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Abstract: In this paper, a portable photoacoustic microscopy (PAM) system is proposed based on
a large stroke electrothermal micromirror to achieve high resolution and fast imaging. The crucial
micromirror in the system realizes a precise and efficient 2-axis control. Two different designs of
electrothermal actuators with “O” and “Z” shape are evenly located around the four directions of
mirror plate. With a symmetrical structure, the actuator realized single direction drive only. The
finite element modelling of both two proposed micromirror has realized a large displacement over
550 µm and the scan angle over ±30.43◦ at 0–10 V DC excitation. In addition, the steady-state and
transient-state response show a high linearity and quick response respectively, which can contribute
to a fast and stable imaging. Using the Linescan model, the system achieves an effective imaging
area of 1 mm × 3 mm in 14 s and 1 mm × 4 mm in 12 s for the “O” and “Z” types, respectively.
The proposed PAM systems have advantages in image resolution and control accuracy, indicating a
significant potential in the field of facial angiography.

Keywords: photoacoustic microscopy; MEMS; electrothermal micromirror; portable

1. Introduction

Photoacoustic imaging (PAI) uses lasers with an ultrashort pulse duration to irradiate
biological tissues. After the biological tissues absorb the laser, they are thermally expanded
and dissipated by high-frequency vibration resulting in generating ultrasonic waves, as
shown in Figure 1. Since Theodore Bowen et al. achieved photoacoustic imaging of soft
tissues in 1981 [1], PAI is widely studied, especially for medical imaging related applications.
With high contrast, non-contact imaging, high resolution and high signal noise ratio (SNR),
the current applications of photoacoustic imaging include but not limited to, vascular
analysis [2–4], oncology [5,6], neuroscience [7–9], ophthalmology [10], dermatology [11–13],
gastroenterology [14], cardiology [15].

Photoacoustic microscopy (PAM) is a kind of PAI with high resolution which is
achieved through scanning point by point, including optical scanning and acoustic scan-
ning. Optical resolution photoacoustic microscopy imaging (OR-PAM) is one of the fastest
growing PAM technologies, which can reach sub-micron resolution [16–19]. Desktop
OR-PAM systems typically employ motors to drive laser heads to achieve point-by-point
scanning. To ensure the imaging accuracy, the image acquisition speed is slow, making
the desktop OR-PAM system susceptible to motion artifacts. At the same time, the use of
a mechanical scanner also makes the system a large volume, which limits its application
scenarios, as well as being difficult to study transient physiological processes [20]. To solve
the above problems, many teams have started related research and found that scanning
method was the key to high-speed imaging and equipment miniaturization [16–19,21].
Maslov et al. used a high-repetition rate pulsed laser combined with a synchronously
controlled data acquisition system to achieve high-speed imaging of photoacoustic mi-
croscopy [22]. Qi et al. realized a fast PAM system using MEMS micromirror [23]. The use
of high repetition rate lasers requires careful consideration of the power to prevent harm to
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the tissue [22]. MEMS micromirror as a key component in the novel laser scanning system
can effectively reduce the system volume and improve the imaging speed and accuracy.
Therefore, the miniaturization and rapid photoacoustic microscopy imaging equipment
realized by MEMS technology is more in line with the development trend.
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Figure 1. (a) Photoacoustic effect. (b) The change of tissues in microscale.

MEMS micromirror is a multifunctional active optical device [24]. According to differ-
ent driving principles, it can be divided into electromagnetic, piezoelectric, electrostatic and
electrothermal [25]. Electromagnetic micromirrors and electrostatic micromirrors usually
require a large driving voltage. Piezoelectric scanning micromirrors are limited by the
piezoelectric effect and have a small deflection angle. The electrothermal type can achieve
a large displacement range under low voltage and is low-cost and easy to manufacture. It
is widely used in medical laser scanning imaging equipment [26]. Todd et al. proposed a
bimorph electrothermal actuator [27], and Jia et al. proposed a MEMS scanning galvanome-
ter with an axial displacement of 480µm and a deflection angle of 30◦ based on a similar
bimorph electrothermal actuator [28].

