computer resources are no longer the bottleneck of radar
development. The disadvantage of the proposed scheme is that it cannot independently
configure resources according to the battlefield environment and situation, so it is necessary
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to design intelligent radar aperture and power allocation algorithms. In the future, we will
examine the deep learning technique [36–38] for the radar network localization system.
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Appendix A

Without losing generality, let the target RCS obeys the exponential distribution with
parameter λ, that is, hm,n ∼ Exp(λ), then there is the following theorem.

Theorem A1. When hm,n ∼ Exp(λ) and wm,n(t) ∼ N(0, σ2
w), the probability density function

of the baseband rm,n(t) is

frm,n(t)(z) =
λ

2a
exp

[
λ2 − 4aλz + 4aλµ

8a2σ2

]
erfc

(
λ− 2az
2
√

2aσ

)
(A1)

where a =
√

αm,n pmtx sm(t− τm,n). Given the parameter vector u = [x, y, hT ]T , the conditional
joint probability density function of the observation vector r is

f (r|u) =
(

λ

2a

)MN
exp

[
MNλ(λ− 4az + 4aµ)

8a2σ2

] N

∏
n=1

M

∏
m=1

erfc
(

λ− 2az
2
√

2aσ

)
(A2)

where er f c(·) is a complementary error function in the form of er f c(x) = (2
/√

π )
∫ +∞

x e−t2
dt.

Proof. For the convenience of discussion,
√

αm,n pmtx sm(t− τm,n) in Equation (4) is repre-
sented by a, then the baseband rm,n(t) can be expressed as

rm,n(t) = ahm,n + wm,n(t) (A3)

Since the random variables hm,n and wm,n(t) are independent of each other, the follow-
ing equation can be obtained according to the convolution formula
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frm,n(t)(z) =
∫ +∞

0
fhm,n(t)(x) fwm,n(t)(z− ax)dx

=
λ√
2πσ

∫ +∞

0
exp

[
−λx− (z− ax)2

2σ2
w

]
dx

=
λ√
2πσ

exp
[

λ(λ− 4az + 4aµ)

8a2σ2

] ∫ +∞

0
exp

[
−
(

4a2x + λ− 2az
2
√

2aσ

)2]
dx (A4)

Let t = (4a2x + λ− 2az)
/
(2
√

2aσ) , and combine with complementary error function,
Equation (A4) can be simplified as

frm,n(t)(z) =
λ

2a
exp

[
λ(λ− 4az + 4aµ)

8a2σ2

][
2√
π

∫ +∞

λ−2az
2
√

2aσ

e−t2
dt

]

=
λ

2a
exp

[
λ(λ− 4az + 4aµ)

8a2σ2

]
erfc

(
λ− 2az
2
√

2aσ

)
(A5)

According to the conditions given in the text, different basebands are independent of
each other. Then, given the parameter vector u, the conditional joint probability density of
the observation vector r is

f (r|u) =
N

∏
n=1

M

∏
m=1

frm,n(t)(z)

=
N

∏
n=1

M

∏
m=1

λ

2a
exp

[
λ(λ− 4az + 4aµ)

8a2σ2

]
erfc

(
λ− 2az
2
√

2aσ

)

=

(
λ

2a

)MN
exp

[
MNλ(λ− 4az + 4aµ)

8a2σ2

] N

∏
n=1

M

∏
m=1

erfc
(

λ− 2az
2
√

2aσ

)
(A6)

Equations (A5) and (A6) are the conclusions in this theorem.

Appendix B

From Section 5, it can be seen that the RCS obeys the exponential distribution with
the domain of [0,+∞). When the parameter λ is given, it is improbable that RCS will
take a value far away from the expectation 1/λ , which is also a small probability event
in reality. Therefore, this paper will truncate the exponential distribution that RCS obeys
appropriately for subsequent analysis.

Let hm,n ∼ Exp(λ), then the probability density function of hm,n is

f (x) =

{
λe−λx, x > 0,
0, x < 0.

