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Abstract: This paper describes a framework for detecting welding errors using 3D scanner data.
The proposed approach employs density-based clustering to compare point clouds and identify
deviations. The discovered clusters are then classified according to standard welding fault classes.
Six welding deviations defined in the ISO 5817:2014 standard were evaluated. All defects were
represented through CAD models, and the method was able to detect five of these deviations.
The results demonstrate that the errors can be effectively identified and grouped according to the
location of the different points in the error clusters. However, the method cannot separate crack-
related defects as a distinct cluster.
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1. Introduction

Industrial digitalization has opened up new dimensions to make industrial processes
more efficient. The quality control of the welding is a significant challenge to achieve
autonomous manufacturing [1]. The issue of compliance and the existence of quality has
become increasingly prominent with the concept of quality management [2]. Various
machine learning (ML) techniques can be used to solve problems related to welding
processes and make manufacturing more efficient [3]. The accuracy of welding processes
improved significantly with ML algorithms [4].

Welding technology encompasses a wide range of processes and variations, making
it a subject of extensive research. The use of raw materials in welding has been studied
in depth, with research focusing on the structural changes in the materials used for join-
ing [5]. This research typically includes laboratory testing with both destructive and
non-destructive methods, as well as microscopic examinations [6,7]. Additionally, there
is ongoing research on seam detection using image processing algorithms (based on laser
vision) and Kalman filter for trajectory optimization [8]. The laser vision technique [9] is
also used for adaptive measuring the actual weldments. The algorithm extracts the shape
features by constructing the characteristic triangle of the weld trajectory [10]. In recent
years, there has been an increase in research on artificial intelligence (AI) in the field of weld-
ing, which represents a promising new direction for research [11]. Breakthroughs in this
area, as well as related areas, are expected in the near future [12,13].

The test to verify the conformity of a welded joint is complex, due to the thermal
processes used in the technology. Standards, process safety, and economic aspects are
important factors to be incorporated. The test order is standardized. The listing surface and
volume deviations using defect categories and codes are one of the significant achievements
in welding quality management [2]. The standard shows three quality categories with
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limits for each deviation. On this basis, clear definitions are introduced for the acceptability
of welded joints. A welded joint is considered to be in compliance if the extent of any
defects it may contain is within the limits; otherwise, it is considered to be non-compliant.
In some cases, such as cracks, they are not acceptable in either quality class (not permit-
ted) [1]. The physical principle of the various non-contact inspection tools, successfully
used in many industrial applications to detect quality defects, belongs to the research
of image recognition and image processing [14]. Image processing tools are used for 3D
reconstruction, for example, in medical applications [15] and in specialized fields such
as identification of underwater objects [16].

The question of inhomogeneity of welds is also a challenge for non-destructive testing
using ultrasonic waves, which is applied in power plants to inspect welds. Among different
ultrasonic testing techniques, phased array ultrasonic testing (PAUT) determines the angle
and focal law and transmits pulses through the electromagnetic time delays of multiple
elements arrayed in phased array (PA) probes to generate a focused beam. It can detect
flaws present in multiple directions of the target under inspection [17].

Three-dimensional scanning is an accurate and fast non-contact measurement process
that creates a 3D point cloud of physical objects. Active non-contact scanning methods can
work using time of flight, triangulation, or structured light. The first two are specific to laser
scanning [18]. This process emits laser light or infrared or other special colored light and
then uses the returned light to create a spatial point mesh as a digital model by capturing
the surface coordinates (x, y, z) of the actual object (up to millions of points per second).
The technology is often used for reverse engineering, which creates a digital duplicate
of reality [19]. Technology is becoming increasingly accurate to meet design challenges.
The optics measure both the distortion of the grating and the intensity of the reflected light,
giving similarly accurate results as laser versions [20]. The accuracy of five microns experi-
enced in 3D scanning processes [21] is strongly setting-dependent (scanning conditions,
part surface quality). A laser scanning test has been considered for future work to achieve
similar accuracy, as 3D visualization models of complex and irregular schemes can be
constructed quickly and accurately [22]. These scanners have fixed and handheld peripherals
that can be adapted in the laboratory or to a robot. Increasingly sophisticated equipment has
enabled advanced point cloud processing (after scanning of parts) and faster non-destructive
material testing (comparison).