In this research, we propose a PAM system based on electrothermal micromirror. The
micromirror has a mirror diameter of 1000 µm. Two different designs of electrothermal
actuators with “O” and “Z” shape are evenly located around the four directions of mirror
plate, which can achieve a large displacement and deflection angle. FEM models of the
two types micromirror in room temperature (293.15 K) have been built to demonstrate the
reflectivity and piston thermal actuation of the micromirror. The imaging simulations were
also conducted to investigate the imaging area that the portable PAM system may achieve.

2. Materials and Methods
2.1. The Design of PAM System

Figure 2 is a schematic of the elements in the portable OR-PAM system with the
size smaller than Φ10 cm × 10 cm. A laser beam is directed into the system through a
collimator. The collimated laser is converged by a focus lens and re-directed to a 2-axis
micromirror with an adjusted reflector to act on the tissue through a cover glass. Based
on the photoacoustic effect, the tissue generates ultrasonic waves which are reflected by
the cover glass to be received by the ultrasonic transducer. And the collected signal is
used for subsequent image reconstruction. It is interesting to note that water is filled in
the propagation path of the ultrasonic waves generated by tissues to ensure an efficient
coupling for longitudinal waves, which will provide a better SNR [29,30].
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Figure 2. The portable OR-PAM system. LC, laser collimator; FL, focus lens; R, reflector; L, laser;
M, micromirror; CG, cover glass; UW, ultrasonic wave; UT, ultrasonic transducer; HCS, highly
converging spot.

2.2. Electrothermal Micromirror
2.2.1. The Design of Micromirror

Referring to the structure proposed by Jia et al. [28], the electrothermal micromirror
employs a biaxial gimbals structure allowing two-dimensional scanning of the mirror,
which is the key component in the system to achieve the quick response and high resolution
as well as. Two different types of electrothermal actuators with “O” and “Z” shape were
designed. In Figure 3a, four electrothermal actuators with “O” shape are evenly located
on the four sides of the central mirror plate. The mirror with a diameter of 1000 µm has
to realize two-dimensional scanning and piston motion. The endpoints of two shafts are
marked out in Figure 3a. The actuators are driven by joule heat, which will inevitably
transfer to the mirror. Thus, to prevent the temperature difference between the center
and the edge of the mirror, which will result in an unwanted deformation, the mirror
plate is designed to be circular. In addition, a layer of SiO2 surrounds the mirror as the
heat insulation to reduce the thermal deformation of the mirror itself. The electrothermal
actuators with “Z” shape are shown in Figure 3b. It is worth noting that the mirror shape is
designed as a regular octagon (“Z” shape) instead of the traditional rectangle or circle (“O”
shape). As a rectangle, when the micromirror is working, the four corners of the rectangle
are farther from the center of the mirror surface than other points, which is easy to cause
uneven temperature distribution, causing the mirror surface itself to deform and serious
scanning error. Moreover, considering that the circular shape is more troublesome to
process in the MEMS process, the mirror surface may appear jagged at the edge. Therefore,
in this work, for a clear distinction with “O” shape mirror, the surface plate of the “Z”
shape micromirror is designed to be a regular octagon.
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2.2.2. The Electrothermal Actuator

Figure 4a is an electrothermal actuator of “O” type, mainly consisting of Al and SiO2,
which utilizes the difference in the coefficient of thermal expansion (CTE) between two
materials for operation. The fixed end is connected to the substrate, while the free end
is connected to the mirror plate to provide movement. Figure 4b shows each layer of the
electrothermal actuator and the related size information. The temperature of the beams
can be changed by applying a voltage to the Ti resistors embedded along the actuator. The
Ti resistor is electrically isolated from Al layer by thin layers of SiO2 whose thickness is
much less than 1% of the entire actuator, thus it does not take the isolated layer into the
model analysis. With the Al/SiO2 thickness ratio of 0.91, the device operating stability and
reliability of the actuator increased [28]. The finite element method (FEM) simulation of the
actuator in room temperature (293.15 K) is shown in Figure 4c. The convection heat transfer
coefficient is set as 1750 W/(m2·K) according to the classical Morgan relation [31]. The
simulation results of displacements in x, y and z axis show that the symmetrical structure
can limit the displacement of x and y axis, while maintain a large displacement of z axis.
The 3D model of the thermal actuator with “Z” type is shown in Figure 4d, whose fixed end
is connected to the MEMS substrate to keep the actuator stable during operation. There are
two electrodes extending from the inside of the actuator on the fixed end platform, which
are the excitation signal and the ground signal respectively. The electrothermal actuator
can be driven by applying the excitation signal at the electrodes. The whole electrothermal
actuator is composed of SiO2 and Al alternately bonded up and down from the fixed end
to the free end, thus it can be composed of 6 basic structures of bimorph electrothermal
actuators or 2 S-shaped inverted-series-connected (ISC) structures.
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Figure 4e shows the main structure and size information of the actuator, where the 2nd
layer-Pb provides heat source as the thermal resistance. It is important to note that in this
model there is no insulating layer between the 2nd layer-Pb and the 3rd layer-Al. Although
the insulation layers are necessary in actual fabrication, the extremely thin insulation layers
are not the dominant contribution to the actual deformation and will therefore not be
addressed in the simulation. It is worth pointing out that in the actuator designed of this
“Z” type, the thickness of SiO2 is 1.8 µm, the thickness of Al is 1.6 µm, and Al/SiO2 = 0.91,
which is the same with “O” type. Performance test of the actuator in Figure 4f shows
that with a 5 V excitation voltage, the free end of the electrothermal actuator produces
a downward displacement in z axis, while there is nearly no displacement in another
2 axes. The test results indicated that the design meets the goal of suppressing irrelevant
displacements and suit the basic characteristics of electrothermal actuator of low voltage
leading to large displacement.

