
Citation: Iannizzotto, G.; Lo Bello, L.;

Nucita, A. Improving BLE-Based

Passive Human Sensing with Deep

Learning. Sensors 2023, 23, 2581.

https://doi.org/10.3390/s23052581

Academic Editors: Wenda Li, Yue

Tian and Shelly Vishwakarma

Received: 24 January 2023

Revised: 16 February 2023

Accepted: 21 February 2023

Published: 26 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Improving BLE-Based Passive Human Sensing with
Deep Learning
Giancarlo Iannizzotto 1,* , Lucia Lo Bello 2 and Andrea Nucita 1

1 Department of Cognitive Sciences, Psychology, Education and Cultural Studies (COSPECS),
University of Messina, 98122 Messina, Italy

2 Department of Electrical, Electronic and Computer Engineering (DIEEI), University of Catania,
95125 Catania, Italy

* Correspondence: ianni@unime.it

Abstract: Passive Human Sensing (PHS) is an approach to collecting data on human presence,
motion or activities that does not require the sensed human to carry devices or participate actively
in the sensing process. In the literature, PHS is generally performed by exploiting the Channel
State Information variations of dedicated WiFi, affected by human bodies obstructing the WiFi
signal propagation path. However, the adoption of WiFi for PHS has some drawbacks, related to
power consumption, large-scale deployment costs and interference with other networks in nearby
areas. Bluetooth technology and, in particular, its low-energy version Bluetooth Low Energy (BLE),
represents a valid candidate solution to the drawbacks of WiFi, thanks to its Adaptive Frequency
Hopping (AFH) mechanism. This work proposes the application of a Deep Convolutional Neural
Network (DNN) to improve the analysis and classification of the BLE signal deformations for PHS
using commercial standard BLE devices. The proposed approach was applied to reliably detect
the presence of human occupants in a large and articulated room with only a few transmitters and
receivers and in conditions where the occupants do not directly occlude the Line of Sight between
transmitters and receivers. This paper shows that the proposed approach significantly outperforms
the most accurate technique found in the literature when applied to the same experimental data.
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1. Introduction

Passive Human Sensing (PHS), often referred to as deviceless or device-free human
sensing, is a technique to gather data on human presence, motion or activities that does
not entail for the sensed human the need to carry devices or play an active role in the
sensing process [1]. PHS exploits the deformation of an RF signal emitted and received
by the sensing infrastructure to collect information about the environment, the presence
of human bodies in the area illuminated by the signal, and its reflected and refracted
components [2]. As a consequence, PHS differs radically from most indoor and outdoor
localization approaches, which instead require the human to carry a handheld or wearable
device that receives or transmits a localization signal to a support infrastructure [3,4].
PHS also differs from vision-based human sensing [5–8] for several reasons. Firstly, PHS
does not require Line of Sight (LoS) visibility between the sensor and the sensed human.
Second, PHS does not suffer from low illumination quality. Finally, PHS does not raise the
well-known privacy issues related to camera-based sensing [9–12].

Among the RF signals sources available for PHS, WiFi was soon identified as the most
suitable one thanks to its wide diffusion and the flexibility of its devices, thus attracting the
interest of researchers from the very beginning [1,13]. Early studies mainly focused on the
modifications introduced in the Received Signal Strength Indicator (RSSI) of the WiFi signal
by an obstructing human body. However, for about a decade, the Channel State Information
(CSI) has been considered a more reliable and richer source of information [14]. In fact,
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RSSI is a scalar measure that characterizes the radio signal attenuation during propagation,
therefore the sensing approaches based on RSSI alone (used either as a measure of path loss
or as a radio-based fingerprint) suffer from dramatic performance degradation in complex
situations due to multipath fading and changes in the environment [15]. The Channel State
Information instead offers a set of channel measurements that describe the amplitudes
and phases of each subcarrier of an Orthogonal Frequency Division Multiplexing (OFDM)
transmission, which is typical of recent 802.11 a/g/n standards. RSSI is the superimposi-
tion of multipath signals with fast-changing phases, whereas CSI produces fine-grained,
per-subcarrier information, thus allowing for a better discrimination of multipath signals.
In the last decade, the analysis of the CSI variations enabled the experimentation of a
large number of applications, such as human detection and counting, person identifica-
tion/authentication, person localization and tracking, recognition of human activity and
the detection and monitoring of vital signs [16,17].

