
Citation: Wu, Y.; Li, J. YOLOv4 with

Deformable-Embedding-Transformer

Feature Extractor for Exact Object

Detection in Aerial Imagery. Sensors

2023, 23, 2522. https://doi.org/

10.3390/s23052522

Academic Editors: Andreas Savakis,

Erik Blasch and Kannappan

Palaniappan

Received: 21 November 2022

Revised: 21 February 2023

Accepted: 23 February 2023

Published: 24 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

YOLOv4 with Deformable-Embedding-Transformer Feature
Extractor for Exact Object Detection in Aerial Imagery
Yiheng Wu and Jianjun Li *

College of Computer and Information Engineering, Central South University of Forestry
and Technology University, Changsha 410004, China
* Correspondence: t20010539@csuft.edu.cn; Tel.: +86-137-5513-6109

Abstract: The deep learning method for natural-image object detection tasks has made tremendous
progress in recent decades. However, due to multiscale targets, complex backgrounds, and high-scale
small targets, methods from the field of natural images frequently fail to produce satisfactory results
when applied to aerial images. To address these problems, we proposed the DET-YOLO enhancement
based on YOLOv4. Initially, we employed a vision transformer to acquire highly effective global
information extraction capabilities. In the transformer, we proposed deformable embedding instead
of linear embedding and a full convolution feedforward network (FCFN) instead of a feedforward
network in order to reduce the feature loss caused by cutting in the embedding process and improve
the spatial feature extraction capability. Second, for improved multiscale feature fusion in the neck,
we employed a depth direction separable deformable pyramid module (DSDP) rather than a feature
pyramid network. Experiments on the DOTA, RSOD, and UCAS-AOD datasets demonstrated that
our method’s average accuracy (mAP) values reached 0.728, 0.952, and 0.945, respectively, which
were comparable to the existing state-of-the-art methods.

Keywords: aerial imagery; ultra-high spatial resolution orbital imagery; object detection; YOLOv4;
vision transformer; deep learning

1. Introduction

Object detection in ultra-high spatial resolution aerial images aims to rapidly de-
termine a target’s location and classify the target. Object detection in aerial images is
widely used in numerous important fields, including the localization and identification of
military targets [1], natural environment protection [2], disaster detection [3], and urban
construction planning [4].

The application of convolutional neural networks to computer vision and object de-
tection has made significant strides in recent years. Successively, superior object detection
algorithms, including the R-CNN series [5–8], the YOLO series [9–11], and the SSD se-
ries [12–14], have been proposed. With the introduction of ViT [15], the transformer is
widely utilized in the field of image processing. Recently, transformer-based detectors
such as DETR [16] and DINO [17] have been proposed and have performed better in some
detection tasks than CNN-based networks. With large annotated natural image datasets
such as MS COCO [18] and PASCAL VOC [19], these CNN-based and transformer-based
target detection algorithms have achieved astonishing results. However, the above models
have poor detection performance with aerial images, which is due to the specificity of aerial
images [20]. Firstly, aerial images are taken at altitudes ranging from several hundred
meters to tens of kilometers due to differences in observation equipment, which results
in diverse sizes of targets in the same category. Secondly, aerial images are usually taken
by acquisition equipment from a top view. As a result, the background of aerial images is
complex and contains a great deal of redundant information, causing severe interference
in detection. Finally, since aerial images are captured from high altitudes, they contain

Sensors 2023, 23, 2522. https://doi.org/10.3390/s23052522 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052522
https://doi.org/10.3390/s23052522
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23052522
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052522?type=check_update&version=1

Sensors 2023, 23, 2522 2 of 23

an abundance of small targets. For instance, a car’s pixels might be 5 × 5 or even smaller.
This makes it challenging to extract edge features from aerial images of targets and to
distinguish targets from the background. These characteristics make aerial image object
detection a unique and difficult problem.

In this research, we focus on addressing the issues mentioned above to enhance the
target detection performance in aerial images. In addition, the speed of detection is a
significant obstacle for detection algorithms, as target detection from satellite imagery is
typically performed in real time. A one-stage object detection algorithm, exemplified by
the YOLO series [9–11], combines object classification and localization into a single-stage
regression problem, vastly enhancing the detection speed in comparison to a traditional
two-stage object detection algorithm of localization followed by classification. Currently, the
most advanced versions of YOLO are YOLOv4 [21], YOLOv5, and YOLOX [22]. Compared
to YOLOv4, YOLOv5 and YOLOX utilize a large number of dense connection structures;
their models are more complex, and their detection speed is decreased, but their detection
accuracy is comparable. Therefore, we enhanced the feature extraction network and the
feature fusion network based on YOLOv4 to meet the detection requirements for targets in
optical images with ultra-high spatial resolutions, particularly small targets.

DET-YOLO is the name of the enhanced YOLOv4 variant. Experimental results
showed that our proposed DET-YOLO outperformed the general YOLOv4 in detecting
targets in aerial images.

This study’s contribution is summarized as follows:

1. A new feature extraction network named a deformable embedding vision transformer
(DEViT) is proposed, which has the excellent global feature extraction capability
of transformers while using deformable embedding instead of normal embedding
to efficiently extract features at different scales. In addition, a fully convolutional
feedforward network (FCFN) is used to replace the feedforward neural network (FFN),
and the extraction of location information is effectively enhanced by introducing zero
padding and convolutional operations.

2. The depthwise separable deformable convolution (DSDC) is proposed to reduce
computational effort while preserving the deformable convolution’s ability to zero
in on regions of interest. It is proposed that the depthwise separable deformable
pyramid (DSDP) module extracts multiscale feature maps and prioritizes key features.

3. Our proposed DET-YOLO achieved the highest accuracy among existing models, with
mean average precision (mAP) values of 0.728 on the DOTA dataset, 0.952 on the
RSOD dataset, and 0.945 on the UCAS-AOD dataset.

The rest of the paper is organized as follows: Section 2 describes the proposed network
and the individual components; Section 3 presents the dataset and the evaluation metrics
used; Section 4 gives the experimental results and analyses to demonstrate the accuracy
and validity of the proposed algorithm; and Section 5 gives the conclusions.

2. Methodology
2.1. Review of YOLOv4

YOLOv4’s architecture comprises three primary components: the backbone, the neck,
and the predicting head. The backbone extracts feature data from an image input. The neck
collects and combines multiscale feature data to generate three distinct-scale feature maps.
Based on these created feature maps, the predicting head detects objects. YOLOv4 employs
the CSPDarknet53 [23] framework as its backbone, SPP [24] and PANet [25] as the neck,
and YOLO’s detection head. In addition, YOLOv4 uses a number of measures to enhance
the performance of target detection, including mosaic data enhancement, Mish activation
functions, and CIOU loss.

2.2. DET-YOLO

Figure 1 depicts the architecture of our proposed DET-YOLO for object detection in
aerial images. We employ DEViT as the backbone, DSDP and PANet as the neck, and

Sensors 2023, 23, 2522 3 of 23

YOLO’s detection head as the predicting head. In addition, it employs the Mish [26]
activation function in place of the leaky ReLU [27] activation function, CIoU [28] loss in
place of the ordinary IoU [29] loss, and the cosine annealing strategy [30] for learning rate
attenuation to achieve more accurate detection results. In the subsequent subsections, we
elaborate on DEViT and DSDP principles.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 24

2.2. DET-YOLO
Figure 1 depicts the architecture of our proposed DET-YOLO for object detection in

aerial images. We employ DEViT as the backbone, DSDP and PANet as the neck, and
YOLO’s detection head as the predicting head. In addition, it employs the Mish [26] acti-
vation function in place of the leaky ReLU [27] activation function, CIoU [28] loss in place
of the ordinary IoU [29] loss, and the cosine annealing strategy [30] for learning rate at-
tenuation to achieve more accurate detection results. In the subsequent subsections, we
elaborate on DEViT and DSDP principles.

