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Abstract: Recent years have witnessed the increasing risk of subsea gas leaks with the development
of offshore gas exploration, which poses a potential threat to human life, corporate assets, and the
environment. The optical imaging-based monitoring approach has become widespread in the field
of monitoring underwater gas leakage, but the shortcomings of huge labor costs and severe false
alarms exist due to related operators’ operation and judgment. This study aimed to develop an
advanced computer vision-based monitoring approach to achieve automatic and real-time monitoring
of underwater gas leaks. A comparison analysis between the Faster Region Convolutional Neural
Network (Faster R-CNN) and You Only Look Once version 4 (YOLOv4) was conducted. The results
demonstrated that the Faster R-CNN model, developed with an image size of 1280 × 720 and no
noise, was optimal for the automatic and real-time monitoring of underwater gas leakage. This
optimal model could accurately classify small and large-shape leakage gas plumes from real-world
datasets, and locate the area of these underwater gas plumes.

Keywords: subsea gas leak monitoring; optical camera detection; advanced computer vision; faster
R-CNN; YOLOv4

1. Introduction

As offshore oil and gas prospecting and exploiting move into deep-water fields and
sensitive areas, issues such as subsea equipment failures, seabed pipeline leakages, subma-
rine gas eruptions, etc., result in the increasing number of subsea natural gas leak events [1].
Once a subsea gas leak occurs, the forming gas plume will bring the flammable natural
gas and oil into the atmosphere, disperse them around the offshore platforms or working
vessels, and ultimately pose a potential fire and explosion environment. So far, numerous
fire and explosion accidents with heavy casualties have occurred; these have resulted in
economic losses and environmental pollution, such as the Deepwater Horizon explosion
accident in 2010 [2], the Elgin Platform gas leak accident in 2012 [3], and the Pemex plat-
form fire accident in 2021 [4]. In addition to the possibility of fire and explosion accidents,
the releasing gas plume is likely to disorder the maneuverability and stability of nearby
vessels due to strong surface currents [5,6]. Furthermore, the release of oil and gas serves
to produce a kind of hydrocarbon mixture gas, primarily methane, which aggravates the
marine environment and ecosystem [7,8]. On the other hand, a large amount of CO2 gas
has been injected and stored in the appropriate geological reservoirs of the subsea. Due to
injection facility failure and seal failure, there exists a certain risk of CO2 gas leaks in deep
subsea that would inevitably destroy the marine ecosystem [9–12]. Consequently, subsea
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oil and gas leakage is gradually a safety problem for the offshore oil and gas industry and
creates an environmental problem for the global climate and marine ecosystem.

To address the above problems, the critical working regions, such as offshore platforms
and vessels, should be monitored for subsea gas leaks so that related operators can raise the
corresponding alarm at an early stage and thereby make timely emergency and prevention
measures. Past decades have witnessed the development of subsea gas leak monitoring
approaches and technologies [13–23]. These works can be classified into two categories:
software-based internal methods and hardware-based external methods [14,22]. Among
them, the internal method mainly monitors related gas flow parameters, such as flow mass
or volume, negative pressure waves, and gas flow rate, and then judges whether a subsea
gas leak is occurring [14,19,22]. By contrast, the external method needs external sensors
such as hydrophones [13,19], optoelectronic sensors [17,18], fiber-optic cables [15,16,23],
and optical cameras [14,20,21,24] to realize the subsea gas leak monitoring. Compared to
the external method, the internal methods have some drawbacks [14,19]. Firstly, such mon-
itoring methods can only be used for the leakage detection of subsea pipelines. Secondly,
they cannot be applied for the leakage detection of small-size gas plumes. Thirdly, they
make it difficult to pinpoint the location of the leakage source. Thereby, most research has
been on the improvement and innovation of external methods.

Of these external methods, the optical camera-based method can provide an intuitive
monitoring video for subsea scenarios as leaked gas plumes can be detected through the
operator’s visual inspection and the corresponding leak source can be pinpointed. Although
this method is limited to subsea light conditions and water turbidity, its monitoring effect
can be advanced by equipping it with an additional light source [14,20] or applying other
methods, such as the laminar flow approach [25,26] and the infrared output camera [27]. In
this way, this method is always applied for subsea monitoring tasks such as spilled oil and
gas tracking using the autonomous buoy system (SOTAB-I) [28,29], the submarine visual
information system [30,31], and the released gas plume and bubble imaging system [32,33].
In this monitoring application, the operator’s visual inspection and judgment of monitoring
video frames is still a critical prerequisite for finding and warning of abnormal subsea
events. Such human intervention would not only result in high labor costs, it would
also create a high false alarm rate for the monitoring effect [34,35]. To address these
problems, some literature on anomaly detection based on monitoring videos performs the
computer vision approach to realize an automated detection for anomaly events without
human intervention, while achieving excellent detection efficiency and detection accuracy.
Likewise, as in subsea gas leak monitoring, an automated intelligence approach will greatly
improve monitoring accuracy and efficiency.