The point clouds should be sampled for more efficient data processing. One possible
solution to the processing of point clouds is fast global registration (FGR) and the iterative
closest point (ICP) algorithm, which creates pairwise correspondences between two point
clouds [23]. After fitting the point clouds, the distances can be calculated, and the deviation
can be identified with density-based clustering [24]. Density-based spatial clustering of ap-
plications with noise (DBSCAN) is the pioneer of density-based clustering techniques [23],
which can discover clusters of arbitrary shape and effectively handle noise or outliers. The
DBSCAN algorithm has a quadratic time complexity with dataset size and can be extended
to large datasets [25]. DBSCAN allows the identification of clusters of different shapes and
can handle noisy patterns in the data by classifying points in low-density regions as noise
and skipping them. Its operation is based on spatial density, which has several advantages
over other classical clustering algorithms. One of these advantages is its ability to iden-
tify clusters of arbitrary shapes correctly. Another is that it performs divisive clustering
by automatically determining the number of clusters, so it is not necessary to predetermine
their number.

The novelties and objectives of this article are as follows:

• A comprehensive discussion of the classification of weld defects is made based
on image processing and data analysis, including the qualitative variation of each
weld defect;

• A methodology is developed for the visualization of weld defects using computer-
aided design (CAD) with a results-oriented approach;
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• The point clouds processed by the 3D camera and modeled with CAD programs are de-
termined (point feature histogram—PFH); the descriptive characteristics of the points
prepares the clouds for coarse (FGR) and fine (ICP) matching;

• The weld defects are detected by density-based clustering (DBSCAN) by sorting the top
distance between point pairs, and the clustered errors are aligned to the standard.

The paper is structured as follows. The developed framework is detailed in Section 2.
In Section 2.1, the modeling of the defective CAD parts and the reference CAD workpiece
are presented, converting them into a point cloud, and then calculating point properties
(Section 2.2). The fitting process is performed using FGR and ICP algorithms (Section 2.3).
The clustering process using the DBSCAN clustering algorithm is shown in Section 2.4.
Finally, the results of the developed framework are presented in Section 3.

2. The Proposed CAD Model-Based Method of Generation and Analysis
of Error Distributions

A clustering-based framework is developed to detect qualitative variations of welded
joint defects (possible geometric variations of joints, weld convexity, root size smaller
or larger, edge efflorescence, inclusions, end crater, and cracks). The proposed framework
(see in Figure 1) started with the creation of point clouds. For the fitting, we need two
point clouds: a reference point cloud, which is a point cloud of a flawless part, and
a test point cloud, which is a point cloud of a defective part (Input block on Figure 1).
The process continues with sampling. After determining the point descriptor properties,
a coarse and fine-fitting process can follow (Cloud points matching block on Figure 1).
Finally, the clustering step localizes the centers of the errors (Clustering block on Figure 1).

Figure 1. Steps of the error analysis method: Input: the masterpiece and the actual work-
piece are scanned or modeled (CAD) as an input. Cloud point matching: sampling and fitting
the point clouds by fast global registration (FGR) and technique of iterative closest point (ICP).
Clustering: density-based clustering to get the centers of the potential faults.

A 3D reconstruction of the object was performed using structured light 3D scanning.
The resulting high-density point cloud was then converted into a mesh 3D model. An initial
step was added to the testing procedure to account for potential defects in real weldments.
CAD models of fillet welded models were created, incorporating non-conformities as out-
lined in ISO 5817:2014. These non-conformities were grouped into three quality categories,
with specific limits defined for each. For example, imperfection 5213, with a deviation
larger than the specified root size, was included as a separate CAD model. The point clouds
were compared from both the compliant and non-compliant CAD models, eliminating
other uncertainties present in real parts [26]. In other words, the system is trained with
CAD models, and its operation is validated through a 3D point cloud of a real welded joint.
These point clouds with errors are compared one by one with the point cloud of the CAD
model without errors. The purpose of the analysis was to obtain the deviations associated
with each error from the point cloud comparison and to explore their correlations.