Figure 1. An overview of DET-YOLO. We use DEViT as the backbone, as opposed to CSPDarknet53
in the original implementation. In addition, the DSDP module is utilized in place of skip connections
and SPP in order to obtain multiscale feature maps.

2.3. Deformable Embedding Vision Transformer
Figure 2 depicts the structure of a non-hierarchical adaptive transformer, DEViT, that

is proposed to have an excellent global feature capture capability while efficiently and
flexibly extracting target information. We made the following enhancements: First, we
proposed deformable embedding to capture targets of varying sizes in aerial images. Sec-
ond, we proposed fully convolutional feedforward networks to improve the location in-
formation extraction.

These two aspects are elaborated upon below.

Figure 1. An overview of DET-YOLO. We use DEViT as the backbone, as opposed to CSPDarknet53
in the original implementation. In addition, the DSDP module is utilized in place of skip connections
and SPP in order to obtain multiscale feature maps.

2.3. Deformable Embedding Vision Transformer

Figure 2 depicts the structure of a non-hierarchical adaptive transformer, DEViT,
that is proposed to have an excellent global feature capture capability while efficiently
and flexibly extracting target information. We made the following enhancements: First,
we proposed deformable embedding to capture targets of varying sizes in aerial images.
Second, we proposed fully convolutional feedforward networks to improve the location
information extraction.

These two aspects are elaborated upon below.

2.3.1. Deformable Embedding

Traditional visual transformers, including hierarchical models such as PVT [31] and
the Swin Transformer [32] as well as non-hierarchical models such as ViT [15] and DEiT [33],
use a fixed-size patch embedding based on the implicit assumption that the fixed image
split design is appropriate for all images. Given the input image X ∈ RC×H×W , where C,
H, and W represent the channel dimension, height, and width of the feature, respectively, a
vanilla patch embedding splits X into N patches of size P × P (N = HW/P2). The patches
are then connected to form a sequence of flattened 2D patches (X p ∈ RN × (P 2·C)), each
of which represents a rectangular region of input image X.

Sensors 2023, 23, 2522 4 of 23

Sensors 2023, 23, x FOR PEER REVIEW 4 of 24

Figure 2. The DEViT architecture.

2.3.1. Deformable Embedding
Traditional visual transformers, including hierarchical models such as PVT [31] and

the Swin Transformer [32] as well as non-hierarchical models such as ViT [15] and DEiT
[33], use a fixed-size patch embedding based on the implicit assumption that the fixed
image split design is appropriate for all images. Given the input image X ∈ ℝ × × ,
where C, H, and W represent the channel dimension, height, and width of the feature,
respectively, a vanilla patch embedding splits X into N patches of size P × P (𝑁 =𝐻𝑊 𝑃⁄). The patches are then connected to form a sequence of flattened 2D patches
(X p ∈ ℝN × P 2·C), each of which represents a rectangular region of input image X.

Nevertheless, the scale of the information contained in aerial images varies greatly
due to the different observation carriers and acquisition methods, and the typical embed-
ding methods frequently do not fit well or even destroy the target feature information, as
depicted in Figure 3. Therefore, a data-dependent sparse embedding strategy is required
for the flexible construction of relevant features.

Figure 2. The DEViT architecture.

Nevertheless, the scale of the information contained in aerial images varies greatly due
to the different observation carriers and acquisition methods, and the typical embedding
methods frequently do not fit well or even destroy the target feature information, as
depicted in Figure 3. Therefore, a data-dependent sparse embedding strategy is required
for the flexible construction of relevant features.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 24

Figure 3. Vanilla patch embedding example. Patch splitting is represented by the white lines, while
the ground-truth boxes are represented by the blue lines. Some targets’ semantics are compromised.

DCN [34] proposes a deformable convolution, which allows the convolution kernel
to be adaptively focused on the target region by obtaining an offset, as opposed to being
limited to a fixed size and shape of the perceptual field. In response, we propose deform-
able embedding, which obtains the ability to extract objects of different scales by adap-
tively acquiring an offset, as depicted in Figure 4b.

(a) (b)

Figure 4. Comparison of vanilla patch embedding and deformable embedding: (a) vanilla patch
embedding and (b) deformable embedding.

As depicted in Figure 4a, the above embedding process can also be viewed as
downsampling X using a linear embedding layer with kernel size P and strike size P to

obtain the feature map X’∈ ℝ P 2·C × × and then reshaping the feature map X’ into X p.
The process of embedding can be described as follows:

Figure 3. Vanilla patch embedding example. Patch splitting is represented by the white lines, while
the ground-truth boxes are represented by the blue lines. Some targets’ semantics are compromised.

DCN [34] proposes a deformable convolution, which allows the convolution kernel
to be adaptively focused on the target region by obtaining an offset, as opposed to being
limited to a fixed size and shape of the perceptual field. In response, we propose deformable

Sensors 2023, 23, 2522 5 of 23

embedding, which obtains the ability to extract objects of different scales by adaptively
acquiring an offset, as depicted in Figure 4b.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 24

Figure 3. Vanilla patch embedding example. Patch splitting is represented by the white lines, while
the ground-truth boxes are represented by the blue lines. Some targets’ semantics are compromised.

DCN [34] proposes a deformable convolution, which allows the convolution kernel
to be adaptively focused on the target region by obtaining an offset, as opposed to being
limited to a fixed size and shape of the perceptual field. In response, we propose deform-
able embedding, which obtains the ability to extract objects of different scales by adap-
tively acquiring an offset, as depicted in Figure 4b.

(a) (b)

Figure 4. Comparison of vanilla patch embedding and deformable embedding: (a) vanilla patch
embedding and (b) deformable embedding.

As depicted in Figure 4a, the above embedding process can also be viewed as
downsampling X using a linear embedding layer with kernel size P and strike size P to

obtain the feature map X’∈ ℝ P 2·C × × and then reshaping the feature map X’ into X p.
The process of embedding can be described as follows:

Figure 4. Comparison of vanilla patch embedding and deformable embedding: (a) vanilla patch
embedding and (b) deformable embedding.

As depicted in Figure 4a, the above embedding process can also be viewed as down-
sampling X using a linear embedding layer with kernel size P and strike size P to obtain
the feature map X′ ∈ R (P 2·C) × H

P ×
W
P and then reshaping the feature map X′ into X p.

The process of embedding can be described as follows:

X′ = Embed(X), (1)

Xp = Reshape
(
X′
)
, (2)

where Embed(·) is the operation for linear embedding and Reshape(·) is the flattening function.
For each patch p(i) on feature map X′, a rectangular region of the input image

with the area P× P is represented. The coordinates of its lower left corner are denoted
as l1

i =
(

x1
i , y1

i
)
, and the sequence of coordinates corresponding to p(i) is denoted as{

l1
i , · · · , lP×P

i

}
. These locations’ features are represented as

{
f j

i , · · · , f P×P
i

}
. Equation (3)

illustrates how linear embedding flattens these features and processes them with a linear
layer to produce a representation of the patch.

p(i) = Wpatch·concat
(

f j
i , · · · , f P×P

i

)
+ bpatch. (3)

Feature map X is fed to the lightweight subnetwork θoffset(·), which has a single
convolutional layer with a 1 × 1 convolution kernel. The bias quantity feature map
Xoffset ∈ R2C×H×W is produced, and the layer 2i−1 and layer 2i channels represent the
x- and y-axis offsets, respectively, for to the layer i channel of the original map. The
offset associated with each position l j

i is ∆l j
i = θoffset (l j

i). Thus, Equation (4) depicts the
representation of the new patch obtained via deformable embedding.

p(i) = Wpatch·concat
(

f j
i

(
l1
i + ∆l1

i

)
, · · · , f P×P

i

(
lP×P
i + ∆lP×P

i

))
+ bpatch, (4)

where p(i) constitutes the new feature graph X′. X′ is substituted into Equation (2) to obtain
the deformable embedding result Xp. The procedure for p (i) is as follows:

Xp = concat(p(1), · · · , p(N)). (5)

Sensors 2023, 23, 2522 6 of 23

Our proposed deformable embedding receives a 2D offset on each pixel for each patch,
allowing it to extract the target information adaptively and effectively avoiding the issue of
semantic information corruption during vanilla splitting.

