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Abstract: In heterogeneous image fusion problems, different imaging mechanisms have always ex-
isted between time-of-flight and visible light heterogeneous images which are collected by binocular
acquisition systems in orchard environments. Determining how to enhance the fusion quality is
key to the solution. A shortcoming of the pulse coupled neural network model is that parameters
are limited by manual experience settings and cannot be terminated adaptively. The limitations
are obvious during the ignition process, and include ignoring the impact of image changes and
fluctuations on the results, pixel artifacts, area blurring, and the occurrence of unclear edges. Aiming
at these problems, an image fusion method in a pulse coupled neural network transform domain
guided by a saliency mechanism is proposed. A non-subsampled shearlet transform is used to de-
compose the accurately registered image; the time-of-flight low-frequency component, after multiple
lighting segmentation using a pulse coupled neural network, is simplified to a first-order Markov
situation. The significance function is defined as first-order Markov mutual information to measure
the termination condition. A new momentum-driven multi-objective artificial bee colony algorithm
is used to optimize the parameters of the link channel feedback term, link strength, and dynamic
threshold attenuation factor. The low-frequency components of time-of-flight and color images, after
multiple lighting segmentation using a pulse coupled neural network, are fused using the weighted
average rule. The high-frequency components are fused using improved bilateral filters. The results
show that the proposed algorithm has the best fusion effect on the time-of-flight confidence image
and the corresponding visible light image collected in the natural scene, according to nine objective
image evaluation indicators. It is suitable for the heterogeneous image fusion of complex orchard
environments in natural landscapes.

Keywords: significance function; first-order Markov; mutual information; pulse coupled neural
network; image fusion

1. Introduction

Automatic apple fruit picking in natural environments can reduce the intensity of
heavy manual labor, which is an inevitable choice for modern agriculture [1]. The natural
light in northwest China is strong, and the visible light images collected in the natural
environment are vulnerable to the influences of changing light and complex backgrounds,
so the recognition effect lacks some robustness [2]. In the complex environment of orchard
operations, the most potential in vision research on picking robots lies in the technology
of heterogeneous image fusion (IF) between time-of-flight (ToF) images and visible light
images. The collected images have a variety of different attributes, including light invari-
ance, spatial hierarchy, infrared perception, reliability of discrimination data, etc. [2]. The
image is indirectly generated from the depth information, which can reflect the near—far
relationship and infrared reflection characteristics of different objects in the scene, and
the effect is not affected by light changes [2]. Image fusion generates a new information
processing process that interprets the scene from a different source image which cannot
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be obtained from the information obtained by a single sensor [2,3]. Determining how to
fuse ToF images and visible light images with different wavelength ranges and imaging
mechanisms with high quality is currently a topic of great interest in image fusion research.

A non-subsampled shearlet transform (NSST) is a multi-scale, multi-directional,
translation-invariant transform domain image decomposition method, which is widely
used in image fusion [4]. An NSST shearlet wave transform avoids the down-sampling
operation, and has the characteristics of translation invariance, simple operation, low time
complexity, etc. [5]. Compared with wavelet transforms such as the discrete wavelet trans-
form (DWT), stationary wavelet transform (SWT), discrete cosine transform (DCT), curvelet
transform, and contourlet transform, an NSST has a good effect on searching for edges
and contours. There are large numbers of deep neural network layers in deep learning
methods. This characteristic could lead to low efficiency and a high cost. The advantage
of an NSST is that it can fully fuse the source image information, and the fused image
has good correlation coefficient and information entropy, which is more suitable for the
situation where the image background in the natural orchard environment is complex, and
the contour and image texture information need to be fused at the same time.

Related works are summarized as follows: A pulse coupled neural network (PCNN)
is a neural network model established by simulating the activities of visual nerve cells
in the cerebral cortex. Similar pattern features are classified into categories based on
the principles of similarity clustering and capture characteristics [6]. In terms of image
fusion in a transform domain, Cheng et al. used an adaptive dual-channel pulse coupled
neural network with triple connection strength in the local non-down-sampled shear wave
transform domain to solve the spectral difference between infrared and visible light [7].
Panigrahy et al. proposed a new medical fusion method in a non-down-sampled shear
wave transform domain based on a weighted parameter adaptive dual channel PCNN [8].
In terms of image fusion in saliency attention models, Liu et al. proposed a saliency
detection model that combines a global saliency map with a local saliency map [9]. Yang
et al. designed a new fuzzy logic rule based on global saliency measurements to fuse the
details extracted from panchromatic images with high spatial resolution and multispectral
images with low spatial resolution [10]. Li et al. used the segmentation-driven low-rank
matrix recovery model to detect the significance of each individual image in the image set
to highlight the regions with sparse features in each image [11]. In terms of the optimization
of image fusion parameters, Zhu et al. applied PCNN parameters to infrared and visible
image fusion through quantum-behavior particle swarm optimization improvement [12].
Huang et al. used an NSCT to independently decompose the intensity hue saturation of the
image, a PCNN to fuse high-frequency sub-band images and low-frequency images, and a
hybrid leapfrog algorithm to optimize PCNN parameters [13]. Dharini et al. proposed a
nature-inspired optimal feature selection method using ant colony optimization to reduce
the complexity of the PCNN fusion of infrared and visible images [14]. In the research of
overexposure problems with concern to the ongoing climate change-related environmental
changes over mountainous areas, Muhuri et al. used polarization fraction variation with
temporal RADARSAT-2 C-Band full-polarimetric to study SAR Data [15]. Raskar et al.
introduced a novel technique to allow a user to interact with projected information and to
update the projected information [16].

