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Abstract: Sleep posture has a crucial impact on the incidence and severity of obstructive sleep apnea
(OSA). Therefore, the surveillance and recognition of sleep postures could facilitate the assessment of
OSA. The existing contact-based systems might interfere with sleeping, while camera-based systems
introduce privacy concerns. Radar-based systems might overcome these challenges, especially when
individuals are covered with blankets. The aim of this research is to develop a nonobstructive
multiple ultra-wideband radar sleep posture recognition system based on machine learning models.
We evaluated three single-radar configurations (top, side, and head), three dual-radar configurations
(top + side, top + head, and side + head), and one tri-radar configuration (top + side + head), in
addition to machine learning models, including CNN-based networks (ResNet50, DenseNet121, and
EfficientNetV2) and vision transformer-based networks (traditional vision transformer and Swin
Transformer V2). Thirty participants (n = 30) were invited to perform four recumbent postures (supine,
left side-lying, right side-lying, and prone). Data from eighteen participants were randomly chosen
for model training, another six participants’ data (n = 6) for model validation, and the remaining
six participants’ data (n = 6) for model testing. The Swin Transformer with side and head radar
configuration achieved the highest prediction accuracy (0.808). Future research may consider the
application of the synthetic aperture radar technique.

Keywords: ablation study; deep learning; feature extraction; sleep monitoring; obstructive sleep apnea

1. Introduction

Obstructive sleep apnea (OSA) is one of the most common sleep breathing disorders,
with a prevalence of 9% to 38% that increases with age [1]. Untreated OSA patients may
stop breathing numerous times every night when they sleep [2]. In order to “restart”
breathing, the brain awakes, which leads to poor and fragmented sleep [2]. Sleep apnea has
serious health repercussions and elevates the risk of diabetes, heart disease, hypertension,
and heart failure if left untreated [3]. The care of concomitant neurological diseases, such as
epilepsy, stroke, multiple sclerosis, and headache also becomes burdensome [4]. OSA has
caused an economic burden of USD 6.5 billion in accidents and injuries, USD 86.9 billion in
lost productivity at work, and USD 30 billion in healthcare annually in the USA [5].

There is an established relationship between OSA and sleep positions/postures [6]. A
supine posture might significantly reduce the risks of OSA because it prevents the prolapse
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of the tongue and the soft palate against the pharyngeal wall by gravity [6,7]. In addition, a
prone position presses on the lungs and affects respiration [7]. Contrarily, a lateral position
(or side-lying posture) resolves the issue by maintaining the retropalatal and retroglossal
airways [8]. These findings also support the crucial impact of the sleep position on the
incidence and severity of sleep apnea [6–8]. In order to assess the sleep positions of OSA
patients and their rehabilitation progress, sleep posture recognition and tracking could be
one of the essential assessment components [9].

Various sensors have been developed to monitor sleep postures and behaviors, in-
cluding body pressure sensors, physiological sensors, cameras (and depth cameras), and
wearable devices [10]. The pressure intensity distribution generated by a pressure mat has
been utilized to characterize sleep postural behavior and estimated sleep quality [11–13].
Video recordings using red–green–blue (RGB) or red–green–blue–depth (RGB-D) images
can capture and facilitate observation of the sleep postures of individuals directly [14–17].
Wearable devices using actigraphy or accelerometry can measure physical activity and infer
motor or behavioral activities [18]. Therefore, spectrogram analysis of data from wearable
devices can be used to estimate sleep postures via the movement of body segments [19].
However, these systems or sensors can be expensive or interfere with sleep, which discour-
ages practical use. Optical sensors or cameras suffer from interference from ambient light
sources [20], in addition to privacy concerns [21].

Radar-based techniques might overcome these challenges and have demonstrated
applications to sleep posture recognition [22]. In fact, there are different kinds of radar
signals. Continuous wave radar is the most common type that sends and receives frequency
signals continually, but it has poor discriminability with pulse and respiratory signals [22].
Frequency-modulated continuous wave (FMCW) radar cannot remove the weakness and
is vulnerable to radio incoherence from unsteady object motion and micro-Doppler sig-
nals [23]. Impulse radio ultra-wideband radar (IR-UWB) can detect multiple objects and
evaluate distance with less radiation [23], which facilitates applications, such as in body
movement analyzers and trackers [24,25]. Ahmed and Cho [26] analyzed the waveform of
IR-UWB to differentiate hand movements and gestures. Rana et al. [27] developed a mark-
erless gait analysis system using IR-UWB technology. Recently, Lai et al. [28] attempted to
classify sleep postures using IR-UWB signals by identifying their key statistical features.