Despite the wide interest raised in the research community, WiFi-based PHS has a
number of drawbacks. First of all, the WiFi protocols do not support the coexistence of
communication and sensing. As a consequence, trying to perform sensing and communica-
tion at the same time on the same network or using two networks working in proximity
to each other can result in severe performance and accuracy degradation for both [18],
unless suitable mechanisms are introduced to support multiple traffic classes with different
Quality of Service (QoS), thus giving higher priority to the sensing traffic [19,20]. This
problem is even worsened by the 300-meter range of WiFi, which generates a relatively
large collision domain for the two networks. Furthermore, WiFi is not designed for low
power consumption. Consequently, since PHS requires frequent transmissions to allow
prompt detection and adequate sampling of the sensed entity dynamics, the deployment
of a WiFi-based sensing network requires careful planning to provide the devices with an
adequate power source. Finally, large-scale deployments of WiFi devices, e.g., to monitor
entire buildings or industrial plants [21], can be quite expensive.

Bluetooth technology, in particular after the introduction of the Bluetooth Low Energy
(BLE) specifications, represents a valid alternative to WiFi. In fact, BLE [22]:

• Is capable of working in noisy environments and in proximity to other wireless
communication technologies, such as WiFi, thanks to its Adaptive Frequency Hopping
(AFH) mechanism [23]

• is integrated into most of portable devices (such as tablets, smartphones, PDAs, etc.);
• Is energy efficient;
• Allows for simple and flexible deployment in business, industrial and home envi-

ronments, as BLE devices are small, minimally invasive and less expensive than
other solutions;

• Provides an indoor communication range of approximately 20–30 m, depending on
the specific device and the characteristics of the environment [24]. As a consequence,
the BLE probability of interfering with other networks working in proximity is signifi-
cantly lower.

As reported in our recent survey on Bluetooth-based PHS [22], despite the evident ad-
vantages and its wide adoption for active mobile localization [25]—that is, the localization
of a moving transmitter with respect to a network of fixed receivers—not many research
works in the literature focus on the application of BLE to PHS. This is mainly due to the
following three limitations of the BLE standard:

• It is difficult to obtain RSSI samples at high rates from BLE-based devices; therefore,
the ability of a BLE-based PHS system to match the dynamics of human activities and
gestures may be insufficient for some applications [26];

• The BLE protocol does not allow the application layer to know the current transmission
frequency, that is, the PHS application has no legal (i.e., compliant with the protocol)
way to extract the frequency selected by the AFH mechanism to transmit a specific
message. This is a security-related constraint, so it will not be relaxed anytime soon;
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• The WiFi CSI can be obtained directly from some devices through the WiFi multicarrier
encoding mechanism, whereas BLE does not natively support such a measurement.

Notwithstanding the limitations mentioned above, activities such as passive human
detection [27], counting [28], and motion tracking [29] can be effectively performed using
BLE networks, although with a generally lower accuracy than their WiFi counterparts [30].
Despite the recent advancement and wide diffusion of Deep Learning (DL) techniques,
only a few research works in the literature apply DL to BLE-based PHS. In [31], a classroom
scenario is considered and a Radial Basis Function Neural Network is used to classify
RSSI samples emitted by carefully placed BLE beacons and received by a BLE receiver,
with a varying number of occupants in the room. Unfortunately, the dataset used for the
reported experiments is not publicly available and the paper does not report sufficient
information to repeat the experiments. In [32] a rather complex reinforcement learning
approach is proposed, using BLE RSSI for PHS and exploiting CO2 sensors and other
IoT devices to generate feedback information for the reinforcement learning process. The
presented approach is claimed to be adaptive to changes in the environment. However,
the approach requires an initial fine-tuning process that closely resembles training and
the presented results are comparable to those obtained with much simpler statistical
approaches, such as the one in [27]. In [33], a BLE-based PHS is presented and compared
with state-of-the-art WiFi-based competitors. However, the presented architecture requires
manual measurement of the distance between transmitters and receivers at training time.
In addition, the best performance is obtained by forcing the sampling rate of the sensing
network to very high rates (up to 200 Hz), i.e., well beyond the advertisement message
transmission rate of standard BLE beacons.