2.3.2. Full Convolution Feedforward Network

A vanilla feedforward neural network (FFN) of visual transformers consists of two
layers of MLP composition and a GELU [35] activation function, as demonstrated by
Equation (6).

FFN(F) = MLP(GELU(MLP(F))). (6)

Due to the high computational cost of MLPs, they require a substantial amount of com-
putation while effectively preserving the dimensionality of the feature channels. As shown
in Figure 5, we propose an FCFN with enhancements to both reduce the computational
effort and enhance the capability of feature extraction.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 24

(a) (b)

Figure 5. Comparison of FFN and FCFN: (a) the vanilla FFN of a vision transformer; (b) the FCFN
of DEViT.

First, instead of MLP, we use two 1×1 depthwise separable convolutions [36] to im-
prove the model’s robustness while further reducing the computational effort. Second, we
enhance the network’s capacity to extract location data. The study by Islam et al. [37]
demonstrated that the use of convolutional layers with zero padding can aid a network in
learning absolute position data. Before the GELU activation function, we introduce a
depth separable convolution with a stride of 1, a kernel size of 3, and a padding size of 1,
which only marginally increases the computational effort. As shown in Equation (7), the
combination of these two enhancements forms our fully convolutional neural network.

FCFN(F) = (DWConv1×1 (GELU(DWConv3×3 (DWConv1×1(F))))). (7)

To visually demonstrate the improvement in the computational requirements of our
FCFN over the FFN, we compare their computational costs and parameter counts.

A standard MLP layer accepts a 1 × Mmlp feature sequence (I) as an input and out-
puts a 1 × Nmlp feature sequence (O), where Mmlp and Nmlp represent the lengths of the
input and output feature sequences, respectively. MLP contains Nmlp neurons (n). The
standard MLP output feature sequence is computed as follows:

On = ∑, 𝑛 ∙ 𝐼 . (8)

The standard MLP incurs the following computational cost:

costmlp = Mmlp ∙ Nmlp. (9)

The standard MLP parameters are as follows:

parammlp = Mmlp ∙ (Nmlp+1). (10)

For FFN, the first MLP receives a 1 × (P 2·C) feature sequence as an input and out-
puts a 1 × (P 2·4C) feature sequence, while the second MLP receives a 1 × (P 2·4C) feature
sequence as an input and outputs a (P 2·C) feature sequence. Therefore, the computa-
tional and parametric quantities of the FFN are shown in Equations (11) and (12), respec-
tively.

Figure 5. Comparison of FFN and FCFN: (a) the vanilla FFN of a vision transformer; (b) the FCFN
of DEViT.

First, instead of MLP, we use two 1 × 1 depthwise separable convolutions [36] to
improve the model’s robustness while further reducing the computational effort. Second,
we enhance the network’s capacity to extract location data. The study by Islam et al. [37]
demonstrated that the use of convolutional layers with zero padding can aid a network
in learning absolute position data. Before the GELU activation function, we introduce a
depth separable convolution with a stride of 1, a kernel size of 3, and a padding size of 1,
which only marginally increases the computational effort. As shown in Equation (7), the
combination of these two enhancements forms our fully convolutional neural network.

FCFN(F) = (DWConv11×1(GELU(DWConv3×3(DWConv11×1(F))))). (7)

To visually demonstrate the improvement in the computational requirements of our
FCFN over the FFN, we compare their computational costs and parameter counts.

A standard MLP layer accepts a 1×Mmlp feature sequence (I) as an input and outputs
a 1× Nmlp feature sequence (O), where Mmlp and Nmlp represent the lengths of the input

Sensors 2023, 23, 2522 7 of 23

and output feature sequences, respectively. MLP contains Nmlp neurons (n). The standard
MLP output feature sequence is computed as follows:

On = ∑
i,j

ni·Ij. (8)

The standard MLP incurs the following computational cost:

costmlp = Mmlp·Nmlp. (9)

The standard MLP parameters are as follows:

parammlp = Mmlp·(N mlp +1). (10)

For FFN, the first MLP receives a 1× (P 2·C) feature sequence as an input and outputs
a 1× (P 2·4C) feature sequence, while the second MLP receives a 1× (P 2·4C) feature
sequence as an input and outputs a (P 2·C) feature sequence. Therefore, the computational
and parametric quantities of the FFN are shown in Equations (11) and (12), respectively.

Costffn = (P 2·C)·(P 2·4C) + (P 2·4C)·(P 2·C)
= 8·P 4·C 2,

(11)

paramffn = (P 2·C)·(P 2·4C + 1) + (P 2·4C)·(P 2·C + 1)
= 8·P 4·C 2+5·P 2·C.

(12)

A standard convolutional layer receives an Mconv×W×H feature map (D) as an input
and generates an Nconv× A× B feature map (G) as an output, where W and H represent the
width and height of the input feature map, Mconv represents the number of input channels,
A and B represent the width and height of the output feature map, and Nconv represents
the number of output channels. The convolution layer contains Nconv convolution kernels
(Kn) with an Mconv × w× h shape and a strike size of 1. The output feature sequence of a
convolutional layer is computed as follows:

Gk,l,n = ∑
i,j,m

Kn
i,j,m·Dk+i−1,l+j−1,m. (13)

A standard convolutional layer incurs the following computational expenses:

costconv = w·h·Mconv ·Nconv · A· B. (14)

The parameters of a standard convolutional layer are:

paramconv = (w ·h·Nconv +1)·Mconv. (15)

The computational cost of the depthwise separable convolution corresponding to the
standard convolution is:

costdwconv = w·h·Mconv ·A· B + Mconv·Nconv · A· B. (16)

The computational cost of the depthwise separable convolution corresponding to the
standard convolution is:

paramdwconv = (w ·h + 1)·Mconv + (M conv +1)·Nconv. (17)

For the FCFN, the first DWConv takes a C× P× P feature map as an input and returns
a 4C× P× P feature map; the second DWConv takes a 4C× P× P feature map as an input
and returns a 4C× P× P feature map; and the third DWConv takes a 4C× P× P feature

Sensors 2023, 23, 2522 8 of 23

map as an input and returns a C× P× P feature map. Therefore, Equations (18) and (19)
display the computational and parametric quantities of the FCFN.

costfcfn = (1·C·P 2+4C·C·P 2) + (9·4C·P 2+4C·4C·P 2) + (1·C·P 2+4C·C·P 2)

= 24·P 2·C 2 + 41·P 2·C,
(18)

paramfcfn = (1·C·P 2+C + 4C·C) + (9·C + 4C·4C·P 2) + (1·C·P 2+4C·C·P 2)

= 24·C 2+17·C.
(19)

By substituting the FFN with the FCFN, the following reductions in computation and
parameters are obtained:

costfcfn

costffn
=

41
8P 2C

+
3

P 2 , (20)

paramfcfn

paramffn
=

17 + 24C
8P 4C+5P 2 . (21)

DEViT employs a deformable embedding with a patch size of 16 and accepts high-
resolution RGB satellite images as inputs; consequently, each FCFN is 113

6144 of the computa-
tion and 89

1574144 of the parameters of the corresponding standard FFN. As demonstrated in
Section 4, the use of the FCFN rather than the FFN improves precision while significantly
reducing the computational costs.