2.2.3. Finite Element Simulation of Micromirror

A FEM model of the micromirror in room temperature (293.15 K) has been built to
demonstrate the reflection and piston thermal actuation of the micromirror. To simplify
the model, thin layers of SiO2 between Al and Ti were not included in the simulation.
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The simulation results of the “O” type and “Z” type are shown in Figures 5a–c and 5d–f,
respectively. As shown in Figure 5a, the mirror plate was elevated 331.89 µm out of plane
with prestress of 400M Pa applied on the actuators. The prestress is caused by the residual
stresses due to the fabrication process. The upward deformation induced by the prestress
causes a large displacement of the mirror plate towards the downward direction, which
means that the tilting angle of the mirror plate becomes larger than that of the undeformed
structure. In Figure 5b, 10 V direct excitation was applied to all four actuators, resulting in a
463.53 µm downward motion of the mirror plate. The rotation can be realized by applying
differential excitations to one of the two opposite actuators, while the other two actuators
maintain their original states. In Figure 5c, only one actuator was applied 10 V excitation
and the others maintained their states, which results in a 30.43◦ rotation of the mirror plate.
The FEM results proved the micromirror can realize large stroke and wide adjustment
range of the scanning angle.
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Figure 5. The FEM modeling of the micromirror. (a–c) “O” type. (b–f) “Z” type. (a,d) The initial
elevation of the mirror plate due to the prestress. (b,e) The piston motion of the mirror plate when
four actuators work in the same state. (c,f) The rotation motion of the mirror plate when only one
actuator works.

The micromirror of the “Z” type has an axial displacement of about 653 µm away
from the substrate in the initial state, as shown in Figure 5d. The piston motion state and
deflection motion state of the micromirror are shown in Figure 5e,f, respectively. When
only one actuator works, the micromirror is deflected towards the substrate on one side
of the actuator and can achieve about 35◦ at 9 V. When the four electrothermal actuators
are added the same excitation at the same time, the micromirror will be driven toward the
substrate and can achieve a net displacement of 553 µm at 6 V.

2.3. Scanning

The scanning process of the PAM system can be simplified to the laser being reflected
onto the target plane by the micromirror. The performed laser scanning was in the Linescan
model, whose resolution largely depended on the frequency difference of rotation shafts and
the performance of ultrasonic transducer [32], as shown in Figure 6. A higher-sampling-
frequency ultrasonic transducer can shorten the gap of two sampling points, and the
larger rotation frequency difference can smooth the scanning lines and make them denser.
Considering that resolution actually refers to the distance between pixels, the denser
scanning lines will provide a higher resolution image.
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The whole scanning lines exhibits a feature of getting denser intensities from the edge
to the middle, which results in a resolution depending on the edge region. Therefore, to
ensure the image quality, the final image intercepts the central area of the original scanning
area, called the effective imaging area. It is clear that the resolution of the effective imaging
area should be determined by the scanning point at the edges.