A PCNN classifies similar pattern features into categories based on the principles
of similarity aggregation and capture characteristics. The segmentation combination has
the advantages of the grayscale aggregation lighting mechanism and the same grayscale
attribute priority lighting. This is consistent with the basic idea of cluster analysis. Qiu et al.
proposed a new density peaks-based clustering method, called clustering with local density
peaks-based minimum spanning tree [17]. Huang et al. proposed new adaptive spatial
regularization for the representation coefficients to improve the robustness of the model
to noise [18]. Huang et al. proposed ultra-scalable spectral clustering and ultra-scalable
ensemble clustering methods [19].
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Although scholars have studied the optimization and improvement of PCNN parame-
ters, there are still cases of pixel artifacts, region blurring and unclear edges due to ignoring
the impact of image changes and fluctuations on the results during the ignition process.

This paper introduces the concept of entropy [20] in information theory and proposes
a PCNN model guided by a saliency mechanism (SMPCNN). The ToF low-frequency
component after multiple lighting segmentation using PCNN is simplified into a first-
order Markov situation, and the significance function is defined as first-order Markov
mutual information. On this basis, a PCNN model guided by a saliency mechanism for
image fusion in transform domain (NSST-SMPCNN) is proposed to fuse ToF and visible
light heterogeneous images collected by a binocular acquisition system in an orchard
environment.

We summarize our main contributions below.

First, we aim to solve the following existing problems:

1.  The traditional method of space domain fusion is to create a fusion model in the image
gray space, which has the disadvantage that it is not easy to find the source image
texture and boundary features.

2. A PCNN model has the defects of parameter experience setting, unadaptive termi-
nation, and easy over-segmentation. In the ignition process, it ignores the impact of
image change fluctuation on the results, resulting in pixel artifacts, area blurring, and
unclear edges.

3. The differences in imaging mechanisms between ToF and visible light heterogeneous
images collected by a binocular acquisition system in an orchard environment lead to
the problem of low fusion quality.

Second, the innovations and novelties of this paper are as follows:

1.  APCNN model guided by a saliency mechanism is proposed and applied to the fusion
of ToF and visible light heterogeneous images collected by a binocular acquisition
system in an orchard environment.

2. The ToF low-frequency component is simplified after multiple lighting segmentation
using a PCNN into a first-order Markov situation. The significance function is defined
as first-order Markov mutual information.

3. The significance function is used as the termination condition of a PCNN model
iteration, and Kullback-Leibler (KL) divergence is used to measure the dynamic
threshold amplification coefficient of the PCNN model.

4. A new momentum-driven multi-objective artificial bee colony algorithm is proposed
to optimize the parameters of link channel feedback, link strength, and dynamic
threshold attenuation factor. The momentum update strategy of employing bees
and observing bees is used. The grid density construction is used to ensure that the
optimal solution distribution is not too dense. The absolute value of the difference
between the grid index values of the same dimension of the nondominated solution is
used as the deletion selection probability of the nondominated solution to construct
the optimal solution set. Cross entropy (CE) and mutual information (MI), two image
fusion quality evaluation functions, are selected as multi-objective fitness functions.

5. The low-frequency components of ToF and color image after multiple lighting seg-
mentation using a PCNN are fused using the weighted average rule, and the high-
frequency components are fused using improved bilateral filters.

Three, the advantage of our work is as follows: the proposed NSST-SMPCNN method
combines the saliency mechanism, saliency function, and the PCNN clustering segmenta-
tion mechanism, and has the advantages of a grayscale clustering lighting mechanism and
the same grayscale attribute first lighting, which is suitable for heterogeneous image fusion
in complex orchard environments in Gansu.

The paper structure is summarized as follows: Section 1 contains the introduction and
a description of the related works, as well as the highlights and contributions of this paper.
Then, basic concept definitions of an NSST and a PCNN are introduced. The proposed
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definition of significance function is also defined in Section 2. In Section 3, a PCNN model
guided by a saliency mechanism is proposed. Then, a PCNN transform domain image
fusion method guided by a saliency mechanism is constructed in the Section 4. Lastly, the
final section contains a description of the experiment and the conclusions.

2. Basic Concept Definition
2.1. NSST Transform Domain Decomposition Method

The traditional method of spatial domain fusion is to create a fusion model in the image
gray space. The disadvantage of this is that it is difficult to find the texture and boundary
features of the source image. The NSST transform domain decomposition method, which is
proposed in reference [4], is used to perform the non-subsampled pyramid filter bank (NSP)
u-level transformation on the two accurately registered heterogeneous images to obtain one
low-frequency sub-band and u high-frequency sub-bands, realizing translation invariance.
The high-frequency sub-band is then decomposed into 2% directional high-frequency sub-
bands by shear filter bank (SF) v-level multi-directional decomposition, so as to effectively
capture directional information and maintain anisotropy [4]. The decomposed sub-band is
the same size as the source image, has high sparsity, and accurately represents the fusion
information.

2.2. PCNN Lighting Segmentation Mechanism

The PCNN model proposed in reference [6] includes feedback input domain, coupling
link domain, and pulse generation domain, which can be described by the mathematical
equations shown in Formulas (1)—(5). A PCNN has a feature which classifies similar pattern
features into categories based on the principles of similarity aggregation and capture
characteristics, and has the mechanism of aggregation and illumination segmentation.