2.4. Depthwise Separable Deformable Pyramid

Instead of FPN, we propose a depthwise separable deformable pyramid to obtain
feature maps at various scales from a non-hierarchical network architecture such as DEViT.
The following subsections are descriptions of the DSDC and the DSDP, which comprises
the DSDC.

2.4.1. Depthwise Separable Deformable Convolution

DSDC is proposed by combining depthwise separable convolution [36] and de-
formable convolution [34], which significantly reduces the computational effort while
adaptively focusing on the object region, as is shown in Figure 6.

By adding an offset convolution layer, the vanilla deformable convolution layer learns
offsets from the previous feature mapping. Using a convolution kernel of the same size as
the corresponding convolution and an offset feature map with an output space the same
size as the input feature map with twice as many channels as the original feature map, the
offset of the convolution kernel relative to the x and y axes on each pixel of each channel is
determined using the offset convolution.

Thus, the deformation can concentrate on objects in a dense, adaptive, and local
manner. However, the additional convolution operation requires a substantial amount
of computation, which slows model inference and makes it difficult to meet the real-time
requirement for aerial image object detection. Deformable convolution yields a spatially
two-dimensional offset that is channel-independent and two-dimensional. Therefore,
we can separate the calculation of the offset from the calculation of the channel, which
drastically reduces the amount of computation required without affecting the effect.

A standard convolution is decomposed into a depthwise convolution and a pointwise
convolution by depthwise separable convolution. For each input channel, the depthwise
convolution performs a separate convolution operation. The pointwise convolution then ap-
plies a 1× 1 convolution to combine the outputs of the depthwise convolution. A depthwise
separable convolution reduces the computational effort by decomposing a standard convo-
lution into a channel-by-channel convolution kernel and a point-by-point convolution.

Sensors 2023, 23, 2522 9 of 23

Sensors 2023, 23, x FOR PEER REVIEW 9 of 24

computation and 89
1574144

 of the parameters of the corresponding standard FFN. As
demonstrated in Section 4, the use of the FCFN rather than the FFN improves precision
while significantly reducing the computational costs.

2.4. Depthwise Separable Deformable Pyramid
Instead of FPN, we propose a depthwise separable deformable pyramid to obtain

feature maps at various scales from a non-hierarchical network architecture such as DE-
ViT. The following subsections are descriptions of the DSDC and the DSDP, which com-
prises the DSDC.

2.4.1. Depthwise Separable Deformable Convolution
DSDC is proposed by combining depthwise separable convolution [36] and deform-

able convolution [34], which significantly reduces the computational effort while adap-
tively focusing on the object region, as is shown in Figure 6.

(a)

(b)

Figure 6. Comparison of vanilla deformable convolution and depthwise separable deformable con-
volution: (a) vanilla deformable convolution; (b) depthwise separable deformable convolution.

Figure 6. Comparison of vanilla deformable convolution and depthwise separable deformable
convolution: (a) vanilla deformable convolution; (b) depthwise separable deformable convolution.

A standard deformable convolution is decomposed by DSDC into a deformable
depthwise convolution and a pointwise convolution. A deformable depthwise convolution
learns the offset independently for each channel, whereas a pointwise convolution combines
the output of the deformable depthwise convolution for each channel. DSDC replaces the
depthwise convolution portion of the depthwise separable convolution with a deformable
convolution to gain the ability to adaptively focus on the region of interest. DSDC strikes
a balance between improved computational efficiency and the deformable convolution’s
ability to extract features.

2.4.2. Depthwise Separable Deformable Pyramid Module

Because DEViT employs a non-hierarchical transformer structure, it is only possible
to obtain a single-scale feature map. Due to the varying scales of the targets, a multiscale
feature acquisition capability is required in aerial images. The most prevalent method
for constructing a multiscale feature map is a feature pyramid network, which employs
a top-down architecture with skip connections to combine features at various levels. For
non-hierarchical transformers, Li et al. [38] attempted to use a simple feature pyramid

Sensors 2023, 23, 2522 10 of 23

instead of a complex FPN structure, which effectively optimized the structure while main-
taining accuracy.

We propose a simple multiscale feature acquisition module, dubbed a depthwise
separable deformable pyramid, which only performs simple upsampling, downsampling,
and a 1 × 1 convolution on the last layer of DEViT to generate different-scale feature maps.
To focus the network on the region of interest and improve its ability to extract features, we
introduce DSDC for each scale of features, causing the network to generate adaptive offsets
for the target at each scale. Figure 7 depicts a comparison between DSDP and FPN.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 24

(a)

(b)

Figure 7. Comparison of feature pyramid network and depthwise separable deformable pyramid
module: (a) FPN; (b) DSDC.

Subsequent experiments revealed that DSDP performed better than FPN on DET-
YOLOv4, which will be discussed in detail in the ablation experiments subsection in Sec-
tion 4.

3. Datasets and Experimental Settings
3.1. Data Description

To validate the efficacy of DET-YOLO, we conducted experiments on the widely used
public datasets RSOD [39], UCAS-AOD [40], and DOTA [41] for multiclass object detec-
tion in orbital images with high spatial resolutions.

The RSOD dataset includes 6950 annotated samples and 976 high-resolution RGB
satellite images from Google Earth and Tianditu. The dataset includes four distinct types
of objects, including an oil tank, an aircraft, an overpass, and a playground.

The UCAS-AOD dataset is a high-resolution aerial image dataset designed to detect
small and medium-sized targets. It consists of 1510 images and 14,596 annotated instances
with a fixed image size of 1280 × 659. The dataset is divided into two categories, aircraft
and vehicles, and contains counterexamples with no instances of objects.

The DOTA-v1.5 dataset was derived from Google Earth, the JL-1 satellite, and the
GF-2 satellite, among other platforms and sensors. It contains 2806 RGB images and
188,282 annotated instances with dimensions ranging from 800 × 800 to 4000 × 4000. It
includes targets for 16 categories such as planes, ships, storage tanks, baseball diamonds,
tennis courts, basketball courts, ground track fields, harbors, bridges, large vehicles, small
vehicles, helicopters, roundabouts, soccer fields, swimming pools, and container cranes.
Compared to version 1.0, DOTA-v1.5 adds a large number of objects smaller than 10 pix-
els, making object detection tasks more difficult.

Figure 7. Comparison of feature pyramid network and depthwise separable deformable pyramid
module: (a) FPN; (b) DSDC.

Subsequent experiments revealed that DSDP performed better than FPN on DET-
YOLOv4, which will be discussed in detail in the ablation experiments subsection in
Section 4.

3. Datasets and Experimental Settings
3.1. Data Description

To validate the efficacy of DET-YOLO, we conducted experiments on the widely used
public datasets RSOD [39], UCAS-AOD [40], and DOTA [41] for multiclass object detection
in orbital images with high spatial resolutions.

The RSOD dataset includes 6950 annotated samples and 976 high-resolution RGB
satellite images from Google Earth and Tianditu. The dataset includes four distinct types of
objects, including an oil tank, an aircraft, an overpass, and a playground.

The UCAS-AOD dataset is a high-resolution aerial image dataset designed to detect
small and medium-sized targets. It consists of 1510 images and 14,596 annotated instances
with a fixed image size of 1280 × 659. The dataset is divided into two categories, aircraft
and vehicles, and contains counterexamples with no instances of objects.