(A7)

If the range of x is truncated within the interval [a, b], the truncated probability density
function can be set as f̃ (x) = A f (x). According to the normalization of distribution,
the following equation can be obtained

∫ b

a
A f (x)dx = 1⇒ A

∫ b

a
λe−λxdx = 1⇒ A = e−λa − e−λb (A8)

Therefore, the probability density function of exponential distribution with truncation
interval [a, b] is

f̃ (x) =
λe−λx

e−λa − e−λb (A9)
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From the relationship between cumulative distribution function and probability den-
sity function, the cumulative distribution function of exponential distribution with trunca-
tion interval of [a, b] is

F̃(x) =


0, x < a,
e−λa − e−λx

e−λa − e−λb , a > x < b,

1, x > b.

(A10)

The correctness of Appendix B has been verified in Section 6 of the text.

Appendix C

For the convenience of discussion, Let Υ = |h2| and g(Υ) be a function of the random
variable Υ. According to the analysis in the first paragraph of Section 6, the following
theorem is given.

Theorem A2. Let the probability density function, cumulative distribution function, and domain
of random variable g(Υ) be f̃ (y), F̃(y), and [0,+∞), respectively, then the expected value of g(Υ)
can be calculated according to the following equation

E[g(Υ)] =
∫ +∞

0

[
1− F̃(y)

]
dy (A11)

Proof. Combined with the conditions given in this theorem and the definition of expecta-
tion, the expectation of random variable g(Υ) is

E[g(Υ)] =
∫ +∞

0
y f̃ (y)dy (A12)

Substitute y =
∫ y

0 1dz into Equation (A12) and sort it out according to the property of
successive integration, then the following equation can be obtained

E[g(Υ)] =
∫ +∞

0

[∫ y

0
1dz

]
f̃ (y)dy

=
∫ +∞

0

[∫ y

0
f̃ (y)dz

]
dy

=
∫ +∞

z

[∫ y

0
f̃ (y)dz

]
dy

=
∫ +∞

0

[∫ y

z
f̃ (y)dy

]
dz

=
∫ +∞

0

[
1− F̃(z)

]
dz (A13)

Since the integral result is independent of the variable symbol, replace z with y, and
Equation (A11) holds.

Theorem A2 uses the cumulative distribution function instead of the probability
density function to calculate the expected value, ensuring that the correct results can be
obtained using random simulation technology to calculate the expected value of continuous
random variables.



Sensors 2023, 23, 2613 23 of 24

References
1. Li, Z.F.; Liu, H.; Zhang, Z.L.; Liu, T.T.; Xiong, N.N. Learning knowledge graph embedding with heterogeneous relation attention

networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 3961–3973
2. Liu, H.; Zheng, C.; Li, D.; Shen, X.; Lin, K.; Wang, J.Z.; Zhang, Z.; Zhang, Z.L.; Xiong, N.N. EDMF: Efficient deep matrix

factorization with review feature learning for industrial recommender system. IEEE Trans. Ind. Inform. 2021, 18, 4361–4371.
[CrossRef]

3. Liu, H.; Fang, S.; Zhang, Z.L.; Li, D.; Lin, K.; Wang, J.Z. MFDNet: Collaborative poses perception and matrix Fisher distribution
for head pose estimation. IEEE Trans. Multimed. 2021, 24, 2449–2460. [CrossRef]

4. Liu, H.; Liu, T.T.; Zhang, Z.L.; Sangaiah, A.K.; Yang, B.; Li, Y.F. Arhpe: Asymmetric relation-aware representation learning for
head pose estimation in industrial human–computer interaction. IEEE Trans. Ind. Inform. 2022, 18, 7107–7117. [CrossRef]

5. Philip, P. Detecting and Classifying Low Probability of Intercept Radar, 2nd ed.; Artech House: Boston, MA, USA, 2008; pp. 342–352.
6. Godrich, H.; Haimovich, A.M.; Blum, R.S. A MIMO radar system approach to target tracking. In Proceedings of the 2009

Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1–4
November 2009.

7. Hachour, S.; Delmotte, F.; Mercier, D.; Lefevre, E. Multi-sensor multi-target tracking with robust kinematic data based credal
classification. In Proceedings of the 2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany,
9–11 October 2013.

8. Yang, C.Q.; Zhang, H.; Qu, F.Z.; Shi, Z.G. Performance of target tracking in radar network system under deception attack. In
Proceedings of the International Conference on Wireless Algorithms, Systems, and Applications, Qufu, China, 10–12 August 2015;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 664–673.