The steps are described in the following subsections:
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• The prepared welded parts are scanned with the 3D scanner. CAD parts with de-
fects and a reference CAD workpiece are modeled (see Input block on Figure 1) and
converted into a point cloud for the training and test set (Section 2.1).

• Sampling generates a point cloud from the models (mesh files) for the validation set
(see Cloud points matching block on Figure 1). The point features should be calculated
to compare the two point clouds (Section 2.2).

• After computing the point properties, the technique of matching the point clouds
using the FGR and ICP algorithms (see Cloud points matching block on Figure 1) is
described (Section 2.3).

• The optimal percentile value is selected for PFH to facilitate efficient clustering
(see Clustering block on Figure 1). DBSCAN clustering is applied (Section 2.4).

2.1. Training and Validation Datasets

In the next step, point clouds of the different CAD models are created to compare
the real weldments. The following mathematical basis is used to compare the point clouds:

• Modeling the CAD models: P̂ is the 3D point-cloud of the masterpiece with p̂i (i = 1 . . . Np̂)
3D points, where Np̂ is the number of points; Q̂ is the 3D point-cloud of the test piece
with q̂j (j = 1 . . . Nq̂), where Nq̂ is the point number in the Q̂ cloud. For optimal point
matching, sampling is required.

• Sampling the resulting point clouds: Sampling is the systematic selection of a relatively
small number of representative elements or sub-clouds. After sampling, the point
clouds P = {p1, . . . , pN} and Q = {q1, . . . , qN} consisted of the same number (N)
of points necessary for a proper fit.

The scanning of the workpiece (Figure 2) for the validation set consists of the following steps:

1. Tray calibration according to the size of the workpiece. The projection grid is projected
by the projector onto the surface of the tray, followed by scanning of other details
of the background (rotation table).

2. The flawless workpiece is placed in the center of the tray, adjusting the rotation angle,
and the scanning process begins. The three-dimensional model, usually fused from six
or seven images, can be exported as a mesh model in various (.stl/.obj) formats.

3. Since the scanned file is currently a mesh model consisting of 3D points and triangles
(called surfaces), a point cloud is created from the models and used as the experimental
subject (data source) for the study.

4. The process is repeated with the workpiece containing the weld defect, with recom-
mended setup.

Figure 2. The 3D scanning process: (1) calibration of the tray with recommended properties;
(2) 3D scanning, camera position 6–8 cm to the left of the projector, camera angle to guide rail
100–102 degrees, tripod position top view of the subject of no more than 30 degrees) scanning with
6–8 shots; (3) point clouds fusion and extraction.

2.2. Determination of the Point Features

In the next step, the point feature descriptors (fast point feature histogram—FPFH) [27]
in P and Q are calculated (see Figure 3). According query points are ps to pi and qs to qi
neighbors. After calculating the point descriptors, point correspondences can be established
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by nearest-neighbor feature matching. The FGR filters the results with multiple tests (cor-
respondence rejection) to exclude false correspondences. It then estimates a transformation
to align the two clouds using the remaining correspondences. This transformation is the initial
transformation for the next step (transformation refinement with ICP).

Figure 3. Calculating of FPFH. The query point is ps and its neighbors are: p1, p2, p3, p4, p5.
The angular features are calculated for every point pair connected with a black line.

Our assumption is that the two objects are roughly identical, but due to the welding
errors, there are differences between the ideal and the point cloud at the welding area.
Therefore, we intended to match the two point clouds by performing a rough feature-based
registration. For this, point feature descriptors must compute the points in both clouds.
A point descriptor is a high-dimensional vector that encapsulates information and describes
the underlying surface at a query point. There are many feature descriptor algorithms.
We apply the FPFH [28], following the authors of FGR. The FPFH can compute efficiently
and provides good matching accuracy.