The posture recognition function is often facilitated by machine learning techniques,
especially tree-based and convolutional neural network (CNN) models. Piriyajitakonkij
et al. [29] designed a CNN model, SleepPoseNet, that applied a feature-mapped matrix of
time and frequency domains to estimate transitional postures. Kiriazi et al. [30] applied
the decision tree to the effective radar cross section (ERCS) and displacement magnitude
information to distinguish stationary torso postures. Zhou et al. [31] transformed a radar
signal to image features, which were then handled by a CNN model integrated with an
inception-residual module. Tam et al. [14] guided a CNN-based deep learning model
(ECA-Net) by generating anatomical landmarks on depth images using a pose estimator.
In addition, using random forest, Lai et al. [28] extracted radar features from each radar
bin range for posture recognition. Although CNN models are widely used because of their
capability to understand higher level semantic features and their superior performance [32],
they were poor in understanding the global representation that might affect the performance
of sleep posture recognition.

A branch of deep learning models, vision transformers (ViTs), has emerged
recently [33–35]. The origin of ViT, “Transformer”, was designed for natural language pro-
cessing (NLP) and was later applied to visual computing tasks, such as object detection [36]
and segmentation [37], and human motion recognition [38], such as pose estimation [39,40],
and gait recognition [41,42]. The “Transformer” built upon the sequence-to-sequence
encoder–decoder architecture and substituted the recurrent layers with attention mech-
anism, enabling the long-term memory of every token (word) [43]. While CNN applied
pixel arrays in the model and lost spatial relationship information in the pooling layers [44],
ViT has a substantially different backbone and model architecture from CNN models. It
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embeds and segments images into small patches followed by a self-attention mechanism
without the use of convolutional layers [34]. The patches and positional embedding are
input to the transformer encoder, which originally operates on tokens (words) [34]. ViT has
a higher computational efficacy and accuracy than CNN models but requires more training
data [45,46].

Our study was motivated by the need for sleep posture assessment for OSA patients
that might not be practically fulfilled by the current systems because of cost, privacy con-
cerns, and the interference with sleep. The novelty of this study lies in the transformation
of multiple radar signals to a spatiotemporal graph that can be input to the cutting-edge
deep learning model, ViT, for sleep posture recognition. As we were interested in different
configurations of the radar systems, the radars were placed on the ceiling (top radar), at
the side of the participant (side radar), and on top of the head of the participants (head
radar), as shown in Figure 1. We assumed that the tri-radar configuration (top + side +
head) could improve the accuracy of posture prediction as compared to the single radar
(top, side, and head) and the dual-radar configurations (top + side, top + head, and side +
head). In addition, we compared different deep learning models, including CNN-based
models (ResNet [47], DenseNet [48], and EfficientNet [49]) and ViT (traditional ViT [34]
and Swin vision transformer [50]). We hypothesized that vision transfers with the tri-radar
configuration (top + side + head) would outperform the others.
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Figure 1. Schematic diagram of the system setup in (a) side view; (b) top view; and (c) photo.

2. Materials and Methods
2.1. Hardware and Software Configuration

Three IR-UWB radar sensor system-on-chips (Xethru X4M03 v5, Novelda, Oslo, Nor-
way) were used. Each sensor consisted of a fully programmable system controller and
an antenna. The transmitter center frequency and energy per pulse were 7.29 GHz and
2.65 picojoules, respectively, which complied with the ETSI/FCC. The receiver had a sam-
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pling rate of 23.328 GS/s, a total radar frame length of 9.87 m, and the distance between
each radar bin was 0.00643 m. The receiver gain noise figures were 14.1 dB and 6.7 dB,
which also met the ETSI/FCC compliance requirement. Both the range of elevation angle
and the azimuth angle were between −65◦ and +65◦. The other parameters are shown in
Table 1. The detection range was adjusted to encompass the region of interest (RoI).