3. Results
3.1. Stable State Response

The stable state response of the “O” type and “Z” type are shown in Figure 7a–d.
The steady test results “O” type in Figure 7a demonstrate a displacement of 797.42 µm
in the piston motion and a rotational angle of 30.43◦ at an 10 V DC. The piston motion
is realized by driving all actuators with the same excitation at the same time, while the
rotational motion is achieved by driving only one actuator and keeping the rest actuators
in their initial states. Meanwhile, it can be confirmed in Figure 7b that there is an obvious
linear relationship between voltage and the displacement as well as the rotation angle
when the voltage is above 4.8 V. The goodness-of-fit values for voltage-displacement and
voltage-angle are 0.9907 and 0.9869, respectively, showing accurate control of piston motion
and a wide of rotation angles. The steady test results of “Z” type in Figure 7c demonstrate
a displacement of about 553 µm in the piston motion and a rotational angle of about 35◦ at
6 V and 9 V DC, respectively. There is also an obvious linear relationship between voltage
and displacement as well as the rotation angle for voltages are between 2.4 V to 6 V in
piston motion and 2.4 V to 8 V in rotational motion.

3.2. Transient Response

From the transient curves at 10 V DC in Figure 8a,b, the tendency of transient response
is similar between the “O” type and “Z” type, while the rise time of displacement and
angle is a little different. The excitation method is performed in the same way as in the
steady-state test. When keeping an excitation of 10 V, the mirror plate is actuated to a
corresponding state and stabilizes itself. After the excitation vanishes, the mirror plate
immediately returns to its initial state, which demonstrates the good manipulability of
the micromirror. The short rise time and downtime also indicate a fast response to the
excitation.
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3.3. Imaging
3.3.1. Driving Method

To find out whether the motion of the mirror plate under the excitation can be realized
by Lissajous or Linescan scanning. Moreover, we also tried to figure out what is the
difference in the response frequencies of the two designs at similar excitation amplitudes.
To ensure quality of the laser scan, the excitations applied to the actuators are greatly
different in the frequency. For the “O” type, the pair of actuators acting on the fast shaft
are driven by the excitation of the 40 Hz AC with the amplitude of 10 V, while those of the
slow shaft are driven by the excitation of the 0.5 Hz AC with the same amplitude. Thanks
to the excellent fast response of the designed mirrors, the motion of the fast and slow axes
is effectively fitted as a sinusoidal function for both types. As a result of the “O” type, the
frequency of the fast shaft and the slow shaft is 80 Hz and 1 Hz, respectively, as shown
in Figure 9a. In the two-dimensional plane, each motion around a shaft will control the
scanning of the laser in the corresponding dimension. With such a large difference in the
motional frequency between the fast and slow shaft, the scan route of the laser can be
divided into a fast dimension and a slow dimension, which will result in a higher image
resolution because of the denser scanning lines. As for the “Z” type, the fast and slow
shaft are driven by the excitation of the 60 Hz and 0.2 Hz AC with the amplitude of 10 V,
respectively. The motion of the fast axis and the slow axis is also effectively fitted to a
sinusoidal function. The result shows that the rotation frequency of the fast axis is about
120 Hz, and the rotation frequency of the slow axis is about 0.4 Hz, as shown in Figure 9b.
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3.3.2. Imaging Result

Based on the results of the two-dimensional deflection scanning of the mirror in
Section 3.3.1, the imaging simulation was conducted using the software MATLAB. The dis-
tance from the surface of the imaging area to the mirror plate is set to 4 mm. The simulation
of system imaging is achieved by combining the theory of trigonometric functions with
a dataset of time-dependent deflection angles. The imaging simulation of the “O” type
shows that the portable PAM system achieves an effective imaging area of 1 mm × 3 mm
in 14 s. From the scan lines at 2 s, 8 s, and 14 s shown in Figure 10a, the scan area expands
from the center to the edges and the sparse and dense distribution of scan lines fits the
Linescan model. Cropping a 1 mm × 3 mm area in the center of the scan line at 14 s as
the effective imaging area and its lower right corner has the sparsest scan lines, as shown
in Figure 10b. The largest gap of the scan lines is about 9 µm; thus, the resolution of the
effective imaging area should be better than 9 µm. Notably, it is assumed here that the
ultrasonic transducer has sufficient performance. Meanwhile, Figure 10c shows a PAM
simulation of a blood vessel sample. When being irradiated by a laser, the PA signal sent by
the blood vessel is received by ultrasonic transducer to reconstruct the tissue structure. As
shown in Figure 10, the portable PAM system enables the fast and high-resolution images
and can achieve the images of tiny tissues such as capillaries.
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Figure 10. The imaging simulation of “O” type. (a) The scan state changes over time and results in
an effective imaging area of 1 mm × 3 mm at 14 s. (b) The edge area of the effective imaging area,
indicating the resolution of the image is better than 9 µm. (c) The image simulation of a blood vessel
sample.