Sensors 2023, 23, 2522 11 of 23

The DOTA-v1.5 dataset was derived from Google Earth, the JL-1 satellite, and the GF-2
satellite, among other platforms and sensors. It contains 2806 RGB images and 188,282
annotated instances with dimensions ranging from 800 × 800 to 4000 × 4000. It includes
targets for 16 categories such as planes, ships, storage tanks, baseball diamonds, tennis
courts, basketball courts, ground track fields, harbors, bridges, large vehicles, small vehicles,
helicopters, roundabouts, soccer fields, swimming pools, and container cranes. Compared
to version 1.0, DOTA-v1.5 adds a large number of objects smaller than 10 pixels, making
object detection tasks more difficult.

To validate the generality of our model, we also conducted experiments on UAVDT [41].
Unlike the orbital-image-based dataset described above, UAVDT is a large-scale challeng-
ing benchmark dataset based on UAV images. It contains approximately 80,000 frames
with annotated information. When used for object detection, the UAVDT dataset has
three types of objects (cars, trucks, and buses) and contains 23,829 training images and
16,580 test images at a size of 1024 × 540. The UAV images have a higher spatial resolution
compared to the orbital images. As shown in Table 1, objects smaller than 10 pixels are
referred to as very small objects, objects larger than 10 pixels but smaller than 50 pixels are
referred to as small objects, objects with a size between 50 and 300 pixels are referred to as
medium objects, and objects larger than 300 pixels are referred to as large objects, according
to the classification criteria of [42]. In the orbital image datasets, the DOTA dataset has
the highest proportion of small objects and is the most difficult of the three datasets, as
shown in Table 1. UCAS-AOD focuses on small to medium-sized objects, while RSOD is
moderately challenging. UAVDT focuses on small objects. For input into the network, we
maintained the original sizes of the RSOD dataset, UCAS-AOD, and UAVDT. We separated
them into training and validation sets based on criteria outlined in [41,43,44]. For the DOTA
dataset, the oversized images were cropped. Approximately 20,000 1024 × 1024 images
were generated in total. There were 1414 training images and 939 validation images in
the original DOTA dataset. We obtained 14,729 training images and 5066 test images after
cropping. The breakdown of the dataset is detailed in Table 2.

Table 1. Comparison of instance size distributions of the RSOD, UCAS-AOD, and DOTA datasets.

Datasets Below 10 Pixels 10–50 Pixels 50–300 Pixels Above 300 Pixels

RSOD 0% 36% 60% 4%
UCAS-AOD 0% 32% 68% 0%

DOTA 16% 69% 14% 1%
UAVDT 1% 89% 10% 0%

3.2. Evaluation Metrics

As evaluation metrics, we chose precision (P), recall (R), average precision (AP), and
mean average precision (mAP), which are frequently employed in target detection.

P and R are defined as:
P =

TP
TP + FP

, (22)

R =
TP

TP + FN
. (23)

where TP is true positive, FP is false positive, TN is true negative, and FN is false negative.
AP is defined as the area of the P-R curve created using precision and recall as follows:

AP =
∫ 1

0
P(R)dR, (24)

where P(·) represents the P-R curve function. Using AP, we can precisely determine the
model’s capture capability for various objects.

Sensors 2023, 23, 2522 12 of 23

The mAP is the average of the APs for all categories and accurately reflects the model’s
overall predictive performance. The definition is as follows:

mAP =
1
K

K

∑
i=1

APi, (25)

where K represents the number of categories and APi represents the mean precision of the
i-th category.

Table 2. Division of the RSOD, UCAS-AOD, and DOTA datasets.

Datasets Class Image Number

RSOD

Training Set

Oil Tank 102
Aircraft 270

Overpass 140
Playground 140

Test Set

Oil Tank 63
Aircraft 176

Overpass 36
Playground 49

UCAS-AOD

Training Set Aircraft 600
Car 310

Test Set
Aircraft 400

Car 200

DOTA
Training Set - 14,729

Test Set - 5066

UAVDT
Training Set - 23,829

Test Set - 16,580

Using the aforementioned indicators, we could evaluate our strategy effectively.

3.3. Implementation Details

Our proposed DET-YOLO was implemented in Windows 10 using the 1.8.1 version of
the PyTorch framework. The experiments were conducted on a desktop computer equipped
with an Intel i9-7920X processor and an NVIDIA RTX 2080 ti graphics processing unit with
11 GB of memory.

We proposed that DEViT serve as the backbone of DET-YOLO in place of CSPDark-
Net53. As a pre-trained model for DEViT, we partially inherited the ViT model trained on
ImageNet using the MAE method. According to [45], we used the SGD optimizer with an
initial learning rate of 0.01 and a momentum of 0.937 for training. According to [46], DET-
YOLO was trained for 50 epochs on the RSOD and UCAS-AOD datasets and 150 epochs
on the DOTA dataset. According to the characteristics of the different datasets [47,48], the
images in the DOTA dataset were input to the network at a size of 1024 × 1024, whereas
the images in the RSOD and UCAS-AOD datasets were resized to 608 × 608 to improve
the feature extraction ability of small targets while maintaining a small network scale. We
kept the original dimensions of the images in the UAVDT dataset as an input to the model.

4. Experimental Results and Discussion
4.1. Contrasting Experiments

To determine the efficacy and universality of DET-YOLO, we compared it to the most
representative methods on the DOTA, RSOD, and UCAS-AOD datasets. The experimental
outcomes for three distinct datasets are shown in Tables 3–6. Table 3 demonstrates that
the mAP on the DOTA dataset was 0.728, which was an improvement of 0.012 over the
suboptimal model SPH-YOLOv5, demonstrating that our model has excellent detection

Sensors 2023, 23, 2522 13 of 23

performance for small and very small targets. Table 4 demonstrates that our model achieved
an mAP of 0.952 on RSOD, which was an improvement of 0.066 over the suboptimal model
YOLOv5 and substantiated the efficacy of medium and large target detection. Table 5
demonstrates that our model achieved an mAP of up to 0.945 on UCAS-AOD, which was an
improvement of 0.070 over the suboptimal model YOLOv5, demonstrating that our model
has excellent detection performance for small and medium-sized targets, such as vehicles
and airplanes. Table 6 demonstrates that our method achieved an mAP of up to 0.424 on the
UAVDT dataset, which was an improvement of 0.005 over the suboptimal model YOLOv5,
demonstrating that our method is applicable to UAV images. In conclusion, the detection
performance of our proposed DET-YOLO for aerial targets of various sizes, particularly
small targets, was superior to that of the current principal methods, demonstrating the
efficacy of this method.

Table 3. Comparison of the performances on the DOTA dataset.

Methods p R mAP (IOU = 0.5)

Faster R-CNN 0.710 0.594 0.631
SSD 0.696 0.522 0.587

RetinaNet 0.714 0.585 0.622
YOLOv3 0.716 0.532 0.575
YOLOv4 0.732 0.593 0.653
YOLOv5 0.742 0.607 0.659

TPH-YOLOv5 [49] 0.785 0.643 0.683
SPH-YOLOv5 [47] 0.806 * 0.683 0.716

DET-YOLO 0.748 0.668 0.728
* Bold indicates the best result in the current table. Tables 4–6 are the same.

Table 4. Comparison of the performances of various models on the RSOD dataset.

Methods p R
AP

Aircraft Oil Tank Overpass Playground mAP (IOU = 0.5)

Faster R-CNN 0.873 0.748 0.859 0.867 0.882 0.904 0.878
SSD 0.824 0.682 0.692 0.712 0.702 0.813 0.729

RetinaNet 0.893 0.846 0.867 0.882 0.817 0.902 0.867
YOLOv3 0.850 0.693 0.743 0.739 0.751 0.852 0.771
YOLOv4 0.903 0.735 0.855 0.858 0.862 0.914 0.872
YOLOv5 0.897 0.872 0.873 0.884 0.854 0.932 0.886

DET-YOLO 0.925 0.909 0.925 0.963 0.918 1.000 0.952

Table 5. Comparison of the performances of various models on the UCAS-AOD dataset.