Fi]'(i’l) = Iij (1)

Lij(n) = exp(—ar)Lij(n — 1) + VL ) Wi Yia(n — 1) 2)
]

Ujj(n) = Fj(n)(1+ BLij(n)) @)

0ij(n) = exp(—ag)8;;(n — 1) + VpY;j(n) )

Yij(n) = step(U;j(n) — 0;j(n)) ©)

In the formula, I;; is the external stimulation of neurons, represented by the gray
value of the input image; Fjj(n) is the feedback input field; L;(n) is the link input field;
Wi; i refers to the link coefficient; f indicates the link strength, which determines the
weight of the coupling link channel; U;;(n) is the internal state signal of the model; 6;; is
the dynamic threshold of neurons, Vy and V| are the dynamic threshold amplification
coefficients, which control the threshold value increased after neuron activation; «; and
np determine the decay rate of the feedback term and the dynamic threshold of the link
channel, respectively; Y;;(n) is the pulse output of the current neuron, which is the response
result of the comparison between the internal active item and the dynamic threshold in
the pulse generator. When Uj;j(1) > 6;(n), the ignition condition will be reached and the
output Yj;(n) = 1. Step represents a step function, and its output is 0 or 1; n represents the
nth neuron in the image.

2.3. Proposed Definition of Significance Function

The saliency mechanism originates from the visual attention mechanism (VAM) pro-
posed by Itti and other scholars [21], inspired by the behavior and neuronal structure
of early primate visual systems [22]. When the saliency mechanism processes a scene,
it automatically processes the regions of interest, and selectively ignores the regions of
noninterest. In this paper, a new saliency mechanism to define the significance function is
proposed.
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Definition 1. Significance first-order Markov situation.

The ToF low-frequency component after an NSST decomposition is sent into the
PCNN model. The PCNN is divided iteratively many times, showing a dynamic ignition
segmentation state. The two ignition segmentation diagrams at the time intervals t and t
+ 1 are correlated, but independent of the ignition segmentation diagram at the previous
time. Therefore, the ignition segmentation diagram at the time interval 2 can be defined as
a first-order Markov situation.

Definition 2. Significance one-step transition probability.

When the model is in the state s, after ignition segmentation at time t, the probability
of model transition to the state s, after ignition segmentation at time t + 1 is defined as the
significant one-step transition probability, which is expressed in Formula (6).

Puv = P(St+l = Sv|St = Su) = P(5v|5u )/ Su,S0 € S (6)

Definition 3. Significant conditional entropy.

In the significance first-order Markov situation, the average uncertainty of the model
when it is transferred to the state s, € S under any state condition s,, € S is defined as the
significance conditional entropy, which is expressed in Formula (7).

N

HU|V) = - ;)p(su,sv)logp(sv|su) (7)

Definition 4. Significance first-order Markov information source entropy.

The overall uncertainty of the sequence formed by the ignition segmentation map
in the significance first-order Markov situation is defined as the significance first-order
Markov information source entropy, which is expressed in Formula (8).

N N

H(U) = - Z Z p(xv,54) log p(xv|su ) 8)

u=00v=0
Definition 5. Significance first-order Markov mutual information.

The amount of information transmitted in the model state transition of the ignition
segmentation map at different times is defined as the significant first-order Markov mutual
information, which is expressed as Formula (9).

1(U;V) = H(U) — H(U|V) ©)

Definition 6. Significance function.

The PCNN is divided by multiple iterations. The ignition segmentation graph with two
time intervals has significant feature differences, representing the maximum information
transmission rate and the maximum amount of mutual information in numerical terms.
Because mutual information has a maximum under certain conditions, the significance
function is numerically defined as significant first-order Markov mutual information. If
Formula (7) and (8) are brought into Formula (9), Formula (10) is formed.
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N N N
Lgliency (1,0) = I(U; V) = = Y ) p(x0,5u) log p(xolsu) + ) p(su,50) log p(sulsu) (10)

u=00v=0 =0

3. PCNN Model Guided by Saliency Mechanism

PCNN region segmentation and a saliency mechanism can locate the most interesting
object region in the image well. Combining the saliency mechanism, saliency function and
PCNN clustering segmentation mechanism, a PCNN model guided by a saliency mecha-
nism is proposed, which has the advantages of a grayscale clustering lighting mechanism
and the same grayscale attribute lighting priority, and is suitable for heterogeneous image
fusion in complex orchard environments in Gansu.

The PCNN model has certain shortcomings, including that the parameters are limited
by manual experience settings and cannot be terminated adaptively, and ignoring the
impact of image changes and fluctuations on the results during the ignition process results
in pixel artifacts, area blurring, and unclear edges. The iteration termination conditions and
dynamic threshold amplification coefficients Vjy and the feedback items of the link channel
ar, link strength B, and dynamic threshold attenuation factor ag are improved adaptively.
A new momentum-driven multi-objective artificial bee colony algorithm (MMOABC) is
used for parameter optimization and is applied to the proposed PCNN model guided by a
saliency mechanism. The improved SMPCNN model has the characteristics of enhancing
the same type of pulse connection, reducing the difficulty of parameter integration, and
improving the performance of image segmentation.

3.1. Adaptive Iteration Termination Conditions

The traditional PCNN model has the defects of nonadaptive termination and over-
segmentation. The authors of [23] used the maximum information entropy as the termina-
tion condition, but over-segmentation often occurs when the entropy is at its maximum,
and the background with the same gray value will be mistaken for the target area and
segmented together.

In this paper, the significance function is used as the criterion for model iteration ter-
mination, which is expressed as Equation (11). For a low-frequency ignition segmentation
map, the greater the significance of the first-order Markov mutual information, the better
the regional consistency.

Isaliency(u/ Z)) >0 (11)

3.2. Adaptive Dynamic Threshold Amplification Coefficient Vy

In the ToF image, the fruit target is often shown as a region with a high gray value and
normal distribution. Two ignition segmentation images are used to measure the PCNN
dynamic threshold amplification coefficient, which is expressed as Equation (12). The
probability distribution p(s,) corresponding to the state s, € S, as well as the probability
distribution p(sy) corresponding to the state s, € S, and the KL divergence of the two
states are calculated. This formula is used to measure the similarity between the probability
distributions of two ignition segmentation maps. The closer the probability distribution of
the two ignition segmentation images is, the smaller the dynamic threshold amplification
coefficient is, which will enable the PCNN model to ignite when the target region tends to
be stable during continuous iteration.