In terms of automated anomaly detection, advanced computer vision-based ap-
proaches have become a promising alternative to learning about the visual features of
varied abnormal events and how to intelligently detect these events. Previous works have
pointed out that the convolutional neural network (CNN) is capable of effectively extracting
the spatial features of image datasets and accurately learning these features. Therefore,
for industrial anomaly detection, researchers have proposed many automatous and intelli-
gent methods for real-time anomaly detection, such as natural gas leak detection [35,36],
machine fault detection [37,38], and structure crack detection [39,40]. These works realize
the automatic detection of anomaly events without manual intervention, which greatly
improves the effectiveness and accuracy of anomaly detection. Unfortunately, classic CNN
architectures are only suitable for anomaly classification; that is, they can tell if an anomaly
event occurs, but they cannot give the position or range of the anomaly event, which is not
conducive to the emergency handling of abnormal events. To realize both classification and
localization for anomaly detection, in recent years, several advanced computer vision-based
detection approaches have been advanced, such as the Faster Region Convolutional Neural
Network (Faster R-CNN) [39], Single Shot Multi-Box Detector (SSD) [40], and the YOLO
series [41]. Of these, the Faster R-CNN and the YOLO series both have a relatively high de-
tection speed and accuracy, and so have been widely applied in varied industrial anomaly
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detection tasks, such as oil and gas leak detection [42,43], surface defects detection [44,45]
and machine fault detection [46,47]. However, to the authors’ well-known knowledge, very
limited research has been conducted on the application of such an advanced computer
vision-based approach for automated subsea gas leak monitoring. Furthermore, which is
the best out of the Faster R-CNN and the YOLO series is still unknown.

This paper aimed to propose an automatous and intelligent monitoring method
integrating the advanced computer vision approach with a subsea optical camera for
gas leak detection. Meanwhile, a relatively systemic comparison analysis was conducted
to determine which of the Faster R-CNN and the YOLO series is more suitable for actual
subsea gas leak scenarios. Firstly, an underwater gas leak experiment was conducted for
achieving a large number of video datasets characterizing the gas plume feature, which was
used to develop monitoring models. Secondly, two open available videos about subsea oil
and gas leaks were selected as real-world subsea gas leak scenarios to assess and compare
the application performance of these models developed from the experimental dataset.
Furthermore, a sensitivity analysis of varied image sizes and noise intensity datasets on
method performance was also conducted. A comparison of detection accuracy and speed
for the two models developed from the different datasets was performed. This study
provided a methodology and technology guidance for constructing a subsea oil and gas
device with a long-term automatic and real-time monitoring system.

2. Theory of Two Advanced Computer Vision-Based Detection Approaches
2.1. Faster R-CNN Approach

The Faster R-CNN [39] is one of the most popular two-stage object detection ap-
proaches, which can classify and pinpoint objects in one scene with an almost real-time
detection speed and a comparatively high detection accuracy. From Figure 1, this Faster
R-CNN approach is composed of a feature extractor network, a region proposal network
(RPN), and a Fast R-CNN module. Of these, the feature extractor network is responsible
for extracting feature maps representing object information from the inputting image data,
then the RPN roughly generates region proposals that contain objects from these extracted
feature maps; eventually, the Fast R-CNN module precisely classifies object proposals
and refines object spatial locations from feature information integrating the generated
region proposal and extracted feature map. Due to the two-stage detection structure design
composed by the RPN and the Fast R-CNN module, the Faster R-CNN shows a strong
object feature extracting and learning ability, and so has a relatively high accuracy detection
result among most object detection approaches. Meanwhile, to improve detection speed,
this approach introduces a new region proposals generation module RPN instead of the
sliding window algorithm in the previous generation R-CNN approaches. Because the RPN
is essentially a small fully connected network that can keep an extremely fast production
speed for the region proposal, the Faster R-CNN approach can realize an almost real-time
detection speed.