Methods p R
AP

Airplane Car mAP (IOU = 0.5)

Faster R-CNN 0.896 0.775 0.873 0.865 0.869
SSD 0.770 0.574 0.702 0.726 0.714

RetinaNet 0.887 0.742 0.843 0.865 0.854
YOLOv3 0.772 0.692 0.757 0.756 0.757
YOLOv4 0.894 0.732 0.857 0.862 0.859
YOLOv5 0.892 0.785 0.892 0.858 0.875

DET-YOLO 0.962 0.863 0.997 0.892 0.945

We plotted P-R curves and confusion matrices of DET-YOLO on the DOTA dataset to
demonstrate the DET-YOLO detection performance for each category of the aerial targets.
Figures 8 and 9 show the P-R curve and the confusion matrix, respectively.

Sensors 2023, 23, 2522 14 of 23

Table 6. Comparison of the performances of various models on the UAVDT dataset.

Methods p R
AP

Car Truck Bus mAP (IOU = 0.5)

YOLOv4 0.438 0.431 0.765 0.104 0.332 0.400
YOLOv5 0.471 0.427 0.767 0.121 0.349 0.419

DET-YOLO 0.464 0.432 0.777 0.131 0.365 0.424

Sensors 2023, 23, x FOR PEER REVIEW 15 of 24

We plotted P-R curves and confusion matrices of DET-YOLO on the DOTA dataset
to demonstrate the DET-YOLO detection performance for each category of the aerial tar-
gets. Figures 8 and 9 show the P-R curve and the confusion matrix, respectively.

Figure 8. The P-R curve of DET-YOLO on the DOTA dataset at an IoU threshold of 0.45 and a con-
fidence threshold of 0.25.

(a)

Figure 8. The P-R curve of DET-YOLO on the DOTA dataset at an IoU threshold of 0.45 and a
confidence threshold of 0.25.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 24

We plotted P-R curves and confusion matrices of DET-YOLO on the DOTA dataset
to demonstrate the DET-YOLO detection performance for each category of the aerial tar-
gets. Figures 8 and 9 show the P-R curve and the confusion matrix, respectively.

Figure 8. The P-R curve of DET-YOLO on the DOTA dataset at an IoU threshold of 0.45 and a con-
fidence threshold of 0.25.

(a)

Figure 9. Cont.

Sensors 2023, 23, 2522 15 of 23Sensors 2023, 23, x FOR PEER REVIEW 16 of 24

(b)

Figure 9. Confusion matrix of DET-YOLO on the DOTA dataset at an IoU threshold of 0.45 and a
confidence threshold of 0.25: (a) Confusion matrix based on the class of the target; (b) Confusion
matrix based on the size of the target.

The AP of each category is the area below the corresponding P-R curve. The greater
the AP, the better the detection performance for this category, and the larger the corre-
sponding area. Each row of the confusion matrix represents an actual category of the sam-
ple, while each column represents the predicted category. The entire matrix reflects the
model’s ability to classify the objectives of each category. The horizontal background rep-
resents FP, the negative sample proportion of the prediction error, and the vertical back-
ground represents FN, the positive sample proportion of the prediction error. In the con-
fusion matrix, the diagonal data indicate the proportions of correctly classifiable catego-
ries. From the P-R curve, it can be seen that the prediction accuracy for container cranes
was far lower than that of the other categories. Moreover, the confusion matrix in Figure
9a reveals that the FN value corresponding to container cranes was the highest, indicating
a severe leakage phenomenon. This was because the number of training samples with
container cranes was significantly lower than the other training samples, and there were
only 774 in 970,170 instances, which made it difficult for the model to fit the corresponding
features and led to the model’s poor feature extraction ability, making it difficult to effec-
tively identify such targets. On the other hand, although the corresponding accuracy for
small vehicles was great, the corresponding FP value was the highest, and there was a
serious misdetection phenomenon. Small vehicles are small or extremely small targets,
and there is a phenomenon known as stacking. Moreover, the cutting of the images caused
some small vehicles in the dataset not to be marked, which further affected the FP value
of the small vehicles. The confusion matrix in Figure 9b demonstrates that as the target
became smaller, the prediction accuracy of the model decreased, with increasing leakage
and misdetection.

We tested the reasoning speeds of different methods on the DOTA dataset, as shown
in Table 7. Our method’s speed was between YOLOv4 and YOLOv5, as can be seen. DET-
YOLO’s inference speed was slower than that of YOLOv4 because self-attentive opera-
tions are more computationally complex than convolutional operations. In addition,

Figure 9. Confusion matrix of DET-YOLO on the DOTA dataset at an IoU threshold of 0.45 and a
confidence threshold of 0.25: (a) Confusion matrix based on the class of the target; (b) Confusion
matrix based on the size of the target.

The AP of each category is the area below the corresponding P-R curve. The greater the
AP, the better the detection performance for this category, and the larger the corresponding
area. Each row of the confusion matrix represents an actual category of the sample, while
each column represents the predicted category. The entire matrix reflects the model’s
ability to classify the objectives of each category. The horizontal background represents
FP, the negative sample proportion of the prediction error, and the vertical background
represents FN, the positive sample proportion of the prediction error. In the confusion
matrix, the diagonal data indicate the proportions of correctly classifiable categories. From
the P-R curve, it can be seen that the prediction accuracy for container cranes was far
lower than that of the other categories. Moreover, the confusion matrix in Figure 9a reveals
that the FN value corresponding to container cranes was the highest, indicating a severe
leakage phenomenon. This was because the number of training samples with container
cranes was significantly lower than the other training samples, and there were only 774 in
970,170 instances, which made it difficult for the model to fit the corresponding features
and led to the model’s poor feature extraction ability, making it difficult to effectively
identify such targets. On the other hand, although the corresponding accuracy for small
vehicles was great, the corresponding FP value was the highest, and there was a serious
misdetection phenomenon. Small vehicles are small or extremely small targets, and there is
a phenomenon known as stacking. Moreover, the cutting of the images caused some small
vehicles in the dataset not to be marked, which further affected the FP value of the small
vehicles. The confusion matrix in Figure 9b demonstrates that as the target became smaller,
the prediction accuracy of the model decreased, with increasing leakage and misdetection.

We tested the reasoning speeds of different methods on the DOTA dataset, as shown
in Table 7. Our method’s speed was between YOLOv4 and YOLOv5, as can be seen. DET-
YOLO’s inference speed was slower than that of YOLOv4 because self-attentive operations
are more computationally complex than convolutional operations. In addition, deformable
embedding is a large kernel convolutional operation, which further slowed down DET-

Sensors 2023, 23, 2522 16 of 23

YOLO’s inference speed. Overall, our proposed DEViT required more computational
resources and had greater feature extraction capability than YOLOv4’s CSPDarknet53.
The more complex feature extraction network is the primary reason why DET-YOLO’s
inference speed was slower than that of YOLOv4. YOLOv5 introduced a greater number
of CSP structures in the neck than YOLOv4, resulting in a larger neck with more feature
fusion capability and a reduction in the inference speed. DET-YOLO was faster than
YOLOv5 because a large number of skip connection structures were discarded, and the
use of FFCN sped up the calculation of DEViT. Future research should focus on how to
enhance self-attentive modules and on embedding methods to increase speed.

Table 7. A comparison of the inference times for various methods on DOTA datasets.