N
Vg = Dkr(sollsu) = ) [p(s0) log p(so) — p(sv) log p(su)] (12)

v=1
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3.3. Parameter Optimization of Momentum Driven Multi-Objective Artificial Bee
Colony Algorithm

An artificial bee colony algorithm (ABC) [24] is a swarm intelligence optimization
algorithm proposed to simulate the characteristics of bee swarms. It has the advantages of
strong global optimization ability, few parameters, high accuracy, and strong robustness.
However, its optimization strategy has the defects of simplicity and randomness, which
make the algorithm premature, cause convergence stagnation, and other problems. In
order to accelerate the convergence rate of the artificial bee colony algorithm, the concept
of momentum [25,26] in deep learning is introduced, and a new momentum-driven multi-
objective artificial bee colony algorithm is proposed to optimize the three parameters.
including the feedback from the link channel a;, link strength §, and dynamic threshold
attenuation factor ay.

3.3.1. Initial Population

The three parameters, including feedback from the link channel «;, link strength
B, and dynamic threshold attenuation factor ag, are used as the initial population of
the momentum-driven multi-objective artificial bee colony algorithm. Random genera-
tion of NP food source information X = {x;j[x;; = (xi1, X, -+, Xij, -+, Xja), i =1,2,- -+,
NP;j=1,2,---,d = 3} was performed according to Formula (13).

xjj = min; + rand(0,1) x (max; — min;) (13)

3.3.2. Hiring Bees Momentum Updating Strategy

NP food source information was randomly generated. During a food update evolution,
a randomly selected food source Xy = (xxq, Xk2, - - - , Xxq) Was attached to a hired bee in the
bee colony. In the d-dimensional space, the randomly selected jth dimension component
x;j of each food source X; = (xi1, Xjp, * Xij, x;4) in the food source information space
database was evolved through the following hired bee momentum update strategy, as shown
in Equations (14) and (15), to obtain a new food source X" = (x;1, xip, - - - , x?j"w S, Xig)-
Among them, i,k € [1,2,--- ,NP|,i # k,j € [1,2,--- ,d],r € [-1,1]. In Equations (14) and
(15), a;; represents the update step size of the previous update evolution, a?j"w represents
the update step size obtained after the current momentum update evolution, y represents
momentum, and the value is 0.9.

xijnew — xl] + a;’;ﬁ'{l) (14)

new

611]

=r x (xij — x5) + 7 X af (15)

3.3.3. Observation Bees Nesterov Momentum Updating Strategy

In a food update evolution, the selection probability of observation bees was calculated
according to Formula (16), and a randomly selected food source X; = (x4, X120, - - - , Xz7) was
attached to an observation bee in the bee colony. In the d-dimensional space, the randomly
selected jth dimension component x;; of each food source X; = (xi1, %2, * + “Xij, Xiq) in
the food source information space database was evolved through the following observation
bees Nesterov momentum updating strategy, as shown in Formulas (17) and (18), to obtain
anew food source X" = (xj1,xj, - - - ,x?jew, -+, X;jq). Among them, i,t € [1,2,--- ,NP],
i#tje[l,2,---,d],r €[-1,1]. In Formulas (17) and (18), b;; represents the update step
size of the previous update evolution, b?jew represents the update step size obtained after
the current Nesterov momentum update evolution, y represents momentum, and the value
is 0.9. Target =2,j =1,2,--- ,NP.

Target

probj = Y (0.9 x (f;/max(f;)) +0.1)x (1/Target) (16)
i=1
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xijnew = xjj + bl(}ew 17)

bit™ =1 x (xij — x4j — 7 X bj)) + 7 X by (18)

3.3.4. Pareto Grid Density Construction Method

In multi-objective optimization problems, individuals are judged by dominance and
dense information. In this paper, a grid density construction method is used to ensure
that the distribution of optimal solutions in the Pareto optimal solution set (also known as
Pareto) is not too dense. The grid is a dynamic, nGrid bisected interval within the range of
(—inf, +inf). Here, nGrid is a variable, which represents the number of divided grids. The
value inf represents a number, which is far less than infinity.

The maximum and minimum values of each dimension of the median value of the
nondominated solution were determined. The predefined nGrid was used to divide the
current interval, which was divided into nGrid + 1. The minimum interval starts from
negative infinity inf, and the maximum interval ends at positive infinity + inf, to prevent
the nondominated solutions from crossing the boundary, and make the nondominated
solutions fall in the grid. The formula for solving the grid index value is shown in (19). The
value low; represents the minimum boundary value of the grid, and Target represents the
number of objective functions. i = 1, Target, Target =2,j =1, - ,nGrid.

—inf
grid;j =  low; + j x ((uper; — low;) /nGrid) (19)
inf

3.3.5. Pareto Optimal Solution Set Construction Method

First, constructing the optimal solution set requires a certain probability to randomly
delete redundant nondominated solutions. The method to construct the deletion selection
probability involves the use of the absolute value of the difference between the nondomi-
nated solution and the grid index value of the same dimension for operation. The formulas
are shown in (20) and (21). The larger poss; the nondominated solution corresponding to
Formula (20), the harder it will be to delete. The advantage of this is that the preference for
a certain optimization objective brought by the nondominated solution interval is reduced,
and the unified operation for all optimization objectives can be carried out fairly to obtain
a relatively fair solution with the possibility of deletion.