This work proposes the application of a Deep Neural Network (DNN) to improve
the analysis and classification of BLE signal deformations for Passive Human Sensing.
Our aim was to improve over the current state-of-the-art in terms of both accuracy and
flexibility. To this end, the proposed approach was applied to reliably detect the presence
of human occupants in a large, articulated room with only a few BLE 4.x standard beacons
as transmitters and a few receivers equipped with BLE 4.x standard modules. Furthermore,
no specific restrictions were imposed on the location and motion dynamics of the room
occupants.

The main contributions of this work are:

1. A PHS architecture for human detection based on standard BLE 4.x Commercial-
Off-The-Shelf (COTS) devices that does not impose strong restrictions, such as direct
Line-Of-Sight (LoS) visibility, on the position of the sensed occupants in the monitored
environment. The transmitting devices are common BLE stand-alone beacons, which
do not require any additional communication connection to external computational
resources and can be battery-operated. The receiving device can be built on Arduino
Zero or Raspberry Pi cards, equipped with their BLE onboard adapter;

2. A Deep Convolutional Neural Network to analyze the sequence of RSSI samples
captured by the BLE receivers and extract the occupancy information of the area
covered by the BLE sensing network. Our approach is novel compared to previous
work, which adopted Long Short-term Memory (LSTM) networks [32];

3. An assessment of the proposed architecture in a real-life environment, that is, a student
laboratory where occupants are free to move in and out. The room was not rectangular
but L-shaped with several non-LoS regions with respect to the BLE receivers, and the
environment was polluted by RF noise due to several WiFi and Bluetooth operating
devices that were randomly moved in and out of the room by the students;

4. A comparison of the proposed approach with the one in the literature that offers the
best performance [27].

The paper is organized as follows. Section 2 describes the proposed sensing architecture
and experimental setup. Section 3 presents the experimental data obtained during the valida-
tion experiments and a comparison of our approach with the most accurate state-of-the-art
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approach from the relevant literature. Section 4 reports our analysis of the experimental results
and Section 5 presents our conclusions and suggestions for further research.

2. Materials and Methods

BLE-based PHS takes advantage of the deformations inducted in the RF signal by the
human bodies that obtrude its pathway. When the obtruding body is situated exactly on
a linear and clear (that is, otherwise unobtruded) pathway between the transmitter and
the receiver, it affects the Line-of-Sight (LoS) visibility between the two devices and the
signal that reaches the receiver is mainly the refracted component of the original signal (see
Figure 1a). In general, the refracted component of the signal is deformed while traversing
the human body and such a deformation transports useful information about the obtruding
entity. Instead, if the obtruding body is not situated along a straight and clean pathway
between transmitter and receiver, then the signal that reaches the receiver is refracted or
reflected, either before or after traversing the obtruding body (Non-Line-Of-Sight visibility,
see Figure 1b).

(a) (b)

Figure 1. Line-of-Sight (LoS) visibility (a). Non-Line-of-Sight and through-the-wall visibility (b). This
figure was adapted from [22].

Since the exact position of each obtruding body is not known in advance and is not
fixed, in order to reduce the number of transmitters and receivers, for the sensing process
we relied on Non-Line-Of-Sight visibility. An interesting side effect of this approach is that
multiple signals from different transmitters traverse the body and reach the receiver, thus
transporting information acquired from different angles. Moreover, such signals go through
different paths of different lengths; therefore, they have different phase shifts, i.e., they
carry information on the body traversed at different instants in time [15]. As a consequence,
the sensing system acquires information at a much higher spatial and temporal resolution
than LoS visibility would support (see Figure 2).