Table 1. Configurations of the IR-UWB radar devices.

Parameters Top Radar Side Radar Head Radar

Detection Range 1.3 m–1.8 m 0.6 m–1.1 m 0.4 m–1.2 m
Transmission Power 6.3 dBm 6.3 dBm 6.3 dBm

Pulse Repetition
Frequency 15.188 MHz 15.188 MHz 15.188 MHz

Bin Resolution 78 bins 78 bins 125 bins
Frame Rate 20 frames/second 20 frames/second 20 frames/second

2.2. System Setup

The system setup involved three IR-UWB radars with associated connection cables,
a height adjustable hospital bed, a comforter, two tripods, one light boom, and a laptop
computer. As shown in Figure 1, the bed was 0.5 m from the ground. The top radar
was hung on a light boom, which was 1.5 m from the bed surface close to the height of a
household ceiling. The side radar was mounted 0.65 m from the bed surface using a tripod,
at the longer edge of the bed, according to the minimum detection distance requirement
of the IR-UWB radar. The head radar was mounted 0.65 m from the bed surface and
0.2 m from the shorter edge using another tripod, to accommodate the effective angle of
the depression (60◦) of the radar. The three sensors were positioned orthogonally over the
hospital bed (1.9 m × 0.9 m × 0.5 m with mat).

2.3. Participant Recruitment and Data Collection

All recruited participants signed an informed consent after receiving an oral and writ-
ten description of the experiment before beginning the experiment, which was approved
by the Institutional Review Board (reference number: HSEARS20210127007). The inclusion
criteria included healthy adults aged over 18. In this study, we recruited 30 young adults
(19 males and 11 females). Their average age was 22 (SD: 2.00, range 18–27). The mean
weight and height were 170 cm (SD: 9.64 cm, range 156.5–196 cm) and 62.5 kg (SD: 12.70 kg,
range 46–100 kg), respectively. The exclusion criteria included physical disability, obesity,
pregnancy, or any cardiorespiratory problems, in addition to participants with difficulties
in maintaining or switching specific postures in bed.

Before the experiment, participants were instructed to remove clothing or accessories
with metallic components (such as a belt with a metallic buckle), in addition to their shoes
and outerwear. Throughout the experiment, they were asked to lie on the bed with a sup-
port pillow, covered by a comforter. They were then instructed to lie in different postures,
in the order of (1) supine, (2) right lateral, (3) left lateral, and (4) prone, as shown in Figure 2.
A ringing bell was played to notify the participants to adopt their assigned posture with
self-chosen comfortable limb placement. After the participants finalized their posture, we
then started the recording. Each posture was recorded for 15 s. The full course was repeated
ten times. We collected 1200 samples (30 participants × 4 postures × 10 repetitions). The
samples were labelled manually during the experiment.
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Figure 2. The four under-blanket recumbent postures: (a) supine; (b) right side-lying; (c) left side-
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2.4. Data Processing

The data processing pipeline comprised preprocessing, denoising, augmentation,
resizing, and merging. The top and side radars produced 78 bins per frame, while the head
radar produced 125 bin per frame. In the preprocessing stage, the last ten seconds of the
recording were extracted for analysis. In the denoising stage, static objects in the scene
were removed using the mean subtraction method by taking the average and subtracting it
from each sample (Equation (1)). Then, background suppression was performed to remove
the environmental noise (Equation (2)).

X′[n, m] = X[n, m]− 1
N

N−1

∑
i=0

X[n, i] (1)

Y[n, m] = X′[n, m]− 1
M

M−1

∑
i=0

X[i, m] (2)

where n was the fast time index (radar bin), and m was the slow time index (frame number).
Data augmentation techniques, including scaling, magnitude warping, flipping, time

warping, and window warping [51,52] were applied (Figure 3). The scaling process mul-
tiplied each frame of the signal by a random scalar. For magnitude warping, the time
series of each bin was multiplied by a curve generated using a cubic spline of 4 knots and
sigma = 0.2 [51,52]. The flipping process flipped at the center timepoint. Time warping
perturbated the signal using the magnitude wrapping curve; while for window warping, a
random window of 10% of the original duration wrapped the time dimension by 0.5 times
or 2 times [51,52].
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Figure 3. The five data augmentation strategies applied in our system, including: (a) scaling;
(b) magnitude warping; (c) flipping; (d) time warping; and (e) window warping.