Rep Rep Target

possi=Y Y ). ‘gridik — gridj (20)
i=1j=1 k=1
Poss; =1/ (poss; +1) (21)

3.3.6. Calculation Method of Multi-Objective Fitness

To solve the problem of the diversity of image fusion quality evaluation functions,
two image fusion quality evaluation functions, cross entropy (CE) and mutual information
(MI), are selected to form a multi-objective optimization problem for two objectives. The
formula is shown in (22).

fitness_pareto = max{CE, MI} (22)

3.4. PCNN Model Structure Guided by Saliency Mechanism

The model structure is shown in Figure 1.
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Figure 1. PCNN model structure guided by saliency mechanism.

4. PCNN Transform Domain Image Fusion Method Guided by Saliency Mechanism
4.1. Fusion Rules

(1) Low Frequency Fusion Rules
In this paper, using the characteristics of a PCNN model’s clustering and lighting
segmentation, the significance function is used as the criterion of a PCNN model’s iteration
termination, and the ToF low-frequency component after an NSST decomposition is ignited
and segmented. The component is recorded as Ck ., and the low-frequency component of
the color image after an NSST decomposition is recorded as Ck 5. According to the char-
acteristics of the images collected by heterogeneous systems in the mountainous planting
environment and the natural scenes of the disordered planting orchard picking operation
in the Gansu Province, the low-frequency components of color images have sufficient
detailed texture information, while the low-frequency components of ToF images have the
characteristics of extracting targets at a certain distance and separating the background, but
provide less detailed texture information. Therefore, the ToF low-frequency components
and color image low-frequency components after multiple lighting segmentation using a
PCNN are fused. The fusion rule uses weighted average, which is expressed as Formula
(23), to highlight more foreground information belonging to the highlighted part of the ToF
image.
C}use(m, n) = 0.5%Ck p(m,n) +05% Ckop(m,n) (23)

(2) High frequency fusion rules

Bilateral filtering is a local, nonlinear, and noniterative technology. High-frequency
fusion rules are introduced to measure the similarity between the ToF image and color
image at the corresponding position of the decomposed high-frequency component, as
shown in Formula (24). Let the high-frequency component of the ToF image decomposed
by an NSST be CH ., and the high-frequency component of the color image decomposed by
an NSST be CEG p- The spatial neighborhood Gaussian function wneighborhood s shown in
Equation (25), and the high-frequency component gray value similarity Gaussian function
Wsimilarity 1S Shown in Equation (26).

H
CRGB (t, S ) wNeighborhood wSimﬂarity
t,s)€Area(i,j
CHL o (m,m) = I 24)
X WNeighborhood WSimilarity
(t,s)€Area(i,f)

(m—t)2+(n—s)2

— o= )
WNeighborhood = € 20 (25)
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ToF image

Visible image

NSST

NSST

~ ||C¥0F<m,n>—2Cf§GB(t,s>H2 )
Wsimilarity = € o (26)

4.2. Heterogeneous Image Fusion Process

The fusion process is shown in Figure 2.

l !

Saliency function KL divergence MMOABC

!
Low frequency

coefficient
SMPCNN

Weighted average rule
for low =
frequency Fusion

High frequency
coefficient

verse
NSST

Fusion image
Spatial neighborhood

Gaussian function

Low frequency
coefficient

High frequency
High frequency component gray value Improved Bilateral

similarity Gaussian filtering rule for High —
function frequency Fusion

coefficient

Figure 2. Fusion Process.

4.3. NSST-SMPCNN Method Multi-Source Image Fusion Steps

NSST-SMPCNN algorithm is proposed, named as Algorithm 1. The fusion steps of
NSST-SMPCNN algorithm for multi-source image are as follows.

Algorithm 1: NSST-SMPCNN.

Input: ToF confidence image and visible light image after registration.

M, N, u, v, n. limit, maxCycle, NP, d, vy, Rep, nGrid, and Target.

Output: Fusion image.

Step 1: NSST is performed, generate u low-frequency sub-band images and 2° high-frequency
sub-band images.

Step 2:

n=1

while (Equation (11))

Begin

Calculate the dynamic threshold amplification coefficient using Equation (12).

Use Equations (13)—(22) to construct MMOABC algorithm, optimize three parameters including
ar, ﬁ and Kg.

The SMPCNN model is constructed using Equations (11)—(22).

Output ignition diagram.

n++

End

Step 3: Use Formula (23) to fuse low-frequency components with the weighted average rule; The
high-frequency components are fused using the improved bilateral filter of Equations (24)—(26).
Step 4: Perform NSST inverse transform.

Step 5: Stop running and output the fused image.

Note: M and N represent image size, u represents NSST decomposition level, v
represents NSST decomposition direction number, and # represents current ignition number.
The maximum number of food source stagnation is limit, the maximum number of iterations
of algorithm evolution is maxCycle, the number of food sources is NP, and the dimension
of bee individual component is d.  represents momentum, Rep represents the number
of nondominated solutions, nGrid represents the number of divided grids, and Target
represents the number of objective functions. Where, d = 3, Target = 2, v = 0.9. a} represents
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the link channel feedback term, B represents link strength, and &y represents dynamic
threshold attenuation factor.

5. Experiment
5.1. Image Fusion Evaluation Index

Six models were selected for testing to evaluate the image fusion performance of the
heterogeneous vision system, including a non-subsampled contourlet transform (NSCT)
model [27], a fusion method for infrared and visible light images based on an NSCT
(ImNSCT) [28], a DWT model [29], a simplified pulse coupled neural network (SPCNN)
model [30], a single target SPCNN fusion model (ST-SPCNN) [31] and the NSST-SMPCNN
model described in this paper. Nine objective image evaluation indicators [32] were selected
to objectively evaluate image quality, including average gradient (AG), edge strength (ES),
information entropy (IE), standard deviation (SD), peak signal to noise ratio (PSNR), spatial
frequency (SF), image clarity (IC), mutual information (MI), and structural similarity (SSI).
The higher the values of these nine indicators, the better the fusion image quality.