The development of a detection model based on the Faster R-CNN approach is to
determine and fine-tune weights in all neural network layers by alternate training between
the RPN module and the Fast R-CNN module. The RPN module is first trained under
feature maps extracted by a pre-trained feature extractor network for producing the region
proposal containing the object. Then, the Fast R-CNN module is trained by object region
proposals generated by the trained RPN module to accurately detect the object classification
and location. Lastly, fixing the shared convolutional layers and fine-tuning the unique
convolutional layers creates two modules that share the same convolutional layers and
form a unified network. The RPN and Fast R-CNN training are both based on region
proposals or object classification and location. As such, the training loss function of the
RPN and the Fast R-CNN is a multi-task loss function integrating the classification loss and
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regression loss. Equations (1) and (2) describe the loss function of the RPN module and the
Fast R-CNN module, respectively.

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (1)

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lreg(tu, v) (2)

where i is the index of an anchor in a mini-batch and pi is the predicted probability of anchor
i being an object. If the anchor i is positive, the ground-truth probability p∗i is 1. Instead,
the ground-truth probability p∗i is 0. The ti is a vector including the four coordinates of the
predicted bounding box, and t∗i is the ground-truth box coordinate vector of the positive
anchor. Lcls is the classification loss defined by log term, while Lreg is the bounding box
regression loss defined by smooth L1. x, y, w, and h represent the center coordinates, width,
and height of the predicted bounding box or adjusted anchor, respectively. Ncls and Nreg
denote the mini-batch size and the anchor locations number, which are used to balance the
classification loss and regression loss with the parameter λ [31].
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Figure 1. The detection architecture of the Faster R-CNN approaches.

2.2. YOLOv4 Approach

The YOLOv4 [41] approach faces an actual monitoring application that requires a fast
detection speed and relatively high accuracy. Compared to the Faster R-CNN, YOLOv4 ap-
plies one-stage detection architecture composed of backbone, neck, and head layers, which
is shown in Figure 2. Unlike the Faster R-CNN, it first generates region proposals contain-
ing the object through the RPN and then further precisely regresses. As well as classifying
the object location and label by the Fast R-CNN, the YOLOv4 directly extracts the object
feature and conducts the object location regression and label classification. Specifically, the
backbone layer first extracts the image feature map from a batch of outputting images to
learn some object features. Secondly, to improve object detection accuracy and avoid the
disappearance of low-level features, the middle neck layer generally integrates multiple
scales features (especially the low-level feature) and conducts many pooling operations to
boost the receptive field of the feature map, which greatly enriches the transferring image
feature to be prone towards learning about many image details. Finally, the last head layer
accepts the enhanced feature information and conducts the bounding box regression, label
classification, and confidence prediction.
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Figure 2. The overall YOLOv4 architecture.

To improve detection accuracy and efficiency, YOLOv4 focuses on integrating and
innovating some advanced tricks, which can significantly improve detection accuracy and
almost had less impact on the detection speed. Among these, the backbone layer applies
the new feature extractor CSPDarknet53 according to the Mish activation function [48] and
Cross Stage Partial Network (CSPNet) [49], which can boost the feature extraction ability of
the network. In the neck layer, the spatial pyramid pooling (SPP) [50] structure is introduced
to capture local information of the extracted feature map by four times max pooling and
then incorporate this information, which benefits the enhancement of the receptive field and
so improves detection performance, especially for small targets. Meanwhile, this layer also
applies a path aggregation network (PANet) [51] to fuse multiple scale feature information,
which can increase the semantic feature and the location feature. Besides, to overcome
incomplete expression between the bounding box and ground truth, the detection head
layer performs CIOU loss [52], replacing IOU loss as the location regression loss function,
which is shown in Equation (3):

CIOU_Loss = 1− IOU +
ρ2(b, bgt)

c2 + αv (3)

where b and bgt denote the central points of the predicted bounding box and ground truth
bounding box, ρ(·) refers to the Euclidean distance, and c is the diagonal length of the
smallest enclosing box covering the two boxes. α is the positive trade-off parameter, and v
measures the consistency of the aspect ratio, whose mathematical formulas are shown in
Equations (4) and (5).