Figure 2. Multipath (Non-LoS) PHS. Note that multiple signals traverse the same obtruding human
body from different angles and with different time (phase) shifts, thus transporting spatially and
temporally diverse information.
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Clearly, the problem is how to extract this information. One reason is that, to benefit
from the increased temporal resolution, accurate clock synchronization would be needed
among all transmitters and receivers, but this feature is not supported by the BLE protocol.
For the sake of simplicity, in this work we chose to treat the higher temporal resolution
as redundancy, that is, we combined the samples acquired in very close time instants to
produce more reliable average samples.

The BLE 4.x protocol only allows for the extraction of RSSI measurements from a
message on the receiver side, that is, only a coarse-grained sampling of the received signal
can be obtained. Moreover, security reasons impose that the AFH mechanism does not
allow the application to know the channel from which the message was received. As
RSSI has different mean values for each channel [34], it is not possible to differentiate the
RSSI samples based on the channel. This induces high variability in the RSSI distribution,
which hinders the classification accuracy of most BLE-based PHS approaches. To overcome
this problem, some works in the literature fix the transmission channel on the transmitter
side [29]; however, such a trick is generally not allowed by COTS BLE 4.x beacons. A differ-
ent solution proposed in the literature is to obtain the transmission channel by exploiting
some specific vulnerability on the receiver side [35], but this possibility might disappear at
any time with an OS update.

As a consequence of the inability to determine the transmission channel of the received
message, a very effective classification approach is needed that can take into account the
large variability in the RSSI signal and produce an accurate classification.

In our architecture, the PHS network is based on n BLE 4.x beacons and m receiver
devices equipped with BLE 4.x modules. The number n of beacons is only constrained
by the need to illuminate with the BLE signal all the occupants of the monitored area,
wherever they are. The number m is constrained by the need that, for each occupant, at
least one receiver obtains from one of the BLE beacons of the sensing network an advertising
message that has traversed the body of the occupant. The advertising message may have
been reflected by any surface before reaching the receiver, i.e., the occupant does not need
to occlude the Line of Sight between the beacon and the receiver, as illustrated in Figure 3.

Figure 3. Constraints on the number and position of beacons and receivers. The beacons must be
placed in such a way as to illuminate each occupant in the monitored room. The receivers must be
placed in such a way that for each occupant, at least one transmission from a beacon traverses the
occupant and is received by one of the receivers. The transmission may be reflected by some surface,
i.e., it is not necessary that the occupant lays on the Line of Sight between the beacon and the receiver.

As the BLE devices are not synchronized, we cannot exploit the phase shift of different
messages sent at the same time, for example, to improve spatial resolution [36]. Conse-
quently, we prefer to sacrifice temporal resolution for noise robustness and combine the
RSSI of k messages, sent by the same i-th beacon and received by receiver r with similar
timestamps around the time instant t, into a single representative sample calculated as the
median of the k RSSI values, which we call the Median RSSI Sample received by r at time
t (MRSr,i(t)). This approach strongly reduces the effects of unwanted abrupt changes in
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RSSI due to the AFH mechanism of the BLE protocol, while also reducing the temporal
resolution (that is, the PHS sampling frequency) by a factor of k. The temporal subsampling
introduced above is illustrated in Figure 4.
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Figure 4. Graph of data collection and subsampling in a generic receiver r. The samples sent by each
beacon are grouped in chunks of k, a representative sample is selected as the median element of the k
samples and keeps its timestamp (see text). The symbol ∼tj means “approximately tj”, that is, all
samples from the same group of k have similar timestamps.