5.2. Public Dataset Image Fusion Experiment

In this paper, three public datasets are used for the experimental testing of heteroge-
neous image fusion, namely, infrared and color vineyard heterogeneous public datasets
taken in natural scenes [33] and apple RGB-D image datasets published by Universitat de
Lleida in Spain named fuji_apple [34,35] and PApple_RGB-D-Size [36]. The above three
datasets were recorded as dataset I, dataset II and dataset III, respectively, and four groups
of data in each of the three datasets were selected for testing. The results are shown in
Tables 1-3, respectively. The fusion effect is shown in Table 4. The data results show that
the objective evaluation indexes of the NSST-SMPCNN method described in this paper,
such as AG, ES, SF, IC, and MI are the best in dataset I. For dataset II and dataset III, AG,
ES, IE, SE, IC, M1, and other objective evaluation indexes of the first and fourth groups of
test data are the best. The values of SD and PSNR of the five other algorithms are better
than those of the algorithm in this paper. The SSI value of the DWT algorithm is the best.

Table 1. Objective evaluation index results of dataset I.

Test

G . Algorithm AG ES IE SD PSNR SF IC MI SSI Runtime/s
rouping
NSCT 8.04 78.80 711 108.38 14.74 19.31 10.25 1.17 0.77 4294
ImNSCT 7.41 71.36 711 110.70 14.01 17.95 9.76 1.05 0.74 53.29
First group DWT 6.57 64.48 711 146.05 13.63 15.97 8.43 1.25 0.79 1.10
SPCNN 7.41 75.69 7.15 162.28 8.19 16.34 8.75 0.02 0.32 112.76
ST-SPCNN 8.23 80.76 7.08 170.91 15.41 19.80 10.61 0.73 0.72 91.59
NSST-SMPCNN 9.98 96.83 7.19 161.13 14.17 24.38 13.07 2.53 0.68 60.10
NSCT 5.56 54.65 6.58 160.88 15.06 16.40 7.09 1.16 0.85 43.11
ImNSCT 528 51.56 6.94 159.34 14.66 16.87 6.85 1.23 0.84 53.33
Second DWT 4.18 40.99 571 199.15 15.01 13.25 5.37 1.49 0.87 0.87
group SPCNN 471 48.28 6.65 187.57 10.89 12.58 5.52 0.08 0.58 114.17
ST-SPCNN 5.46 54.04 7.01 196.37 15.79 15.98 6.96 0.76 0.82 92.43
NSST-SMPCNN 6.31 62.02 6.78 189.46 15.52 19.30 8.07 2.38 0.79 59.37
NSCT 8.49 82.45 7.10 98.47 15.64 20.56 10.94 1.31 0.80 43.16
ImNSCT 7.16 68.68 6.99 91.22 14.50 18.40 9.54 1.17 0.77 53.28
Third group DWT 7.34 71.07 7.16 137.40 14.68 18.25 9.61 1.40 0.82 0.86
SPCNN 7.64 77.76 745 151.71 712 16.95 9.05 0.10 0.28 114.47
ST-SPCNN 8.08 78.10 7.25 158.35 15.58 20.33 10.62 0.80 0.73 90.58
NSST-SMPCNN 9.41 91.46 7.42 149.49 14.52 23.43 12.31 2.72 0.74 59.08
NSCT 6.35 62.86 6.69 127.60 14.26 17.19 8.00 1.22 0.78 43.20
ImNSCT 6.31 62.48 6.67 105.31 12.28 18.40 8.04 1.03 0.71 53.22
Fourth group DWT 5.08 50.87 6.68 156.04 13.71 13.73 6.35 1.14 0.78 0.87
SPCNN 6.17 64.08 7.21 146.58 6.82 14.95 711 0.11 0.38 113.38
ST-SPCNN 6.64 66.04 7.15 153.50 15.23 17.87 8.40 1.03 0.72 94.33
NSST-SMPCNN 7.01 69.04 6.90 176.65 12.30 20.05 8.94 2.60 0.70 61.12




Sensors 2023, 23, 2488 12 of 17

Table 2. Objective evaluation index results of dataset II.