α =
v

(1− IOU) + v′
(4)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(5)

3. Methodology to Develop an Optimal Gas Leakage Monitoring Model

Both the Faster R-CNN approach and YOLOv4 can perform real-time and online
monitoring of underwater gas leaks, but they have their own advantages for monitoring
accuracy and speed, respectively. The Faster R-CNN, a two-stage detector, is more accu-
rate in terms of detection accuracy, but its detection speed is relatively slow. YOLOv4, a
one-stage detector, has a faster detection speed due to its simple architecture, while its
detection accuracy is relatively poor. In order to tradeoff accuracy and speed for moni-
toring underwater gas leakage, we need to develop an optimal gas leakage monitoring
model from the two computer vision-based approaches. Figure 3 displays the developing
flowchart regarding the optimal model for monitoring underwater gas leaks from the
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above-mentioned computer vision-based approaches. The detailed developing process is
shown in Figure 3.
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Step 1: We collected a large number of imaging datasets containing underwater
gas leak features and then processed these datasets to construct the training dataset, the
validation dataset, and the testing dataset for developing the optimal model for underwater
gas leaks. The collection of imaging datasets was from underwater gas leak experiments or
open-access videos. Furthermore, processing these imaging datasets using open-source
software, namely LabelImg, generated the annotation datasets, including classifications of
whether or not there was gas leakage and the location positions of the gas leakage plume.
Finally, the imaging datasets and annotation datasets were integrated as the developing
datasets (i.e., training dataset, validation dataset, and testing dataset) for developing the
optimal monitoring model.

Step 2: Next, we developed the Faster R-CNN model and the YOLOv4 model on
the basis of their own pre-trained model according to transfer learning. Transfer learning
has been proven as an accurate and efficient approach for developing computer vision-
based monitoring models by fine-tuning corresponding pre-trained models into training
datasets. In order to save the optimal fine-tuned model, a validation step was used to
evaluate whether the model’s performance improved after every fine-tuning. Through
validation, the fine-tuned model could be saved when its performance was upgraded,
which ensured achieving the optimal monitoring model after developing monitoring
models. To date, relevant researchers and institutions have launched all kinds of pre-trained
models. Hence, we selected a competitive pre-trained model for both the Faster R-CNN
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and YOLOv4 approaches, respectively, so as to develop a comprehensive monitoring model
for underwater gas leakage.

Step 3: At the same time, we further explored the effect of noise intensity and image
size of the developing datasets on the monitoring model’s accuracy and speed, to deter-
mine a comprehensive developing dataset for the optimal monitoring model. Assessing
the model’s accuracy included assessing its classification accuracy and location accuracy.
Hence, we calculated the mAP value to evaluate monitoring performance by opening tool
MSCOCO API [53]. The MSCOCO API also provided the inference time. In addition,
to evaluate the monitoring performance under real-world datasets, we calculated true
positive (TP), false positive (FP), true negative (TN), and false negative (FN), to construct
the ROC-AUC according to the literature [54].

Step 4: We further conducted a sensitivity analysis for exploring the effect of noise
intensity and image size on model monitoring performance, to determine the optimal
developing dataset. Furthermore, we evaluated and compared the monitoring performance
of the Faster R-CNN and YOLOv4 models developed by the optimal datasets. Finally, we
determined the optimal model for monitoring underwater gas leakage.

4. Collection Datasets Concerning Underwater Gas Leakage Plume

Due to the shortage of gas leak datasets from real subsea accidents, an underwater
gas leak experiment was conducted to collect a large number of datasets that included
underwater gas leak features. The overall architecture of the experiment system is shown in
Figure 4. This experiment system mainly included four modules: a gas generating system,
a gas transmission pipeline, a gas leak water tank, and a data collection and processing
terminal. Through this experiment system, the generating gas was transported into a
tank and formed gas plumes in the water, and the data collection terminal recorded these
gas plumes.
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Table 1 presents the details of the experimental configuration. From this, we employed
airflow to replace natural gas for experimental safety. We also set the air leakage pressures
to 0.2, 0.4, and 0.6 MPa to produce small, medium, and large sizes gas plumes, respectively.
Furthermore, during the experiments, the forming gas plumes were real-time recorded by a
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video camera with a video resolution of 1280 × 720 and a video spread of 25 frames/s; the
shooting time of each video sequence was 120–180 s. Finally, we achieved a large number
of video sequences recording the gas leakage plumes.

Table 1. Experimental configuration for the underwater gas leak.