Methods Speed (ms per Picture)

YOLOv3 28.4 ms
YOLOv4 43.2 ms
YOLOv5 102.0 ms

TPH-YOLOv5 123.5 ms
DET-YOLO 62.1 ms

As shown in Figure 10, we visualized the prediction results on DOTA, RSOD, and
UCAS-AOD and compared them with YOLOv4 and YOLOv5 to demonstrate the predictive
effect of DET-YOLO.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 24

deformable embedding is a large kernel convolutional operation, which further slowed
down DET-YOLO’s inference speed. Overall, our proposed DEViT required more com-
putational resources and had greater feature extraction capability than YOLOv4’s
CSPDarknet53. The more complex feature extraction network is the primary reason why
DET-YOLO’s inference speed was slower than that of YOLOv4. YOLOv5 introduced a
greater number of CSP structures in the neck than YOLOv4, resulting in a larger neck with
more feature fusion capability and a reduction in the inference speed. DET-YOLO was
faster than YOLOv5 because a large number of skip connection structures were discarded,
and the use of FFCN sped up the calculation of DEViT. Future research should focus on
how to enhance self-attentive modules and on embedding methods to increase speed.

Table 7. A comparison of the inference times for various methods on DOTA datasets.

Methods Speed (ms per Picture)
YOLOv3 28.4 ms
YOLOv4 43.2 ms
YOLOv5 102.0 ms

TPH-YOLOv5 123.5 ms
DET-YOLO 62.1 ms

As shown in Figure 10, we visualized the prediction results on DOTA, RSOD, and
UCAS-AOD and compared them with YOLOv4 and YOLOv5 to demonstrate the predic-
tive effect of DET-YOLO.

Ground Truth

YOLOv4

Figure 10. Cont.

Sensors 2023, 23, 2522 17 of 23Sensors 2023, 23, x FOR PEER REVIEW 18 of 24

YOLOv5

DET-YOLO

(a)

Ground Truth

YOLOv4

Figure 10. Cont.

Sensors 2023, 23, 2522 18 of 23Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

YOLOv5

DET-YOLO

(b)

Ground Truth

YOLOv4

YOLOv5

Figure 10. Cont.

Sensors 2023, 23, 2522 19 of 23Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

DET-YOLO

(c)

Ground Truth

YOLOv4

YOLOv5

DET-YOLO

(d)

Figure 10. Experimental results for (a) DOTA dataset; (b) RSOD dataset; (c) UCAS-AOD dataset;
and (d) UAVDT dataset.

4.2. Ablation Experiments
In order to confirm the efficacy of the modifications we made, we conducted ablation

experiments on each component; the results are presented in the Table 8. We used
YOLOv4 as our baseline. After converting the backbone from cspdarknet53 to ViT, it was
discovered that mAP decreased. This was due to the fact that ViT uses a crude linear em-
bedding layer to convert images to high-dimensional embeddings, thereby destroying a
substantial amount of effective feature information. After FPN was replaced with DSDP,
the mAP increased by 0.014. This was a result of DSDP, which focuses the network on the
target area and mitigates, to some extent, the target loss caused by cutting during the em-
bedding process. However, after replacing linear embedding with deformable embed-
ding, the mAP was greatly increased by 0.037. This was due to the fact that the cutting
window could be deformed adaptively during the embedding procedure, effectively pre-
serving the feature data. In comparison to ViT, which employs deformable embedding

Figure 10. Experimental results for (a) DOTA dataset; (b) RSOD dataset; (c) UCAS-AOD dataset; and
(d) UAVDT dataset.

4.2. Ablation Experiments

In order to confirm the efficacy of the modifications we made, we conducted ablation
experiments on each component; the results are presented in the Table 8. We used YOLOv4
as our baseline. After converting the backbone from cspdarknet53 to ViT, it was discovered
that mAP decreased. This was due to the fact that ViT uses a crude linear embedding
layer to convert images to high-dimensional embeddings, thereby destroying a substantial
amount of effective feature information. After FPN was replaced with DSDP, the mAP
increased by 0.014. This was a result of DSDP, which focuses the network on the target
area and mitigates, to some extent, the target loss caused by cutting during the embedding
process. However, after replacing linear embedding with deformable embedding, the
mAP was greatly increased by 0.037. This was due to the fact that the cutting window
could be deformed adaptively during the embedding procedure, effectively preserving
the feature data. In comparison to ViT, which employs deformable embedding rather

Sensors 2023, 23, 2522 20 of 23

than linear embedding, DEViT’s spatial feature extraction capability was enhanced by
its use of FCFN rather than FFN. Consequently, the mAP increased by 0.023. Using
DSDP instead of FPN based on DEViT increased the mAP by 0.018, the same as before.
We thoroughly demonstrated the effectiveness of the proposed modules. Among them,
deformable embedding improved the mAP by approximately 0.04; followed by FCFN,
which improved the model accuracy by approximately 0.02; and DSDP, which improved
the model accuracy by approximately 0.02. In addition, we showed the effect of replacing
FCFN with a self-attention transformation (SAT) and DSDP with a pyramid attention layer
(PAL) in DET-YOLO, as shown in rows 6 and 7. The mAP using SAT was 0.717, which was
a decrease of 0.011 compared to using FCFN. The mAP using PAL was 0.720, which was a
decrease of 0.008 compared to DSDP.

Table 8. The results of ablation experiments on DOTA datasets.

Methods ViT DE DEViT FPN DSDP SAT PAL mAP0.50 mAP0.50:0.95

YOLOv4
√

0.653 0.438

DET-
YOLO

√ √
0.650 0.433√ √
0.664 0.447√ √ √
0.687 0.471√ √
0.710 0.495√ √ √ √
0.717 0.509√ √
0.720 0.514√ √
0.728 0.515

5. Conclusions

On the basis of YOLOv4, we developed DET-YOLO to address the issues of diverse
target sizes, complex background, and the large number of small targets in aerial images.
We improved YOLOv4 from two perspectives, the network for feature extraction and
the network for feature fusion, in order to better adapt it to the characteristics of aerial
images. On one hand, we proposed DEViT to replace CSPDarknet53 as the network
for feature extraction in order to improve the global capability for feature extraction.
DEViT uses deformable embeddings instead of linear embeddings to effectively reduce
the loss of feature information when processing targets at different scales compared to
conventional vision transformers. We used FCFN rather than FFN in the DEViT encoder
block to improve the extraction of location information while simultaneously reducing
computational effort. On the other hand, we made a replacement for the FPN in the neck.
As an alternative to the FPN, we proposed DSDC for extracting multiscale features from a
single-scale feature map. DSDC is capable of adaptively focusing on key regions in order
to enhance the ability to extract information about desired feature targets. DET-YOLO
was evaluated using the widely used DOTAv1.5, RSOD, and UCAS-AOD datasets. For
these datasets, the mAP values of the method proposed in this paper were 0.728, 0.952, and
0.945, which were superior to YOLOv4. The preceding results conclusively demonstrated
the efficacy of the proposed DET-YOLO algorithm for object detection in aerial images.
Experiments with ablation demonstrated that each of the proposed modules had a practical
enhancement effect. In general, our proposed DET-YOLO model is a detector suited for
aerial target detection tasks. In a subsequent work, we will enhance the linear embedding
process of the transformer and attempt to apply deformable embedding to the hierarchical
transformer model, thereby making the transformer model more suited to specific tasks in
aerial imagery.

Sensors 2023, 23, 2522 21 of 23

Author Contributions: Conceptualization, Y.W.; methodology, Y.W.; software and experiments, Y.W.;
validation, Y.W.; writing—original draft preparation, Y.W.; writing—review and editing, J.L.; funding
acquisition, J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation (grant number
31574727) and the General Program of the Natural Science Foundation of Hunan Province (grant
number 202049382).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, J.; Moon, S.; Nam, D.W.; Lee, J.; Oh, A.R.; Yoo, W. A Study on the Identification of Warship Type/Class by Measuring

Similarity with Virtual Warship. In Proceedings of the 2020 International Conference on Information and Communication
Technology Convergence (ICTC), Jeju, Republic of Korea, 21–23 October 2020; pp. 540–542.