The FPFH is based on the PFH, which was an earlier and slightly different version
with higher computational complexity and dimensionality. Both of them represent the re-
lationship (Equation (1)) between normal vectors of point pairs (ns, nt) using different
angular features (α, β, γ). A point pair (p1, ps) needs to first define (Equation (2)) a fixed
coordinate frame (uwv) to calculate the angular features (Equation (3)) as follows: u = ns,
v = (p1 − ps) × u, w = u × v. The three angular features can be computed for a pair
of points:

α = v× ns (1)

β =
pi − ps

||pi − ps||
× u (2)

γ = arctan(t× nt, u× ns) (3)

Let Nps (Equation (4)) be the neighborhood of a query point ps in a given radius (r):

Nps = {pi|‖ps − pi‖ < r} (4)

The simplified point feature histogram (SPFH) of a query point ps (Equation (5)) is
the histogram of the angular features of all point pairs, in which the first point is the query
point (ps) and the second point is one of its neighbors:

{(ps, pi)|pi ∈ Nps} (5)

In two steps (Equation (6)), we can obtain the FPFH feature of a query point ps.
First, calculate the SPFH for the query point ps itself. In the second step, calculate the SPFH
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for each point pi in the neighborhood (pi ∈ Nps ) (see Figure 3). After weighing the his-
togram of neighboring points with the distance, we get the final FPFH histogram:

FPFH(ps) = SPFH(ps) +
1
|Nps |

|Nps |

∑
i=1

1
ωi
× SPFH(pi), (6)

where ωi is the distance between the query point ps and its neighbor pi (pi ∈ Nps ).
The same steps are performed for Q.

2.3. Fitting of the Point Clouds, FGR then ICP

An approximate registration between pi and qi is performed to match the two point
clouds, which requires the calculation of a point descriptor. FGR estimates a transformation
that alights two point clouds together based on point correspondences between the two
clouds. Correspondences are established by feature matching. These algorithms produce
fewer tight matching results. The utility function represents the transformed source and
target point clouds. Although the approach is faster than ICP, its performance could be
better on large sample point clouds, which alone does not give valuable results. Therefore,
a local refinement algorithm needs to refine the matching further [29]. Because ICP needs
an initial transformation, it is used mainly in conjunction with FGR. Iterative matching
uses the ICP method between the P and Q matrices. The ICP algorithm iterates through
the following steps:

1. Determination of correspondences
First, we search for a correspondence set C, which contains matching index pairs.
For each point in the P cloud, we search for its nearest neighbor from Q. Their indexes
form a pair.

2. Transformation estimation

• Find the center of mass (Equations (7) and (8)) of two sets of points:

µQ =
1
|C| × ∑

(i,j)∈C
qi (7)

µP =
1
|C| × ∑

(i,j)∈C
pj (8)

• Subtract the corresponding center of mass (Equations (9) and (10)) from every point:

q′i = qi − µQ (9)

p′j = pj − µP (10)

• Find a translation vector t and rotation matrix R (Equation (11)) that minimizes
the sum of squared errors:

E(R, t) = ∑
(i,j)∈C

∥∥qi − Rpj − t
∥∥2 (11)

• This problem can be solved through singular value decomposition (SVD, Equation (12)),
which is used to minimize the distance between the points [30].
We compute the cross-covariance matrix:

W = ∑
(i,j)∈C

q′ip
′
j
T (12)
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• We then use the SVD (Equation (13)) to decompose:

W = UDVT, (13)

where U, V are 3× 3 rotation matrices.
• If rank W is 3, the parameters minimizing E(R, t) are unique and given by

Equations (14) and (15):
R = UVT (14)

t = µQ − RµP (15)

3. Transformation
Finally, the translated and rotated point (in Equation (16)) can be obtained:

p̄j ← R(pj − µP) + µQ (16)

4. Iteration
Steps 1–3 are repeated, refining the transformation itself, getting closer to the overlap
between the two point clouds so that the clouds fit together better.

After ICP, we get a final transformation that can be used to transform the point cloud.
Now that the two point clouds have aligned, the distance between them can be calculated.

2.4. Clustering Based on Density

After the ICP, we can calculate the distance between two point clouds using the method
compute point cloud distance provided by Open3D. It calculates the distance to the nearest
point in the target point cloud for each source point cloud. We use Euclidean distance
(Equation (17)) to calculate the distance:

NNQ(p̄) = ||p̄− q||2 | p̄ ∈ P̄ ∧ q ∈ Q ∧ q (17)

where NNQ(p̄) returns with the nearest point to p̄ from Q.
The values will approach zero where the two clouds are nearly identical.