The augmented data were resized to images of 224 pixels× 224 pixels to accommodate
the input size requirements of the deep learning model (Figure 4). In the merging stage,
the data of the three radars were distributed to three channels (RGB) to imitate an image.
For the single-radar configuration, the data were cloned for the three channels. For the
dual-radar configuration, the data of the first radar were input to the red channel, while
those of second radar were input to the green channel, and a 224 × 224 zeroes array was
assigned to the blue channel. For the tri-radar configuration, the top, side, and head radar
corresponded to the red, green, and blue channels, respectively. Figure 4 illustrates the
imitated image visualization of different radar configurations.
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(f) and side + head radars; and the tri-radar configurations: (g) top + side + head radars. The
x-direction of the image represents the bin resolution, and the y-direction represents time. The
resolution of the images was unified and resized to 224 pixels × 224 pixels based on the data of
the radar.
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2.5. Model Training

The models were pretrained by ImageNet [53]. We trained the model using the data
of 18 randomly selected participants, validated the model using the data of six participants,
and tested it using the data of the other six participants. The performance from the three
convolutional-based models (ResNet50, DenseNet121, and EfficientNetV2) and the two
attention-based models (vision transformer and Swin Transformer V2) was compared in
this study. The cross entropy loss was regarded as the loss function. The stochastic gradient
descent using an initial learning rate of 0.001 and a momentum of 0.9 was applied as the
optimizer. The learning rate was scaled down 10 times every 20 training epochs. Every
model was trained for 100 iterations.

2.6. Model Validation

We used accuracy as the primary outcome of the models, which was defined by the
fraction of correct predictions over the total number of predictions on the testing set. The
validation dataset adjusted the model weights and attempted to minimize overfitting by
facilitating early stopping. The accuracy was calculated by comparing the model prediction
with the testing dataset.

3. Results
3.1. Performance of Different Models

The transformer-based models performed generally better than the convolutional-
based model, where the average accuracies were 0.613 and 0.637 for the vision transformer
and Swin Transformer, respectively, compared to 0.551, 0.543, and 0.538 for the ResNet50,
DenseNet121, and EfficientNetV2, respectively, as shown in Figure 5. Among all models,
the Swin Transformer with the side + head radar configuration produced the best prediction
accuracy (0.808).
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3.2. Performance of the Radar Configurations

Overall, the dual-radar was able to produce the better result, followed by the tri-radar
and the single-radar. From Figure 5, the average accuracies of the dual-radar configurations
were 0.676, 0.607, and 0.499 for the side + head, top + side, and top + head configurations,
respectively, compared to 0.651 for the tri-radar configuration, and 0.586, 0.515, and 0.502
for the side, head, and top configuration, respectively. Among all configurations, the
side + head configuration with Swin Transformer yielded the best accuracy (0.808).

3.3. Subgroup Analysis on Posture Conditions

We extracted the confusion matrix of the Swin Transformer with the side + head
radar configuration, which had the best prediction outcome (Figure 6). For a total of
120 predictions, the side-lying postures had 110 correct predictions, while the supine/prone
had 103 predictions. The supine postures gave the largest number of correct predictions
(55/60), followed by right side-lying (54/60), left side-lying (49/60), and prone (36/60).

Sensors 2023, 23, × FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Heatmap showing the prediction accuracy of the different machine learning models and 
radar configurations. H: head radar; S: side radar; T: top radar. 

3.2. Performance of the Radar Configurations 
Overall, the dual-radar was able to produce the better result, followed by the tri-radar 

and the single-radar. From Figure 5, the average accuracies of the dual-radar configura-
tions were 0.676, 0.607, and 0.499 for the side + head, top + side, and top + head configu-
rations, respectively, compared to 0.651 for the tri-radar configuration, and 0.586, 0.515, 
and 0.502 for the side, head, and top configuration, respectively. Among all configura-
tions, the side + head configuration with Swin Transformer yielded the best accuracy 
(0.808). 