At each receiver and at each receiving time instant j, the Median RSSI Samples with
similar timestamps, but transmitted by different beacons, are collected in a row of RSSI
samples marked with the representative timestamp j. Thus, each receiver r maintains a
list MRSLr of rows, each identified by a representative time instant j and containing the
sequence of n values MRSr,i(j) received at that time and sent by the different beacons.

The m lists (which we named MRSLr) are all sent to a central server that combines
them into a single list and orders its rows according to their representative timestamps.
This list is the input for the classifier. At this point of the algorithm the temporal resolution
is sufficiently coarse to allow us to neglect the effects of loss of synchronization between the
receivers and the central server. In fact, in general the transmission rate of the advertising
messages in BLE 4.x is 100 ms, therefore the temporal resolution at this stage of the
algorithm is 1/(k ∗ 0.1) samples per second. On the server, the list of rows is fed to a DNN
that classifies them and produces a decision about whether there are human occupants in
the monitored area or not.

Several DNN architectures were investigated to build the classifier. In particular, a
baseline network with three dense layers and dropout, a single-layer Long Short-Term
Memory (LSTM) network, a two-layer LSTM network and a two-layer 1D convolutional
network were initially tested. The proposed DNN (see Figure 5), a pure convolutional
network with 25,409 trainable parameters composed of three 1D convolutional layers with
batch normalization, a global average pooling and a final dense output layer, consistently
outperformed its competitors in all tests. For completeness, the two-layer LSTM architec-
ture, the best performer among competitors of the proposed architecture, is included in the
experiments reported in Section 3.
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Figure 5. The proposed DNN architecture with a total number of 25,793 parameters

After deploying the BLE network, training and testing data are collected by manually
annotating the time at which each occupant entered and exited the monitored area. This
step is only needed to collect data for training and performance analysis. Once a sufficient
number of samples are collected, the DNN can be trained. The Maximum Training Epochs
parameter is set to 500, however in our experiments training generally stopped around
300 epochs as an effect of the early stopping mechanism [37].

3. Results

In our experiments, the BLE traffic was generated by COTS standalone and fully
standard BLE 4.0 beacons, Eddystone-compliant and battery-operated. The receivers were
built on consumer-grade Raspberry Pi 3B embedded computers, equipped with a BLE
4.1-compliant chipset onboard. A commercial notebook equipped with an Intel i7-10750H
CPU @ 2.60 GHz, 16 GB RAM main memory, and an NVIDIA GTX 1650Ti GPU was used
to both train and run the Deep Neural Network adopted for the classification of the BLE
signal RSSI samples into the “Presence” and “Non-Presence” classes. With the proposed
server architecture, the training was completed in a few minutes, thus allowing a very
simple deployment of the PHS system.

The room where the experiments were performed was a research laboratory with six
work stations and several computers and other instruments. As the room was L-shaped,
we placed approximately one beacon at each corner to fully illuminate the room area.
Similarly, we placed three receivers in such a way that most of the beacon signals would
be consistently received. No specific optimizations were performed during the placement
of the transmitting and receiving devices. In our experience, the exact positioning of the
beacons and receivers is not critical; however, we tried not to place the receivers too close
to the beacons. Figure 6 shows a map of the laboratory with the location of the transmitters,
receivers, and work stations that were used by the occupants during the experiment.
Noticeably, the occupants occasionally moved across the room as in normal laboratory
operations; however, the number of moving occupants was not logged in time, so the only
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information available is that the occupants were not forced to sit at their workstation, but
could stand up and move freely across the room.

Figure 6. Arrangement of BLE devices in the laboratory testbed. The blue chair symbols represent
the average positions of the occupants, i.e., the white chair was empty most of the time.

For our experiments, after cleanup we obtained a total of 10,412 samples from r = 3
receivers and b = 7 beacons during several hours of daily working and non-working
time. We randomly split the samples into 7288 (i.e., two-thirds of the total) for training
and validation, and 3124 (i.e., one-third of the total) for testing. The two datasets are
approximately balanced, that is, in both datasets, the numbers of samples belonging to
the “Presence” and “Non-presence” classes differ by less than 10%, as shown in Figure 7.
The Test dataset was then put aside for the final evaluation, while the 7288 samples were
further equally split into the “Training” and “Validation” datasets.