2. Reilly, V.; Idrees, H.; Shah, M. Detection and tracking of large number of targets in wide area surveillance. In Computer
Vision—ECCV 2010, Proceedings of the 11th European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010;
Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 186–199.

3. Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote
sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [CrossRef]

4. Yang, N.; Li, J.; Mo, W.; Luo, W.; Wu, D.; Gao, W.; Sun, C. Water depth retrieval models of East Dongting Lake, China, using GF-1
multi-spectral remote sensing images. Glob. Ecol. Conserv. 2020, 22, e01004.

5. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

6. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision, (ICCV), Santiago, Chile,
7–13 December 2015; pp. 1440–1448.

7. Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]

8. He, K.M.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on
Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

9. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

10. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

11. Redmon, J.; Farhadi, A.J. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
12. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer

Vision—Eccv 2016, Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Leibe,
B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 9905, pp. 21–37.

13. Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional Single Shot Detector. arXiv 2017, arXiv:1701.06659.
14. Ma, W.; Wang, X.; Yu, J. A Lightweight Feature Fusion Single Shot Multibox Detector for Garbage Detection. IEEE Access 2020, 8,

188577–188586. [CrossRef]
15. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Gelly, S. An image is worth 16 × 16 words:

Transformers for image recognition at scale. In Proceedings of the International Conference on Learning Representations, Virtual
Event, 3–7 May 2021.

16. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. In
Proceedings of the European Conference on Computer Vision (ECCV), Online, 23–28 August 2020; pp. 213–229.

17. Caron, M.; Touvron, H.; Misra, I.; Jégou, H.; Mairal, J.; Bojanowski, P.; Joulin, A. Emerging properties in self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021;
pp. 9650–9660.

18. Everingham, M.; van Gool, L.; Williams, C.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput.
Vis. 2010, 88, 303–338. [CrossRef]

19. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755.

20. Cheng, G.; Lang, C.; Wu, M.; Xie, X.; Yao, X.; Han, J. Feature enhancement network for object detection in optical remote sensing
images. J. Remote Sens. 2021, 2021, 9805389. [CrossRef]

http://doi.org/10.1109/LGRS.2017.2681128
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1109/ACCESS.2020.3031990
http://doi.org/10.1007/s11263-009-0275-4
http://doi.org/10.34133/2021/9805389

Sensors 2023, 23, 2522 22 of 23

21. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
22. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430.
23. Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. Cspnet: A new backbone that can enhance learning capability

of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
Seattle, WA, USA, 14–19 June 2020; pp. 1571–1580.

24. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

25. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768.

26. Misra, D. Mish: A self regularized non-monotonic activation function. arXiv 2019, arXiv:1908.08681.
27. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models. 2013. Available online:

https://www.mendeley.com/catalogue/a4a3dd28-b56b-3e0c-ac53-2817625a2215/ (accessed on 1 June 2021).
28. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-iou loss: Faster and better learning for bounding box regres-

sion. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 12993–13000.

29. Zhang, Y.-F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and Efficient IOU Loss for Accurate Bounding Box Regression.
arXiv 2021, arXiv:2101.08158. [CrossRef]

30. Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983.
31. Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone

for dense prediction without convolutions. arXiv 2021, arXiv:2102.12122.
32. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using

Shifted Windows. arXiv 2021, arXiv:2103.14030.
33. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation

through attention. In Proceedings of the International Conference on Machine Learning, Pasadena, CA, USA, 13–15 December
2021; pp. 10347–10357.

34. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773.

35. Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415.
36. Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D. Mobilenets: Efficient convolutional neural networks for mobile vision

applications. arXiv 2017, arXiv:1704.04861.
37. Islam, M.; Jia, S.; Bruce, N. How much position information do convolutional neural networks encode. arXiv 2020,

arXiv:2001.08248.
38. Li, Y.; Mao, H.; Girshick, R.; He, K. Exploring plain vision transformer backbones for object detection. arXiv 2022, arXiv:2203.16527.
39. Long, Y.; Gong, Y.; Xiao, Z.; Liu, Q. Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural

Networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2486–2498. [CrossRef]
40. Zhu, H.; Chen, X.; Dai, W.; Fu, K.; Ye, Q.; Jiao, J. Orientation robust object detection in aerial images using deep convolutional

neural network. In Proceedings of the 2015 IEEE International Conference on Image Processing, Quebec City, QC, Canada, 27–30
September 2015; pp. 3735–3739.

41. Du, D.; Qi, Y.; Yu, H.; Yang, Y.; Duan, K.; Li, G.; Zhang, W.; Huang, Q.; Tian, Q. The unmanned aerial vehicle benchmark:
Object detection and tracking. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14
September 2018; pp. 370–386.

42. Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. Dota: A large-scale dataset for object
detection in aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–23 June 2018; pp. 3974–3983.

43. Xu, D.; Wu, Y. Improved YOLO-V3 with DenseNet for Multi-Scale Remote Sensing Target Detection. Sensors 2020, 20, 4276.
[CrossRef] [PubMed]

44. Xu, D.; Wu, Y. MRFF-YOLO: A Multi-Receptive Fields Fusion Network for Remote Sensing Target Detection. Remote Sens. 2020,
12, 3118. [CrossRef]

45. Jocher, G.; Nishimura, K.; Mineeva, T. Yolov5. Available online: https://github.com/ultralytics/yolov5 (accessed on
23 September 2022).

46. Prechelt, L. Early stopping—But when? In Neural Networks: Tricks of the Trade, 2nd ed.; Springer: Berlin/Heidelberg, Germany,
2012; pp. 53–67.

47. Gong, H.; Mu, T.; Li, Q.; Dai, H.; Li, C.; He, Z.; Wang, W.; Han, F.; Tuniyazi, A.; Li, H.; et al. Swin-Transformer-Enabled YOLOv5
with Attention Mechanism for Small Object Detection on Satellite Images. Remote Sens. 2022, 14, 2861. [CrossRef]

http://doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
https://www.mendeley.com/catalogue/a4a3dd28-b56b-3e0c-ac53-2817625a2215/
http://doi.org/10.1016/j.neucom.2022.07.042
http://doi.org/10.1109/TGRS.2016.2645610
http://doi.org/10.3390/s20154276
http://www.ncbi.nlm.nih.gov/pubmed/32751868
http://doi.org/10.3390/rs12193118
https://github.com/ultralytics/yolov5
http://doi.org/10.3390/rs14122861

Sensors 2023, 23, 2522 23 of 23

48. Long, X.; Deng, K.; Wang, G.; Zhang, Y.; Dang, Q.; Gao, Y.; Shen, H.; Ren, J.; Han, S.; Ding, E.; et al. PP-YOLO: An effective and
efficient implementation of object detector. arXiv 2020, arXiv:2007.12099.

49. Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. Tph-yolov5: Improved yolov5 based on transformer prediction head for object detection on
drone- captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Nashville, TN, USA,
19–25 June 2021; pp. 2778–2788.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Methodology
	Review of YOLOv4
	DET-YOLO
	Deformable Embedding Vision Transformer
	Deformable Embedding
	Full Convolution Feedforward Network

	Depthwise Separable Deformable Pyramid
	Depthwise Separable Deformable Convolution
	Depthwise Separable Deformable Pyramid Module

	Datasets and Experimental Settings
	Data Description
	Evaluation Metrics
	Implementation Details

	Experimental Results and Discussion
	Contrasting Experiments
	Ablation Experiments

	Conclusions
	References