3.3. Subgroup Analysis on Posture Conditions 
We extracted the confusion matrix of the Swin Transformer with the side + head ra-

dar configuration, which had the best prediction outcome (Figure 6). For a total of 120 
predictions, the side-lying postures had 110 correct predictions, while the supine/prone 
had 103 predictions. The supine postures gave the largest number of correct predictions 
(55/60), followed by right side-lying (54/60), left side-lying (49/60), and prone (36/60). 

 
 

Figure 6. Subgroup analysis of the posture conditions using a confusion matrix over the prediction
performance of the Swin Transformer with dual-radar configuration (side + head).

4. Discussion

The novelty of this study lies in the application of the vision transformer deep learning
models and multiple radar configurations to improve the sleep posture classification
accuracy. The challenges of the radar system were that it could not effectively distinguish
a stationary target from clutter, though existing radar processing techniques have mainly
focused on moving target detection [54]. In addition, radar processing often relies on
frequency analysis, such as fast Fourier transform (FFT), which could be more sensitive to
dynamics and biomotions (respiration and heartbeat) but relatively insensitive to stationary
postures [54]. We addressed these challenges by applying multiple radar systems that
could reflect the different body cross-sectional areas in different postures.

Both the convolutional-based and transformer-based models were capable of extract-
ing the pattern, but the transformers could further facilitate positional encoding [55]. In
particular, this mechanism allowed the transformer models to locate the fringes, which was
an important feature to distinguish different postures. Among the two transformer models,
the Swin Transformer utilized shifted window and masked signal modeling techniques.
On the other hand, the CNN models, such as EfficientNet, used the compound scaling
method, by optimizing the network depth, network width, and input image resolution [56].
Nevertheless, the imitated images had low resolution, and the potential of EfficientNet
could not be unleashed. In contrast, ResNet and DenseNet were designed for an input
image with lower resolution; their higher performance over EfficientNet reflected that the
two models might be more suitable in our image resolution setting. ResNet and DenseNet
differ in how they connect the feature maps. ResNet sums all feature maps, while DenseNet
concatenates them [57]. In our study, ResNet had superior performance on single radar
settings, but DenseNet was better on dual-radar and tri-radar settings, showing that the
summation approach might work better on single radar settings, and concatenation might
work better on dual-radar and tri-radar settings.
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Our results indicated that the configurations involving top radars produced the worse
results. The top radar had a distant placement, whereas it covered largest RoI of human
body, resulting in the highest electric field attenuation (energy loss). This produced a
poor signal-to-noise ratio (SNR) that affected the prediction accuracy. In addition, we
distributed the radio-frequency data into three channels to imitate RGB images, where
the noise from the top radar might intervene with the latent feature mining from other
radars. A low SNR could worsen the prediction, both in the single radar and dual-radar
configurations. Enhancing the signal-to-noise ratio for the radar could be one method to
improve classification, which could be achieved by methods such as high order cumulants
(HOCs), ensemble empirical mode decomposition (EEMD), complex signal demodulation
(CSD), and the state space method (SSM) [58]. Among all these methods, Liang, et al. [58]
suggested that CSD worked better for IR-UWB usage. We could further enhance the radar
signal with the complex signal demodulation (CSD) algorithm.

Non-lateral (prone and supine) postures aggravate OSA, while lateral (left or right)
postures do not induce a negative impact on OSA. In our study, we presented a subgroup
analysis graph over the lateral and non-lateral predictions. The best model achieved
213 (or 0.888 in percentage) correct prediction counts. We believe that this system could
utilize this information to alert OSA patients to maintain lateral postures to mitigate
the problem.

The accuracy of our study and related recent studies was compared, as shown in
Table 2. The accuracy of the existing systems ranged from 0.737 [29] to 0.984 [30], while
our system had an accuracy of 0.808 using the state-of-the-art vision transformer model.
Studies inputting handcrafted features on machine learning models (i.e., no deep learning)
demonstrated better results. The sample size might affect the model performance [59], and
the size of the existing studies varied from 8 to 120, with different numbers of classified
postures (from 3 to 12). In addition, a covering blanket or quilt would introduce challenges
to the model predictions.