Experimental
Medium

Leaking
Pressure

Video
Resolution Video fps Shooting Time

Airflow 0.2, 0.4, 0.6 MPa 1280 × 720 25 frames/s 120–180 s

Next, we segmented the recorded videos into images that included the underwater
gas plumes, and in total, achieved 8622 images, including 2000 images under 0.2 MPa,
3000 images under 0.4 MPa, and 3622 images under 0.6 MPa. Figure 5 displays the
underwater gas leakage plumes under three leak pressures. As for these images, we
further annotated the gas leakage plumes to produce annotation datasets that included
classification labels and ground truth box positions. Figure 6 displays the annotation labels
and ground truth boxes of the gas plume images under three leakage pressures. As can
be seen, gas plumes of 0.2 MPa were labeled Leak1, gas plumes of 0.4 MPa were labeled
Leak2, and gas plumes of 0.4 MPa were labeled Leak3. Meanwhile, the ground truth
boxes covered the gas plumes, which were used as location information. Accordingly, both
the experimental gas plume images and the annotation datasets were integrated as the
developing datasets for the Faster R-CNN and YOLOv4 models.
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Figure 6. Annotation labels and ground truth boxes for underwater gas plumes under three leak-
age pressures.

Furthermore, we processed the above images by adding Gaussian noises with inten-
sities 0.01, 0.05, and 0.1 for achieving the developing datasets, respectively, and clipped
image sizes of (720 × 720), (600 × 600), and (480 × 480) for achieving the developing
datasets, respectively. Figure 7 displays images of the underwater gas plumes under three
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noise intensities, while Figure 8 displays images of the underwater gas plumes under three
image sizes.
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Apart from the experimental developing datasets, we also searched for open-access
videos of underwater gas plume images from Co. L. Mar. experiments, and subsea oil and
gas release images from BP leakage accidents. Figure 9 displays the underwater gas plumes
under different leakage stages from the Co. L. Mar. experiments. Figure 10 displays images
of oil and gas leakage plumes from the BP leakage accidents. From this, it can be seen that
white-releasing gas plumes and black-releasing oil plumes exist.
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In summary, in total, we collected nine developing datasets: an experimental de-
veloping dataset, three developing datasets adding Gaussian noises, three developing
datasets with clipped image sizes, and two opening leakage datasets; see Table 2. As for
the experimental developing datasets, noise developing datasets, and clipped developing
datasets, we randomly selected 80%, 10%, and 10% of the datasets as the training datasets,
validation datasets, and testing datasets, respectively, which were used for developing the
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monitoring model. The Co. L. Mar. and BP opening leakage datasets were used to evaluate
the models’ monitoring performance for real leakage scenarios.
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Table 2. The corresponding datasets for developing and testing of monitoring model.

Dataset Annotation Files Image Size Noise Source

Original datasets xml files 1280 × 720 none Experiment
Noise_0.1 xml files 1280 × 720 0.1 Experiment

Noise_0.05 xml files 1280 × 720 0.05 Experiment
Noise_0.01 xml files 1280 × 720 0.01 Experiment
720 × 720 xml files 720 × 720 none Experiment
600 × 600 xml files 600 × 600 none Experiment
480 × 480 xml files 480 × 480 none Experiment

Co. L. Mar. dataset N/A 320 × 240 N/A Real-world
BP dataset N/A 480 × 360 N/A Real-world

5. Results and Discussion

In order to develop an optimal model, we selected Faster_rcnn_inception_coco_v2
and YOLOv4.CONV.137 as the pre-trained model for the Faster R-CNN approach and
the YOLOv4 approach according to related literature. Table 3 lists the detailed pre-
trained model configurations. This model development process was carried out by a
high-performance computer server with a configuration of 64 GB RAM, an i9-9900K CPU,
and a NVIDIA GeForce RTX 2080Ti GPU card. By comparing the model performance under
different developing datasets, we explored the effect of image size and noise intensity on
the developing models’ performance. Then, we conducted a monitoring task for the Co. L.
Mar. dataset and the BP accidental dataset to determine the optimal monitoring model.

Table 3. Configuration of pre-trained models for the Faster R-CNN and YOLOv4 approaches.