(a) Training and validation dataset (b) Test dataset

Figure 7. Histograms of the “Presence” values of the samples, showing the balance between the
Presence and Non-Presence samples in the Training (a) and Test (b) datasets.
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After an initial oscillation phase, the training process steadily converges towards an
accuracy of 100% and a 0% error in both training and validation, as shown in Figure 8.

(a) (b)

Figure 8. Graph showing Accuracy and Validation Accuracy (a) and Error and Validation Error
(b) during the training process. (a) Accuracy and Validation Accuracy during the training process.
(b) Error and Validation Error during the training process.

After training and validating the proposed model, we tested it on the Test dataset,
made of samples that did not belong to the Training and Validation datasets and were,
therefore, completely unknown to the model. The discrimination ability of the model is
well evidenced by the confusion matrix related to our experiments, shown in Figure 9.

The accuracy obtained during the tests, i.e., 0.9974 (99.74%), was consistently achieved
and even exceeded along several iterations of the training–validation–test sequence.

Figure 9. The confusion matrix relevant to the presented experiments.

To compare our architecture with the literature, we selected the state-of-the-art ap-
proach that a recent survey [22] reported to be the best performer in a similar experimental
setup [27] and tested it with our datasets. In [27], a network of BLE beacons and BLE
receivers was used to sense the occupancy of a lecture room. Several approaches for data
preprocessing and several classifiers were investigated and evaluated and a final 98.97%
accuracy is reported for the best combination. We re-trained and tested on our datasets
the same data preprocessing and classification methods described in [27] and selected the
best performing combination, that is, Support Vector Machine (SVM) with linear kernel
(SVM-LK) classifier in combination with the DS3 data preprocessing method. The results
obtained are shown in Table 1 for comparison with our approach and with the two-layer
LSTM network that performed second during our preliminary investigation (see Section 2).
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Table 1. Performance comparison of our approach with the method proposed in [27]. Figures in bold
refer to the best performing approach.

Approach Accuracy Precision Recall F1-Score

SVM-LK 0.9682 1.00 0.94 0.97
LSTM 0.9819 0.98 0.98 0.98

our approach 0.9974 1.00 1.00 1.00

As a further test, to investigate the robustness of our approach with respect to the
number and location of the transmitting and receiving devices, we progressively dropped
the receivers and beacons and measured the performance of the degraded sensing system.
With reference to Figure 6, Table 2 shows the degraded network configurations and the
performance obtained with our approach and with the method reported in [27].

Table 2. Performance comparison of our approach with the method proposed in [27] and with the
LSTM network, in “degraded network conditions” (dropped receivers and/or beacons). The first
column indicates which devices were available in each degraded configuration (i.e., the devices that
are not indicated were dropped). r1, r2, r3 are the receivers and b1,. . ., b7 are the beacons. Figures in
bold refer to the best performing approach.

Avail. Devs. Approach Accuracy Precision Recall F1-Score

All beacons,
r1 & r3

SVM-LK 0.6508 0.74 0.46 0.57
LSTM 0.9771 0.98 0.98 0.98

our approach 0.9886 0.99 0.99 0.99

All beacons,
only r2

SVM-LK 0.7698 0.93 0.59 0.72
LSTM 0.9635 0.96 0.96 0.96

our approach 0.9713 0.97 0.97 0.97

All beacons,
only r1

SVM-LK 0.6905 0.79 0.52 0.63
LSTM 0.9615 0.96 0.96 0.96

our approach 0.9713 0.97 0.97 0.97

b1, b2, b6, b7,
r1 & r3

SVM-LK 0.5556 0.57 0.48 0.52
LSTM 0.9559 0.96 0.95 0.96

our approach 0.9669 0.97 0.97 0.97

4. Discussion

To effectively test our approach, we selected a very general scenario in terms of both
spatial configuration and usage patterns. In particular:

• The shape of the laboratory is concave, so some receiver/beacon couples are not in
direct LoS;

• The laboratory is used for research and not for lecturing, so the number of occupants
and the entrance and exit times are not fixed;

• The number of occupants is generally small, i.e., from zero to five, therefore the RSSI
variation due to the presence of occupants in the laboratory can be very small;

• Computers and other transmitting devices pollute the BLE transmission frequencies,
thus triggering the BLE Frequency Hopping mechanism frequently;

• The beacons and the receivers were positioned according to general illumination
considerations and not taking into account the expected location of the occupants.

Conversely, the scenarios adopted in other works in the literature, including the
one compared with our method in Section 3, are generally nearly ideal, with occupants
restricted within specific areas for most of the time and beacons placed within the LoS of
the receivers in such a way that any occupant would fully obstruct the LoS.

Our approach achieved an accuracy of 99.74% with 100% f1-score. To the best of
our knowledge, this is the best performance in the literature considering the test scenario.
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Moreover, our approach performed considerably better (+3% accuracy and f1-score) than
its direct competitor, as reported in Table 1.

In addition, we demonstrated that our approach does not require direct LoS visi-
bility between beacons and receivers and does not need a large number of beacons and
receivers to achieve state-of-the-art performance. Table 2 shows that dropping half of the
beacons or two out of three receivers, thus breaking the LoS visibility between most of the
beacon/receiver couples, only marginally reduces the detection accuracy.

Finally, the proposed detection architecture is lightweight enough to run on an embed-
ded computer such as a Raspberry Pi 3B+. In fact, the bare RSSI measurement task can be
easily performed by much cheaper and less power-intensive hardware, such as the Rasp-
berry Pi0. Instead, we purposely chose to build the receivers on the more powerful Pi3B+
platform because in future work we plan to run the detection software on each receiver
and develop a distributed sensing platform instead of delegating all the computation to a
centralized server.

Two important limitations affect the proposed approach, the first being its intrinsically
low detection speed, due to the low sampling rate of its architecture. Based on the analysis
of RSSI of advertising messages transmitted by commercially available BLE 4.x beacons,
the sampling rate of the proposed architecture is bound by the maximum advertising rate
of the BLE 4.x standard, that is, 50 messages per second. Moreover, due to the subsampling
mechanism introduced to deal with the lack of inter-node synchronization, the sampling
rate is further divided by k. In our experiments, the actual sampling rate was reduced
to 2 Hz, which is sufficient in most cases but not for higher dynamics applications, for
example, when a person rapidly traversing a small area needs to be detected.

Consequently, as a further development of our PHS platform, we plan to exploit the
enhanced services and features of the BLE 5.x architecture [38,39] to improve the current
spatial and time resolution of our PHS platform, thus also supporting the estimation of the
number of occupants in the monitored area and allowing for the recognition of their activity.

A second limitation, shared with most other approaches in the literature, is that a
training phase is needed to calibrate the PHS before it can be used effectively to detect the
presence of occupants in a room. This procedure is performed only once at deployment
time, takes about 3–4 h, and requires manual recording of the presence and absence of
occupants in the monitored area.

5. Conclusions

This work presented a novel architecture for passive human sensing based on a
network consisting of commercial BLE 4.x beacons and receivers built with a Raspberry Pi
board equipped with its standard on-board BLE 4.x module. A Deep Convolutional Neural
Network (DNN) was used to analyze and classify the RSSI samples of the signals emitted
by the BLE beacons and extract the occupancy information of the area covered by the BLE
sensing network.

The advantages and limitations of the architecture presented were illustrated and a de-
tailed description of the experimental results conducted to assess its validity was provided.

In our experiments, the proposed approach outperformed the state-of-the-art method
described in [27] and achieved an accuracy of 99.74% and a 100% f1-score in a fairly general
scenario, thus was demonstrated to be, to our knowledge, the best performer with respect
to the literature.
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