Table 2. Comparison of the sleep posture accuracy between this study and other related recent
studies.

Source n np
Stationary

or
Transitional

Hardware Classifier DL Blanket Accuracy

This study 30 4 Stationary IR-UWB
(Xethru X4M03)

Swin
Transformer Y Y 0.808

Piriyajitakonkij
et al. [29] 38 4 Transitional IR-UWB (Xethru

X4M03)

SleepPoseNet
(Deep CNN with

Multi-View
Learning)

Y N 0.737

Lai et al. [28] 18 4 Stationary IR-UWB
(Xethru X4M03) Random Forest N N 0.938

Kiriazi et al. [30] 20 3 Stationary Dual frequency
Doppler radar system Decision Tree N N 0.984

Zhou et al. [31] 8 8 Transitional FMCW radar system
CNN with
Inception

Residual module
Y N 0.872

Tam et al. [14] 120 7 Stationary Depth camera
(Realsense D435i) ECA-Net50 Y Y 0.915

Mohammadi
et al. [60] 12 12 Stationary Depth camera

(Microsoft Kinect) CNN Y Y 0.760

CNN: convolutional neural network; DL: deep learning; FMCW: frequency-modulated continuous-wave;
IR-UWB: impulse-radio ultra-wideband; n: sample size; np: number of postures; N: No; No.: number; Y: Yes.

There were some limitations in our study. Our proposal aimed to identify the best
radar configurations that could collect the most representative latent information on sleep
posture for prediction. Nonetheless, the signals collected for each radar were collapsed
into a one dimensional time-series. In order words, we could not extract the complete
spatial information of the body topology. The full geometrical information of the body
posture would not only improve the accuracy of sleep posture prediction but also provide
explainable information for the prediction. Future improvements may consider the applica-
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tions of synthetic aperture radar techniques to obtain complete spatial information through
scanning and sweeping the RoI periodically [61].

In addition, a large dataset is imperative for training machine learning models, es-
pecially deep learning models [62]. In this study, we recruited 30 participants with
10 repetitions of each posture and applied data augmentation techniques. More par-
ticipants with different ages, sexes, and body builds could enhance the robustness and
generalizability of the prediction. Age and sex might affect the preference of sleep posture
and position, but they might not confound our model since we believe that they are not
associated with the body and limb position of a posture. Nevertheless, body build (or body
mass index) might have an impact on our model, since it attenuates the effective area for the
radar signal reflection. On the other hand, model training and prediction with fine-grained
posture classes on upper limb placements could be conducted. Some participants that put
their hands on the front of their chest might cause interference with the measurement of
the vital sign signals by the radar, since the vital signs and the source of the vital signs are
important inputs for posture estimation. Our system did not isolate the vital sign signal.
Therefore, we do not know whether the ViT used the vital sign as a salient feature.

The dataset size influences the accuracy in transfer learning with deep learning mod-
els [62]. Compared to previous studies, we had a larger dataset size in addition to applying
augmentation techniques, which improved the generalization of the deep learning model;
however, a larger dataset size remains preferable. During the experiment, we repeated
the postures 10 times but allowed freedom of limb placement, which facilitated the model
generalization in terms of the postures. Some participants might place their limbs on the
face or chest, which could weaken the signals from the vital signs.

The long-term objective of this research is to develop a comprehensive sleep surveil-
lance system that can monitor sleep postures and behaviors. Our previous studies devel-
oped a depth camera system to monitor bed-exiting events [63,64] and to classify sleep
postures in a field setting [14,15,28]. In the future, we will explore synthetic aperture radar
and advanced modeling techniques, for instance, DensePose, which could estimate and
map the human pixels of an RGB image to the 3D surface of the human body in real
time [65,66].

5. Conclusions

Our study showed that the dual-radar configuration (side + head) with the Swin
Transformer model could achieve the best sleep posture prediction accuracy of 0.808.
Nevertheless, the limitations of this study included the limited data for model train-
ing in addition to the incomplete spatial information generated by the radar system.
Future studies may consider a larger dataset and the application of synthetic aperture
radar techniques.
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