Test Algorithm AG ES IE SD PSNR SF IC MI SSI  Runtime/s
Grouping
NSCT 8.80 94.41 7.31 96.34 13.59 19.61 9.53 1.15 0.55 51.96
ImNSCT 10.00 10721 748  125.04 1221 2256 1086  1.00 0.49 50.65
First group DWT 811 8806 754 9038 1412 1729 858 1.34 0.63 0.94
SPCNN 9.14 99.34 6.43 54.12 2.45 20.98 9.68 0.08 0.11 106.01
ST-SPCNN 952 10286 636 5390 1239 2274 1022  0.62 0.47 85.08
NSST-SMPCNN  11.38 122.06 7.80 11476 14.27 2618 1242 248 0.57 68.69
NSCT 781 8389 734 9094 1398 1627 843 0.98 0.52 51.01
ImNSCT 714 7668 730  89.15 1421 1554  7.76 0.90 0.49 50.14
Second DWT 545 5925 715 61.89 1876 1097  5.75 1.14 0.66 0.9
group SPCNN 705 7664 681 5255 252 1469  7.43 0.13 0.13 104.93
ST-SPCNN 723 7830 686 5476 1755 1518  7.69 0.79 0.61 84.15
NSST-SMPCNN 741 7884 735 8495 1351 1656  8.18 2.05 0.55 64.48
NSCT 8.54 91.39 7.55 116.39 11.89 19.58 9.28 1.04 0.56 52.29
ImNSCT 759 8114 736 11916 1053 18.02 829 0.88 0.52 49.77
Third DWT 607 6573 746 8739 1255 1340 645 1.17 0.64 0.93
group SPCNN 7.78 8438 699 5863 229 1771 822 0.04 0.14 105.81
ST-SPCNN 819 8854 727 7133 1107 1859 872 0.61 0.55 85.24
NSST-SMPCNN 829  88.02 759 12649 899 1948  9.17 2.10 0.50 64.03
NSCT 1193 127.80 7.65 13021 11.27 2514 1295  1.13 0.53 51.34
ImNSCT 11.17 11945 749 13218 9.60 2356 1215 094 0.50 49.97
Fourth DWT 841 9116 751 9192 1002 1715 895 1.35 0.56 0.91
group SPCNN 9.35 101.56 6.50 52.41 2.50 20.53 9.90 0.08 0.11 103.57
ST-SPCNN 952 103.07 647 5310 930 21.11 1014 061 0.44 83.84
NSST-SMPCNN  12.06 12826 7.83 12782 1021 2626 1334 2.25 0.50 62.62
Table 3. Objective evaluation index results of dataset III.
c Test Algorithm AG ES IE SD  PSNR SF IC MI SsI Runtime/s
rouping
NSCT 7.36 71.32 704 11262 1549 2277 9.46 1.02 0.72 43.89
ImNSCT 6.34 56.88 671 11929 1505  23.82 9.23 078 0.70 55.02
First group DWT 4.79 46.61 680 12230 1560  16.55 6.30 1.77 0.73 0.96
SPCNN 541 55.79 597 12707 1520 2120 6.48 1.84 0.69 117.29
ST-SPCNN 7.66 73.53 6.68 89.06 1473 2712 1040 0.42 0.67 93.79
NSST-SMPCNN 7.90 81.41 716 11607  4.99 19.36 9.20 0.00 0.26 62.61
NSCT 9.06 88.94 716 14325 1000 2523 1145 0.80 0.63 43.66
ImNSCT 7.63 69.52 683 13604  9.39 2590  10.83 0.57 0.63 55.61
Second DWT 5.25 51.77 670 15834  9.99 16.45 6.76 1.69 0.67 0.94
group SPCNN 7.05 76.64 6.81 52.55 2.52 14.69 7.43 0.13 0.13 117.76
ST-SPCNN 8.55 82.82 6.92 9836 1040 2776 1141 0.34 0.59 94.81
NSST-SMPCNN 7.14 67.16 6.02 21149 639 38.28 9.94 1.58 0.47 63.42
NSCT 8.00 81.02 708 10687  13.60  20.54 9.60 0.86 0.67 46.2
ImNSCT 6.57 64.20 6.69 10821 1248 1848 8.52 0.62 0.66 55.79
Third group DWT 451 45.92 665 10075  12.83  12.18 547 1.60 0.71 0.96
SPCNN 6.21 64.69 6.55 66.75 2.55 15.22 7.06 0.00 0.22 116.82
ST-SPCNN 6.87 68.94 6.82 8091 1139  19.64 8.59 043 0.66 93.99
NSST-SMPCNN 6.82 67.30 582  133.85  9.39 29.88 8.86 1.73 0.53 62.89
NSCT 7.64 78.40 734 12874  10.68  19.09 8.95 1.00 0.65 44.07
ImNSCT 6.34 62.94 702 11823 858 17.25 8.04 078 0.65 55.75
Fourth group DWT 445 46.05 700 11058 875 11.57 523 1.91 0.70 0.97
SPCNN 5.88 61.87 6.73 63.67 241 13.89 6.56 0.00 0.22 117.76
ST-SPCNN 6.38 64.84 6.70 60.88 8.96 17.19 7.75 033 0.57 93.13

NSST-SMPCNN 11.54 107.64 5.88 174.90 2.65 63.36 16.44 1.79 0.41 62.43
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Table 4. Fusion effect of four datasets.

Test

. NSCT ImNSCT DWT SPCNN ST-SPCNN NSST-SMPCNN
Grouping

Dataset

First group

Second

dataset I group

Third
group

Fourth
group

First group

Second

dataset II group

Third
group

Fourth
group

First group

Second

dataset III group

Third
group
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Table 4. Cont.

Dataset

Test
Grouping

NSCT ImNSCT DWT SPCNN ST-SPCNN NSST-SMPCNN

Fourth
group

dataset IV

First group

Second
group

Third
group

Fourth
group

5.3. Heterogeneous Image Fusion Experiment of Natural Orchard

In this paper, a heterogeneous vision system is established using a ToF industrial
depth camera (Basler AG, Ahrensburg, Germany) and a color camera (Canon Inc., Tokyo,
Japan). The ToF camera can output four types of images, including a ToF intensity image,
ToF range data, ToF confidence map, and ToF point cloud image [37]. The data collection
site in the natural environment is located in the experimental base of the Fruit Research
Institute, Qinzhou District, Tianshui City, Gansu Province, China. More than 1000 ToF
intensity images, depth images, confidence images, and color images under different
lighting conditions between 10:00 and 19:00 were collected using a heterogeneous vision
system. The heterogeneous images collected from the natural scene of the orchard were
recorded as dataset IV, and four groups of data were selected as samples, including ToF
confidence images and corresponding visible light images for testing. The results are
shown in Table 5, and the fusion effect is shown in Table 4. The data results show that the
NSST-SMPCNN algorithm described in this paper has the best fusion effect on the ToF
confidence image and the corresponding visible light image collected in the natural scene.
The values of nine indicators, including AG, ES, IE, SD, PSNR, SF, IC, MI, and SSI indicated
excellent performance.