Configuration Faster R-CNN Approach YOLOv4 Approach

Pre-trained model Faster_rcnn_inception_coco_v2 YOLOv4.CONV.137
Feature extractor Inception V2 CSPDarknet53
Dataset structure COCO VOC2018

Initial learning rate 0.0002 0.001
Batch size 1 64

Detection classes 3 3

5.1. Monitoring Performance Comparison of Two Approaches under Experimental Datasets

Figure 11 displays the monitoring performance of the two approaches based on models
developed under different image sizes experimental datasets. The recognition accuracy
mAP value was calculated by MS COCO API. As can be seen, decreasing image size
roughly resulted a reduction of the recognition accuracy mAP value. For example, the
mAP value under image sizes 1280 × 720 and 720 × 720 was relatively higher than those of
600 × 600 and 480 × 480 for the Faster R-CNN model, and the mAP value of the YOLOv4
model under image size 1280 × 720 was maximum. Additionally, the inference time of the
Faster R-CNN model fluctuated at 56 ms with the changing of image sizes, and that of the
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YOLOv4 model was about 23 ms, which was almost free from the image sizes. Accordingly,
the large image size benefits the recognition accuracy of both the Faster R-CNN model and
the YOLOv4 model.
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Figure 11. Effect of image size of developing datasets on the recognition accuracy and inference time
of the two approach models.

Figure 12 displays the monitoring performance of the two approaches under different
noise intensities. It can be seen that the mAP value of the Faster R-CNN model declines with
the increasing noise intensity, and that of YOLOv4 declines when 0.01 is at a maximum
0.742 and fluctuates at mAP value 0.742. Meanwhile, the inference times of the Faster
R-CNN and YOLOv4 models were almost unaffected by noise intensities.
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Additionally, by comparing the recognition accuracy and inference time of the two
approaches, we found that the Faster R-CNN approach was better overall than the YOLOv4
approach in recognition accuracy and lower than the YOLOv4 approach in inference
time. Accordingly, the image sizes 1280 × 720 were optimal for the two models under
experimental datasets, a noise intensity of 0 was optimal for the Faster R-CNN model, and
a noise intensity of 0.01 was optimal for the YOLOv4 model. In addition, both models
could reach a real-time monitoring speed, which essentially was not affected by the image
size and noise intensity in terms of inference time.

5.2. Monitoring Performance Comparison of Two Approaches under Real-World Datasets

Figure 13 displays the recognition accuracy and inference time for Faster R-CNN
model and the YOLOv4 model under image sizes for the Co. L. Mar. underwater gas
leakage datasets. The recognition accuracy represented the model’s classification accuracy
calculated by ROC-AUC. It can be seen that the AUC value for image size 720 × 720 was
0.93076 for the Faster R-CNN model, while that for image size 1280 × 720 was 0.99368.
Meanwhile, the AUC value for image size 480 × 480 was at its maximum of 0.95863. Addi-
tionally, from this figure, it can be seen that as the image size decreased, the inference time
of the Faster R-CNN model had a large increase. Accordingly, the image size 1280 × 720
was suitable for developing the Faster R-CNN model while the image size 480 × 480 was
suitable for the YOLOv4 model.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 12. Effect of Gaussian noise of developing datasets on the recognition accuracy and inference 
time of the two approach models. 

5.2. Monitoring Performance Comparison of Two Approaches under Real-World Datasets 
Figure 13 displays the recognition accuracy and inference time for Faster R-CNN 

model and the YOLOv4 model under image sizes for the Co. L. Mar. underwater gas leak-
age datasets. The recognition accuracy represented the model’s classification accuracy cal-
culated by ROC-AUC. It can be seen that the AUC value for image size 720 × 720 was 
0.93076 for the Faster R-CNN model, while that for image size 1280 × 720 was 0.99368. 
Meanwhile, the AUC value for image size 480 × 480 was at its maximum of 0.95863. Ad-
ditionally, from this figure, it can be seen that as the image size decreased, the inference 
time of the Faster R-CNN model had a large increase. Accordingly, the image size 1280 × 
720 was suitable for developing the Faster R-CNN model while the image size 480 × 480 
was suitable for the YOLOv4 model. 

 
Figure 13. Effect of image size of developing datasets on the recognition accuracy and inference time 
of the two approach models. 
Figure 13. Effect of image size of developing datasets on the recognition accuracy and inference time
of the two approach models.

Figure 14 shows the recognition accuracy and inference time of the Faster R-CNN
and YOLOv4 models developed by different noise intensity datasets for the Co. L. Mar.
underwater gas leakage datasets. From this, it can be seen that as the noise intensity
increased, the AUC value of the two approach models gradually decreased, and specifically,
the AUC value of YOLOv4 rapidly dropped to 0.6212 at noise intensity 0.1. Meanwhile, the
inference time of the two approach models was almost unaffected by noise intensity.
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Figure 14. Effect of noise intensity of developing datasets on the recognition accuracy and inference
time of the two approach models.