However, the distance will increase if a discrepancy or a welding error is valid.
For the distance values, a threshold is set to select the few thousand points that are “fur-
thest” apart in terms of the position of the two point clouds. This can be a percentage
threshold or a specific distance. The NN10

Q (p̄) is clustered as the top ten percent of NNQ(p̄).
Because the location of these points varies with density, they are suitable for density-based
analysis. Thus, the (sorted) distance values are considered the input dataset for the density-
based algorithm.

Clustering is based on distance or similarity measures (e.g., density). The DBSCAN al-
gorithm is a traditional density-based clustering method, currently presented in a OPEN3D
Python environment. One of the key advantages of DBSCAN is that it does not re-
quire the user to specify the number of clusters. DBSCAN identifies points in a dataset
in high-density regions and marks them as core points, as shown in black in Figure 4.
These core points are then used to define clusters, data regions densely populated with
points. It then expands outward from these core points, adding points within a certain
distance (called the eps parameter) to the cluster. Core points contain at least minpoints
points in their eps neighborhood. Border points (shown in orange in Figure 4) does not
contain enough points in their neighborhood, but they fall in the neighborhood of some
core points [31]. Points that are not within the eps distance of a core point are considered noise
(red in Figure 4) and are not included in the clusters [32].
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Figure 4. Parameters and process of DBSCAN. DBSCAN begins by selecting a point randomly and
checks whether the selected point is a core point (if it contains at least minpoints number of minimum
points in its eps-neighborhood). It assigns each non-core point to the nearest cluster, or otherwise
assigns it to noise.

In our case, the eps value is related to the pcr value (Equation (18)), which has the mag-
nitude of the arithmetic mean of the distance between each point in the point cloud and its
neighbors (where the quotient has the number defined for sampling):

pcr(Q) = ∑
p̄∈Q

NNQ(p̄)/N (18)

The minpoints parameter of the DBSCAN is the minimum number of points per cluster
required for a point to be considered a dense region or valid cluster. The cluster number
indicates the minimum number of points a cluster can consist of.

After clustering, we can select the cluster that seems to be the problem and use the root-
mean-square error (RMSE) formula to determine its distance from the master cloud. RMSE
is calculated by following formula:

RMSE =

√√√√ N

∑
i=1

(p′i − q′i)
2

N
(19)

where i is the estimated time series, and the denominator is the sampling volume. For each
point in the identified clusters (errors), we examine how far it is from its nearest neighbor
in the reference. The higher RMSE value means a more problematic cluster.

3. Application of the Developed Clustering Method for Welding Defects Identification

In this section, we will prove the applicability of the developed framework on gener-
ated workpieces (see Section 3.1) and an actual physical workpiece (see Section 3.2). We
will show how we can detect welding defects based on the proposed framework in both
cases. Welding technology standards are used to assess the variation in weld defects, which
can be used to accurately determine the adequacy of welds. One of these standards is ISO
6520-1:2007, which deals with the main classification of defects and their precise descrip-
tion. The six main groups of defects are described in tabular form, each with an example
(see Table 1). The other standard that shows in detail the individual seam deviations
and their limits is ISO 5817:2014. The welding defects are categorized based on whether
they can be detected with the developed ML-based solution. The standard includes limits
in three quality categories or indicates acceptability by the terms not permitted and permitted.
The acceptability of a welded joint is based on the visible absence of defects in the weld and
the adequacy of all the tests described in the relevant procedure test standard. All types
of welds-related deviations have a “catalog number” or classification, given in Table 2 with
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limits. The number of imperfections is the number of the deviation recorded in the standard.
We calculated this for A5 weld sizes.

We applied the following software and hardware elements for the tests of the devel-
oped framework:

• 3D scanning: HP 3D Structured Light Scanner 5 Pro Edition scanner (0.05 mm maximum
accuracy) with software (vers.: 5.2.0.790), HP Development Company, L.P., Germany

• CAD models: Solid Edge Academic Edition (vers.:221.00.00.114),
• Point clouds to creating: Meshlab (fpv2020.12),
• Algorithm environment: Python (vers.: 3.7.7),
• Visualization field: Open3D (vers.: 21.1.3).