For the “Z” type, the scanning conditions of the system at 2 s, 7 s, and 12 s are
described, respectively, as shown in Figure 11a. Clearly, the laser scanning is performed
in a progressive scanning manner, which conforms to the Linescan mode. The density of
the scan lines increases with time during the scan. At the same time, it can be seen from
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the scanning state at 2 s that during the scanning process, the scanning lines will overlap
to a large extent in the central part, thus the resolution in the central area will be higher.
According to the analysis of the line scan model above, the actual situation of imaging has
been taken, and a 1 mm × 4 mm area is taken as the effective imaging area in the center of
the image scanned at 12 s.
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Figure 11. The imaging simulation of “Z” type. (a) The scan state changes over time and results in
an effective imaging area of 1 mm × 3 mm at 14 s. (b) The edge area of the effective imaging area,
indicating the resolution of the image is better than 9 µm. (c) The image simulation of a blood vessel
sample.

As shown in Figure 11b, to determine the resolution of the effective imaging area, the
lower right corner area is selected to determine the resolution. The scan lines are nearly
horizontal due to the large frequency difference in the deflection of the micromirror around
the two axes of rotation. Analysis of the distance between the two scan lines in the image
shows that the effective imaging area has a resolution of about 12 µm, which satisfies the
design index of this project, and the resolution is better than 20 µm. An example is in
Figure 11c.

The proposed two types of the large stroke electrothermal micromirror show a larger
displacement and rotation angle as compared to the reported work [28]. Meanwhile, the
fast response and small size show the potential aiming at the application of a PAM system.
However, with the limitation of the resolution 9–12 µm may not be enough to do an
angiography of smaller arteries (arterioles), smaller veins (venules) and capillaries. At
present, only venules and arterioles with diameter around 100 µm should be clearly visible
in the PAM generated images. Moreover, as compared with traditional magnetic resonance
imaging (MRI) and computed tomography (CT) methods which are likely to be a lot more
expensive, time-consuming, worse resolution, PAM provides a much more cost-effective
and high-resolution method. However, MRI and CT are able to investigate deeper blood
vessels than the PAM would be able to in the current design. Further optimization for
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higher resolution and deeper detection is beneficial to incorporate the context of the truly
impressive resolution achieved by the present design into biological applications. What’s
more, a future study that could be worth including and considering would be to study
subcutaneous vessel patterns and distributions for further medical applications, and to test
the performance of the PAM device with the new micromirror design in real patients with
the aid of a clinical or basic medical scientist and potentially verify how fine the resolution
is in terms of the smaller vessels [33–35].

4. Conclusions

This research introduces a portable PAM system based on the electrothermal micromir-
ror and analyses the performance of the crucial element micromirror as well as the imaging
process. Two different designs of electrothermal actuators with “O” and “Z” shape were
designed. Both the two micromirrors replace the traditional motors to realize fast and
high-precision laser scanning, as well as reducing the size of the PAM system. For the
“O” type, the FEM model shows that the micromirror achieves a large displacement of
about 797.42 µm and the scan angle up to ±30.43◦ at 10 V DC excitation. For the “Z”
type, the micromirror achieves a large displacement of 553 µm and the scan angle of 35◦ at
6 V and 9 V DC excitation, respectively. Meanwhile, the steady-state and transient-state
response of the micromirror indicate that the PAM system realizes a fast and stable imaging.
With the excitations applied to the actuators greatly differing in the frequency, the system
achieves an ideal Linescan process. The simulation result shows that the “O” type system
achieves an effeactive imaging area of 1 mm × 3 mm in 14 s with a 9 µm resolution, while
the “Z” type system achieves an effective imaging area of 1 mm × 4 mm in 12 s with a
12 µm resolution. The results above indicate that the proposed PAM systems have a great
potential in portable imaging applications in various environments, such as outdoor facial
angiography.
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