9. Sobhani, B.; Paolini, E.; Mazzotti, M.; Giorgetti, A.; Chiani, M. Multiple target tracking with particle filtering in UWB radar sensor
networks. In Proceedings of the 2015 International Conference on Localization and GNSS (ICL-GNSS), Gothenburg, Sweden,
22–24 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6.

10. Liu, H.W.; Liu, H.L.; Dan, X.D.; Zhou, S.H.; Liu, J. Cooperative track initiation for distributed radar network based on target track
information. IET Radar Sonar Navig. 2016, 10, 735–741. [CrossRef]

11. Yan, J.K.; Pu, W.Q.; Zhou, S.H.; Liu, H.W.; Bao, Z. Collaborative detection and power allocation framework for target tracking in
multiple radar system. Inf. Fusion 2020, 55, 173–183. [CrossRef]

12. Olen, C.; Compton, R. A numerical pattern synthesis algorithm for arrays. IEEE Trans. Antennas Propag. 1990, 38, 1666–1676.
[CrossRef]

13. Zhou, P.Y.; Ingram, M.A. Pattern synthesis for arbitrary arrays using an adaptive array method. IEEE Trans. Antennas Propag.
1999, 47, 862–869. [CrossRef]

14. Shi, Z.; Feng, Z.H. A new array pattern synthesis algorithm using the two-step least-squares method. IEEE Signal Process. Lett.
2005, 12, 250–253.

15. Cen, L.; Yu, Z.L.; Ser, W.; Cen, W. Linear aperiodic array synthesis using an improved genetic algorithm. IEEE Trans. Antennas
Propag. 2011, 60, 895–902. [CrossRef]

16. Gong, S.F.; Ben, D.; Pan, M.H. Pattern synthesis for opportunistic array radar based on fuzzy Chance Constrained Programmin.
Acta Aerona. Astrona. Sin. 2014, 35, 2615–2623.

17. Godrich, H.; Petropulu, A.; Poor, H.V. Resource allocation schemes for target localization in distributed multiple radar ar-
chitectures. In Proceedings of the 2010 18th European Signal Processing Conference, Aalborg, Denmark, 23–27 August 2010;
pp. 23–27.

18. Yan, J.K.; Dai, F.Z.; Qin, T.; Liu, H.W.; Bao, Z. A Power Allocation Approach for 3D Target Tracking in Multistatic Radar Systems.
J. Electron. Inf. Technol. 2013, 35, 901–907. [CrossRef]

19. Chavali, P.; Nehorai, A. Scheduling and Power Allocation in a Cognitive Radar Network for Multiple-Target Tracking. IEEE
Trans. Signal Process. 2012, 60, 715–729. [CrossRef]

20. Feng, L.Y.; Yi, H.M.; Enbin, S. Sample Approximation-Based Deflation Approaches for Chance SINR-Constrained Joint Power
and Admission Control. IEEE Trans. Wirel. Commun. 2016, 15, 4535–4547. [CrossRef]

21. Yan, J.K.; Liu, H.W.; Luo, T.; Bao, Z. Nonlinear Chance Constrained Programmin based robust power allocation algorithm for
multistatic radar systems. J. Electron. Inf. Technol. 2014, 36, 509–515.

22. Fei, D.L.; Lu, G.F. Principle of Radar, 3rd ed.; Xidain University Press: Xi’an, China, 2002; pp. 141–169.
23. Liu, B.D. Uncertain Programming with Applications; Tsinghua University Press: Beijing, China, 2003; Volume 239.
24. Liu, B.D. Theory and Practice of Uncertain Programming; Springer: Berlin/Heidelberg, Germany, 2009; Volume 239.
25. Han, Q.H.; Pan, M.H.; Gong, S.F.; Long, W.J. Resource management of opportunistic digital array radar antenna aperture for

pattern synthesis. IET Radar Sonar Navig. 2017, 11, 829–837. [CrossRef]
26. Godrich, H.; Petropulu, A.P.; Poor, H.V. Power allocation strategies for target localization in distributed multiple-radar architec-

tures. IEEE Trans. Signal Process. 2011, 59, 3226–3240. [CrossRef]
27. Shi, C.G.; Zhou, J.J.; Wang, F.; Chen, J. Mutual information–based LPI optimisation for radar network. Int. J. Electron. 2015,