Table 1. Main imperfections and examples (according to ISO 6520-1 [33]). List of the main groups
of imperfections, their corresponding group numbers and descriptions, as well as an example of each
imperfection with an accompanying figure are included.

100—Crack, example:
transverse crack in the parent

material (1024)

200—Cavity, example: gas
cavity (2011)

300—Solid inclusion,
example: slag inclusion (301)

400—Lack of fusion and
penetration, example: lack
of inter-run fusion (4012)

500—Imperfect shape,
example: inter-run undercut

(5014)

600—Miscellaneous
imperfection, example:

spatter (602)

Table 2. Welding defects in fillet welds (according to ISO 5817) [26].

Limit Values

Imperfections B C D

Crack (100) (Figure 5a) not permitted not permitted not permitted

Excessive convexity (503)
(Figure 5b) 3 mm 4 mm 5 mm

Insufficient (5213) (Figure 5c) not permitted 1 mm 2 mm

Excessive throat thickness (5214)
(Figure 5c) 3 mm 4 mm 5 mm

Endcrater pipe (2025) (Figure 5d) not permitted 1 mm 2 mm

Intermittent undercut (5012)
(Figure 5e) 0.5 mm 0.5 mm 1 mm

Excessive asymmetry of fillet weld
(512) (Figure 5f) 2.25 mm 2.75 mm 3 mm
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Figure 5. Exemplary distributions—CAD models of welding deviations.

3.1. Performing Tests on Generated Workpieces

After fitting the CAD point clouds, the results of density-based clustering
(from the density characteristic (radius = 15× pcr) and a minimum number of points
per cluster is 100) are shown in Figure 5. The generated defects, except for two (crack and
end crater), form a separate cluster and are visible. The evaluation is defined as different
marginal deviations in the three quality categories (B, C, D). As you move down to BCD,
the standard becomes more permissive; for example, the height of the excessive convexity
can be up to 3 mm for category B, 4 mm for category C, and up to 5 mm for category D.

In the case of cracking, the defects generated do not show up as separate clusters,
even when moving towards the more permissive direction of the standard. The other
main groups of defects (solid inclusion, lack of fusion, imperfect shape, and miscellaneous
imperfection) are detectable by clusters (see Table 2):

• Crack (number of imperfection 100): For the test, a “brick body cavity” of
0.5 mm× 0.2 mm× 0.1 mm was created in the CAD model (Figure 5a). Regardless
of the defect type, the system detects the same percentage of the parts remaining
outside the scattered areas together with the cavitation defect cluster for both defect
clusters (225, 000 points for 90%). The least sensitive group for the test, due to the size
difference (100 points/250, 000 points), small and fragmented clusters are not visible
to the system, and the test cannot detect clusters with such low scores.

• Excessive convexity (number of imperfection 503): (Figure 5b).
• In case of Imperfect shape (number of main imperfection 500):

– Insufficient throat thickness (Smaller root size—number of imperfection 5213):
detectable in categories C and D.

– Excessive throat thickness (Larger root size—number of imperfection 5214):
(Figure 5c) detectable in categories C and D.

Clusters with roughly the same number of points for both error groups can respond
differently to the test because they have different geometric properties (for the case of exces-
sive convexity, a normal vector plus the reference). Above 90% (a score of approximately
25,000), the two groups separate in terms of cluster scores, whereas for bump-like defects,
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defects can still be detected with a minimal decrease; for other imperfection groups, after
a marked decrease, no defect-presenting cluster can be detected at 99%.

• End crater pipe (number of imperfection 5012) (Figure 5d) and Intermittent under-
cut (number of imperfection 2025) (Figure 5e): In these cases, minus normal vector
errors proportional to the reference point cloud are detected. The number of points
in the cluster detected as an error decreases steadily, and at 90%, the cluster product
of the generated error contains 5700 points. The linear decrease is also true for the error
group of the end craters, but the number of points in the cluster clouds is smaller,
from 288 to 176.