Accordingly, the image size 1280 × 720 was optimal for the Faster R-CNN model,
the image size 480 × 480 was optimal for the YOLOv4 model, and the noise intensity
0 was optimal for the two models. In addition, both models could reach a real-time
monitoring speed.

5.3. Comparison between Faster R-CNN Model and YOLOv4 Model under Real World Datasets

Considering model performance under real-world datasets, the Faster R-CNN model
under image size 1280 × 720 and noise intensity 0, and the YOLOv4 model under image
size 480× 480 and noise intensity 0, was optimal. Furthermore, we conducted a comparison
of monitoring performance between the two models under the Co. L. Mar. and BP datasets,
as shown in Figures 15–21.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 19 

Figure 14 shows the recognition accuracy and inference time of the Faster R-CNN 
and YOLOv4 models developed by different noise intensity datasets for the Co. L. Mar. 
underwater gas leakage datasets. From this, it can be seen that as the noise intensity in-
creased, the AUC value of the two approach models gradually decreased, and specifically, 
the AUC value of YOLOv4 rapidly dropped to 0.6212 at noise intensity 0.1. Meanwhile, 
the inference time of the two approach models was almost unaffected by noise intensity. 

Figure 14. Effect of noise intensity of developing datasets on the recognition accuracy and inference 
time of the two approach models. 

Accordingly, the image size 1280 × 720 was optimal for the Faster R-CNN model, the 
image size 480 × 480 was optimal for the YOLOv4 model, and the noise intensity 0 was 
optimal for the two models. In addition, both models could reach a real-time monitoring 
speed. 

5.3. Comparison between Faster R-CNN Model and YOLOv4 Model under Real World Datasets 
Considering model performance under real-world datasets, the Faster R-CNN model 

under image size 1280 × 720 and noise intensity 0, and the YOLOv4 model under image 
size 480 × 480 and noise intensity 0, was optimal. Furthermore, we conducted a compari-
son of monitoring performance between the two models under the Co. L. Mar. and BP 
datasets, as shown in Figures 15–21. 

Figure 15. Confusion matrixes of the YOLOv4 models developed by the experimental dataset with 
image size 480 × 480 and noise intensity 0 under different pre-determined thresholds. Note that label 
0 represents the existing gas leakage and label 1 represents no gas leakage. The predefined thresh-
olds were determined according to the classification probability outputted by the YOLOv4 model. 

(a) thresh ld = 0.1 (b) threshold = 0.01 (c) threshold = 0.001 (d) threshold = 0.0001

Figure 15. Confusion matrixes of the YOLOv4 models developed by the experimental dataset with
image size 480 × 480 and noise intensity 0 under different pre-determined thresholds. Note that label
0 represents the existing gas leakage and label 1 represents no gas leakage. The predefined thresholds
were determined according to the classification probability outputted by the YOLOv4 model.
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Figure 16. Confusion matrixes of the Faster R-CNN model by the experimental dataset with image
size 1280 × 720 and noise intensity 0 under different pre-determined thresholds.
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Figure 21. Visualization examples of the YOLOv4 model developed by the image size 480 × 480
dataset under the BP dataset.

Figures 15 and 16 display the comparison of confusion matrixes between the Faster
R-CNN model and the YOLOv4 model. From these, it is clear that for the Faster R-CNN and
YOLOv4 models, the number of FNs gradually decreases and the number of FPs gradually
increases along with the decrease of the predefined thresholds; that is, the decreasing of the
thresholds makes the monitoring model more prone to false alarm for normal scenarios.
By comparing these, it is clear that the Faster R-CNN model can reach a trade-off between
FP (0) and FN (295) when the threshold 0.0001, which indicates that for the Faster R-CNN
model, the false alarm for the normal scenario never existed and some no alarm for the gas
leakage existed. However, the YOLOv4 model performed a severe false alarm phenomenon
under the low threshold and a severe no alarm phenomenon under the high threshold.
Accordingly, the Faster R-CNN model was more accurate for monitoring gas leakage
compared to the YOLOv4 model.