In conclusion, the experimental results show that the NSST-SMPCNN algorithm
presented in this paper performs well in a test using three common datasets, as indicated by
AG, ES, SE, IC, M, and other objective evaluation indicators. This is because the significance
function is used as the iteration termination condition of the PCNN model described in this
paper to realize adaptive ignition termination. A new momentum-driven multi-objective
artificial bee colony algorithm is used to optimize the PCNN parameters, which enhances
the mechanism of the PCNN model’s gray aggregation lighting and same gray attribute
priority lighting. For the dataset IV established in this paper, the NSST-SMPCNN algorithm
proposed in this paper performs well in nine indicators. This shows that the weighted
average rule is used to fuse the low-frequency components, which can highlight more
foreground information belonging to the highlighted part in the ToF image. The high-
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frequency components are fused by the improved bilateral filter, which strengthens the
similarity between the ToF image and the color image. The proposed NSST-SMPCNN
method is suitable for heterogeneous image fusion in complex orchard environments in
Gansu.

Table 5. Objective evaluation index results of dataset IV.

Test

G . Algorithm AG ES IE SD PSNR SF IC MI SSI Runtime/s
rouping
NSCT 8.87 86.29 6.78 70.67 12.90 22.79 11.41 0.74 0.49 42.92
ImNSCT 10.36 99.70 6.89 91.08 13.02 27.73 14.02 0.54 0.50 52.60
First group DWT 7.66 74.24 6.85 75.18 13.03 21.35 10.22 1.32 0.49 1.05
SPCNN 9.74 98.90 6.80 53.19 2.15 24.57 11.66 0.01 0.08 111.08
ST-SPCNN 9.75 94.74 5.99 32.68 13.30 28.72 12.91 0.29 0.33 90.74
NSST-SMPCNN 12.05 116.21 7.57 111.20 18.94 32.60 16.17 2.39 0.54 61.39
NSCT 9.01 88.30 6.88 70.64 11.88 23.30 11.64 0.92 0.46 42.96
ImNSCT 10.96 105.58 7.02 94.91 12.20 29.39 14.99 0.69 0.48 53.08
Second DWT 8.07 78.12 6.97 73.39 12.04 22.69 1091 1.77 0.45 091
group SPCNN 8.44 86.34 5.44 24.33 1.80 23.49 10.08 0.01 0.04 115.60
ST-SPCNN 9.74 95.15 5.58 25.72 12.31 29.59 13.01 0.23 0.26 90.66
NSST-SMPCNN 13.16 127.12 7.78 116.50 20.47 35.31 17.85 2.69 0.52 62.22
NSCT 7.99 78.46 6.58 81.35 13.71 20.00 9.56 0.48 0.53 43.00
ImNSCT 5.32 49.74 6.22 78.15 13.78 14.64 6.46 0.38 0.45 52.86
Third group DWT 6.63 65.81 6.76 100.27 14.13 17.08 8.09 0.69 0.55 091
SPCNN 8.47 86.13 6.82 52.13 1.81 21.03 9.53 0.00 0.10 114.72
ST-SPCNN 8.88 87.54 6.89 54.09 13.90 22.10 11.11 0.39 0.39 88.77
NSST-SMPCNN 8.98 88.85 7.10 129.25 17.66 22.07 11.46 2.22 0.53 60.59
NSCT 7.01 68.99 6.61 73.43 11.73 18.97 8.81 0.78 0.49 42.97
ImNSCT 8.09 78.21 6.78 93.76 11.72 22.85 10.70 0.61 0.49 55.65
Fourth group DWT 6.33 62.38 6.74 88.30 12.00 18.63 8.19 1.12 0.51 0.91
SPCNN 8.14 83.60 6.58 41.47 1.41 21.13 9.55 0.00 0.08 113.80
ST-SPCNN 8.58 84.80 6.35 37.43 12.83 25.50 11.06 0.37 0.38 90.20
NSST-SMPCNN 9.51 93.20 7.05 127.49 16.31 27.43 12.36 2.29 0.53 59.78

6. Conclusions

The traditional method of spatial domain fusion is to create a fusion model in the
image gray space, which has the disadvantage of not finding the texture and boundary
characteristics of the source image easily. A PCNN model has the defects of parameter
experience setting, nonadaptive termination, and easy over-segmentation. This paper
proposes a PCNN model guided by the saliency mechanism and applies it to the fusion
of ToF and visible light heterogeneous images collected by a binocular acquisition system
in an orchard environment. The iteration termination conditions and dynamic threshold
amplification coefficients Vy, the feedback items of the link channel «;, link strength S,
and dynamic threshold attenuation factor ay are improved adaptively. A new momentum-
driven multi-objective artificial bee colony algorithm (MMOABC) is used for parameter
optimization. The proposed NSST-SMPCNN method combines the saliency mechanism,
saliency function and PCNN clustering segmentation mechanism, and has the advantages
of a grayscale clustering lighting mechanism and the same grayscale attribute first lighting,
which is suitable for heterogeneous image fusion in complex orchard environments in
Gansu. The data results show that the NSST-SMPCNN algorithm described in this paper
has the best fusion effect on the ToF confidence image and the corresponding visible light
image collected in the natural environment. The values of nine indicators, including AG,
ES, IE, SD, PSNR, SF, IC, MI, and SSI, indicated excellent performance.

However, some data test results in the public dataset still have the disadvantage of
a poor fusion effect, which needs further improvement. In future work, it is necessary to
introduce a deep learning convolutional neural network to further explore the algorithm
structure to capture better image features and improve the fusion effect.
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