• Excessive asymmetry of fillet weld (number of imperfection 512) and dimension:
The most sensitive group of errors to analyze, the diversity of errors means that
detection is roughly 90% successful (Figure 5f). At this optimum percentage, the test
detects five clusters (all the errors represented).

In conclusion, density-based clustering cannot detect crack and end crater defects
due to their small size. Based on the location and extent of the clusters, the asymmetry
defect shows two distinct clusters on the seam, with excessive convexity and intermittent
undercut showing one cluster each along the entire length of the seam.

3.2. Performing Tests on Real Physical Workpieces

We used a Telwin Inverpulse 320 welding machine to create welded samples: 8− 8 speci-
mens, 50 mm long, with a5 welds (dimension of the height dimension of the triangle enclosing
the corner weld) were T-welded. We will show the lack of cutting accuracy required to produce
the part, and various burn-in problems can also be detected by examining the joints. The de-
fective test piece was fitted to a reference workpiece (validated best workpiece). As shown
in Figure 6, in addition to the differences in weld size, differences in geometrical size also
appeared separately (workpiece corners or deviations from planes). It is important to note that,
whereas in Figure 6, the red colors represent the furthest points from the reference workpiece,
in Figure 7, red is just one of the colors of the clusters sign.

Figure 6. Welding defects: excessive convexity defect (left) and intermittent undercut defect (right),
based on color temperature

Figure 7. Excessive convexity defect with centers of the mass from the top view. The index of red is
outside of the tolerance (3 mm) category B.
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We derived the value of eps from the density characteristic (15× pcr). According
to this radius, we have checked whether each point has a neighbor. The minimum number
of points per cluster has been set to 100 in this case, based on the number of dimensions
present in the dataset and the number of dimensions in the data [34]. The top 10% of the dis-
tances are obtained after the fits are clustered: the center of clusters and size distributions
exhibit characteristics typical of the types of weld defect. As many clusters as detectable,
as many errors are identified.

The testing process is similar to that described for generated workpieces. However,
after DBSCAN, not only a “perfect” defect is displayed. Therefore, the defect clusters
were sorted by their RMSE value (most significant value, upfront) and labeled by their
center of mass location on the workpiece (brown point—maximum RMSE value). As
shown in Figure 7, two of the center of mass points fall on welding seams (brown—down,
blue—up), but based on the sorted RMSE values, only the lower cluster requires further
investigation. The long red cluster does not exceed the tolerance values. The center of mass
of the other visible clusters is located inside the part.

Based on the RMSE values and the center of gravity values, whether the defect is
currently an excessive convexity defect (above the allowable value) or an intermittent
undercut defect (below the value) can be further investigated. The cluster indicates a weld
defect if the marking falls on a weld. In this case, the product must be repaired or scrapped.
The values of the clusters to be listed are shown in Table 3. Typical weld defects are
excessive convexity defects, where one of the centers of mass of the defective clusters
has a value beyond the tolerance, higher than the weld line height of the defect-free part.
The tolerance mentions three categories (B, C, D). As noted, the actual size is outside the B
tolerance category in one case.

Table 3. The values of the clusters. The text colors are matched with Figure 7.

Cluster ID Number
of Points RMSE Center of the Mass in Case

of Excessive Convexity Defect

0 3824 3.165 127.278, −57.460, 146.059

1 8433 2.089 160.334, −55.132, 107.931

2 6058 1.742 114.276, −64.487, 146.245

3 618 1.487 151.439, −61.352, 104.103

4 3741 1.106 144.248, −31.916, 121.838

5 172 0.832 130.808, −57.191, 124.218

The furthest values for fitting generated CAD models were 4.803 mm (B), 3.939 mm
(C), and 2.936 mm (D). The values are close to the standard (5–4–3 mm).

In conducting these experiments, we found the following:

• It is inefficient for the framework of the CAD model to contain errors of too small
a size; below a score of 200 (out of 250,000), no error is detectable. (Crack and end
crater defects cannot be detected.)

• Sub-surface defects cannot be detected due to weld seam gassing, and additional
investigations are needed.

• Comparing the image of the CAD model with the image of the welded workpiece is
unfortunate due to geometric differences, as differences not related to the weld scan
are also considered errors. Dimensional differences caused by inaccurate cuts generate
huge clusters.