102, 1114–1131. [CrossRef]
28. Liu, B.D. Fuzzy random Chance Constrained Programmin. IEEE Trans. Fuzzy Syst. 2001, 9, 713–720. [CrossRef]
29. Van Trees, H.L.; Bell, K.L. Bayesian bounds for parameter estimation and nonlinear filtering/tracking. AMC 2007, 10, 10–1109.

http://dx.doi.org/10.1109/TII.2021.3128240
http://dx.doi.org/10.1109/TMM.2021.3081873
http://dx.doi.org/10.1109/TII.2022.3143605
http://dx.doi.org/10.1049/iet-rsn.2015.0312
http://dx.doi.org/10.1016/j.inffus.2019.08.010
http://dx.doi.org/10.1109/8.59781
http://dx.doi.org/10.1109/8.774142
http://dx.doi.org/10.1109/TAP.2011.2173111
http://dx.doi.org/10.3724/SP.J.1146.2012.00883
http://dx.doi.org/10.1109/TSP.2011.2174989
http://dx.doi.org/10.1109/TWC.2016.2542240
http://dx.doi.org/10.1049/iet-rsn.2016.0440
http://dx.doi.org/10.1109/TSP.2011.2144976
http://dx.doi.org/10.1080/00207217.2014.964335
http://dx.doi.org/10.1109/91.963757


Sensors 2023, 23, 2613 24 of 24

30. Godrich, H.; Haimovich, A.M.; Blum, R.S. Target localization accuracy gain in MIMO radar-based systems. IEEE Trans. Inf.
Theory 2010, 56, 2783–2803. [CrossRef]

31. Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
32. O’Donnell, R.M. Introduction to Radar Systems, 3rd ed.; Tata McGraw–Hill Publishing Company Limited: New Delhi, India, 2007.
33. Ehrman, L.M.; Blair, W.D. Using target RCS when tracking multiple Rayleigh targets. IEEE Trans. Aerosp. Electron. Syst. 2010,

46, 701–716. [CrossRef]
34. Gatti, P.L. Probability Theory and Mathematical Statistics for Engineers; CRC Press: Boca Raton, FL, USA, 2004.
35. Yang, G.L.; Li, B.; Tan, X.Z.; Wang, X. Adaptive power control algorithm in cognitive radio based on game theory. IET Commun.

2015, 9, 1807–1811. [CrossRef]
36. Liu, H.; Liu, T.T.; Chen, Y.; Zhang, Z.L.; Li, Y.F. EHPE: Skeleton cues-based gaussian coordinate encoding for efficient human

pose estimation. IEEE Trans. Multimed. 2022, Early Access. [CrossRef]
37. Liu, T.T.; Liu, H.; Chen, Z.Z.; Lesgold, A.M. Fast blind instrument function estimation method for industrial infrared spectrometers.

IEEE Trans. Ind. Inform. 2018, 14, 5268–5277. [CrossRef]
38. Liu, T.T.; Liu, H.; Li, Y.F.; Chen, Z.Z.; Zhang, Z.L.; Liu, S. Flexible FTIR spectral imaging enhancement for industrial robot infrared

vision sensing. IEEE Trans. Ind. Inform. 2019, 16, 544–554. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIT.2010.2046246
http://dx.doi.org/10.1109/TAES.2010.5461650
http://dx.doi.org/10.1049/iet-com.2014.1109
http://dx.doi.org/10.1109/TMM.2022.3197364
http://dx.doi.org/10.1109/TII.2018.2794449
http://dx.doi.org/10.1109/TII.2019.2934728

	Introduction
	System Model and Preliminaries
	System Model
	Pattern Synthesis

	Schleher Interception Factor Analysis of Radar Network System
	Calculation of Schleher Interception Factor
	Relationship between Schleher Interception Factor and Parameters
	Number Nr of Radar Network Receivers
	Gain Gt,esm of the Radar Transmission Antenna in the Direction of the Reconnaissance Receiver
	Radar Power Gain Product PtGt


	Joint Optimal Control Algorithm of Aperture and Power
	Establishment of RAARM-FRCCP Model for Aperture Distribution
	CRB for Target Localization
	MSIF-RCCP Model Construction for Minimizing Schleher Interception Factor

	Joint Optimal Control Algorithm of Aperture and Power
	Numerical Simulation
	Low Interception Performance of Radar Network
	Aperture Assignment
	Minimize Schleher Intercept Factor

	Conclusions
	
	
	
	References