Figure 17 displays the comparison for the ROC curve and AUC value between the
Faster R-CNN model developed by the experimental dataset with image size 480 × 480
and noise intensity 0, and the YOLOv4 model developed by the experimental dataset with
image size 1280 × 720 and noise intensity 0. It can be seen that the AUC value of the Faster
R-CNN model was 0.99368, and that of the developed YOLOv4 model was 0.95863, which
indicates that the Faster R-CNN approach was more suitable for monitoring underwater
gas leakage compared to the YOLOv4 approach. Meanwhile, the Faster R-CNN model’s
ROC curve was above that of the YOLOv4 model, and the Faster R-CNN model’s ROC
curve was closer to the Y axis than that of the YOLOv4 model. Such circumstances indicate
that the Faster R-CNN model can keep a relatively high TPR under low FPR; that is, the
Faster R-CNN approach can perform at high classification accuracy for gas leakage and
keep has relatively little false alarm for normal scenarios. In this regard, the YOLOv4 model
was worse than the Faster R-CNN model.

Figures 18 and 19 display the visualization example of the Faster R-CNN model
developed under image size 1280 × 720, while Figures 20 and 21 display that of the
YOLOv4 model developed under image size 480 × 480. As can be seen, the Faster R-
CNN model was better than the YOLOv4 model in terms of classification and location
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for underwater gas plumes. On the one hand, the Faster R-CNN model classified the
underwater gas plumes of the Co. L. Mar. datasets into Leak1 due to the small shape
of the plumes, while the YOLOv4 model classified these plumes into Leak2. Meanwhile,
the Faster R-CNN model provided a relatively higher classification probability than the
YOLOv4 model, which indicated that the Faster R-CNN model was more confident for
the small shape plumes of the Co. L. Mar. datasets. On the other hand, by observing the
location box, it was found that although the Faster R-CNN model could not recognize
the black plume seen in Figure 19, it could output a bounding box close to the area of the
gas plume from real-world datasets, while the YOLOv4 model located no related areas
in the monitoring datasets. This means that the Faster R-CNN model has better learning
ability for features such as plume shape and color. Additionally, in terms of inference
time, the Faster R-CNN model could keep a real-time monitoring speed of 56 ms/frame.
Accordingly, the Faster R-CNN model developed by image size 1280 × 720 and no noise
was optimal for monitoring underwater gas leakage.

Accordingly, the Faster R-CNN model is relatively better than the YOLOv4 model in
terms of classification accuracy and visual location accuracy. As for the real-world datasets,
the Faster R-CNN model can provide a larger classification likelihood for gas plumes and
predict a more accurate location box for gas plumes. Hence, the developed monitoring
model can be accurately applied for monitoring the gas leakage of real-world datasets.
However, the predicted results of the monitoring model were uncertain predictions that
failed to achieve robustness in the real-world scenario. To address this, probabilistic
methods, especially Variational Bayesian Inference, need to be applied to the deep learning-
based object detection model to model a probability distribution for prediction. With
these, the uncertainty information for real-world scenarios can be quantified and it can be
determined whether the prediction is credible.

6. Conclusions

In summary, this study proposed an advanced computer vision based underwater gas
leakage approach. The comparison regarding monitoring performance of the advanced
computer vision approaches for experimental and real world underwater gas leakage is
conducted. The conclusions are as follows:

(1) Faster R-CNN model developed by experimental developing datasets with image
size 1280 × 720 and no noise is optimal to real time and automatic monitor for underwater
gas leakage from real world datasets.

(2) Compared to YOLOv4 approach, Faster R-CNN based optimal model performs
a better learning ability for underwater gas plume features, and so the classification and
location for gas plume is extremely accurate, especially distinguishing the small and large
size of underwater leakage gas plume.

(3) Faster R-CNN based optimal model performs a better scenario adaptability for real
world datasets. This means that Faster R-CNN based model could accurately locate the
area of underwater gas plume, while YOLOv4 based model could roughly locate many
unrelated areas of monitoring datasets.

However, the additional points of the proposed approach are required to be discussed.
(1) This computer vision based approach need a large number of manual annotation

datasets, which causes in a huge time and human cost so as to limit the developing efficiency
of monitoring model.

(2) This computer vision based approach perform a poor monitoring performance for
some gas plume with black color, which can be solved by enriching the plume color in the
developing datasets.

Overall, future works are expected to solve the above limitations and the publicly
available developing dataset concerning subsea oil and gas leakage is welcome for the
future works.
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