• A glossy, transparent surface or all-black-and-white color will spoil the expected scan-
ning result. However, environmental preparation is also essential (from the projector
light, no brighter light in the room).
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• Care had to be taken to fine-tune the scan in the setup, but it is highly hardware-
dependent. Generating a 3D model from more than six (rotation angles less than
60 degrees) matching images makes the process slow.

4. Conclusions

This study presents a method for classifying weld defects in corner welded joints using
imaging techniques and data clustering. The developed framework employs a results-
oriented approach to visualize defects using CAD, with point clouds prepared for coarse
(FGR) and fine (ICP) matching by point features (PFH). Density-based clustering (DBSCAN)
is applied to the sorted distance between point pairs, resulting in several clusters. The lo-
cation of these clusters is then clarified by sorting and marking them on the workpiece.
The excessive convexity defect is presented as an example, with RMSE values of the clusters
compared to the standard. Clusters exceeding the limit value are marked by their center
of mass, which can be used to check whether the cluster with the critical value is located
on a weld seam. The generated and physical workpieces demonstrate the applicability
of the developed framework.

The limitation of the developed framework depends on the 3D scanning technology.
The quality of the scan is strongly influenced by the physical conditions: the settings used
in the preparation; the camera position away from the subject; the angle of the camera
to the horizontal or camera to the projector; the light conditions in the scanning room.
In addition, the machine vision methods can lack robustness when faced with varia-
tions in the manufacturing process or imaging conditions [35]. Using the DBSCAN al-
gorithm parameters eps = 100 can cause a failed defect detection for extremely small
(0.5 mm × 0.2 mm × 0.1 mm) weld defects (e.g., cracks), as less than 100 points are gener-
ated on the defect cluster surface out of 250, 000. Further reducing the value of eps, however,
thousands of clusters will be misclassified. It is important to note that for generated CAD
models if a fault passes through a full cross-section, some bias occurs in the calculation
of its maximum distance. It is emphasized that this method alone cannot be used for a com-
plete weld analysis, but it can speed up and automate the process. Based on standardized
tests, it is concluded most of the listed defects can be detected, with some limitations.
The center-of-mass coordinates of point sets can be used for graphical applications, allow-
ing for the visualization of the defect location for quality control purposes, and potentially
launching further research in this area.

The proposed method can be integrated into digital production processes, as it enables
the automation of the inspection process. This automation can either support or completely
replace human decision-making. However, it may result in incorrect decisions caused
by surface errors during rendering. To overcome this limitation, future work could consider
combining multiple methods and utilizing advanced convolutional neural techniques
as a potential solution.
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Nomenclature
The following abbreviations are used in this manuscript:

ps; pi Point pairs with angular features (FPFH)
ps; qs Query points (FPFH)
t Translation vector (ICP)
p′i ; q′i These are subtracted the corresponding center of mass from every point of P and Q

(ICP)
p̄ Translated and rotated points (ICP)
nt Normal of pt (FPFH)
ns Normal of ps (FPFH)
T Transformation matrix (ICP)
E(R, t) Objective function by R rotation matrix, and transformation vector t (ICP)
NNQ(p̄) The nearest neighbor of p̄ from cloud Q (DBSCAN)
NN10

Q (p̄) The top ten percent of NNQ(p̄) (DBSCAN)
P; Q Master and test point clouds after sampling (CAD models)
W Cross-covariance matrix (ICP)
P̂; Q̂ Master and test point clouds (CAD models)
C Correspondence set (ICP)
µP; µQ The centers of mass of the correspondence points (ICP)
α, φ, θ Different angular features (FPFH)
u; v; n Fixed coordinate frame (FPFH)
ωi Distance between the query point ps and its neighbor pi (FPFH)
Nps The neighborhood of a query point Ps (FPFH)
eps The algorithm checks by eps radius for each point whether it has neighbors or not,

according the minpoints parameter (DBSCAN)
minpoints The minimum number of points per cluster (DBSCAN)
pcr The arithmetic mean of the distance between each point in the point cloud and its

neighbors (DBSCAN)
RMSE Root-mean-square error (DBSCAN)
N Number of the points after the sampling
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