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Abstract: The importance of panoramic traffic perception tasks in autonomous driving is increasing,
so shared networks with high accuracy are becoming increasingly important. In this paper, we
propose a multi-task shared sensing network, called CenterPNets, that can perform the three major
detection tasks of target detection, driving area segmentation, and lane detection in traffic sensing
in one go and propose several key optimizations to improve the overall detection performance.
First, this paper proposes an efficient detection head and segmentation head based on a shared path
aggregation network to improve the overall reuse rate of CenterPNets and an efficient multi-task joint
training loss function to optimize the model. Secondly, the detection head branch uses an anchor-free
frame mechanism to automatically regress target location information to improve the inference speed
of the model. Finally, the split-head branch fuses deep multi-scale features with shallow fine-grained
features, ensuring that the extracted features are rich in detail. CenterPNets achieves an average
detection accuracy of 75.8% on the publicly available large-scale Berkeley DeepDrive dataset, with
an intersection ratio of 92.8% and 32.1% for driveableareas and lane areas, respectively. Therefore,
CenterPNets is a precise and effective solution to the multi-tasking detection issue.

Keywords: traffic perception; multi-task learning; target detection; semantic segmentation

1. Introduction

In recent years, the rapid development of embedded systems and neural networks
has made autonomous driving a popular field in computer vision, where panoramic
traffic perception systems play a crucial role in autonomous driving. Research has shown
that vehicle onboard camera image processing enables scene understanding, including
road target detection, driveable area detection, and lane detection, which greatly reduces
overhead compared to the traditional approach of using LIDAR and millimeter wave radar
to establish the vehicle’s surroundings.

The traffic panorama perception system’s detection precision and decision-making
speed significantly influence the vehicle’s judgment and decision-making and determine
the safety of autonomous vehicles. However, actual vehicle driver assistance systems,
such asthe Advanced Driver Assistance System, have limited computing power and are
expensive. Therefore, achieving a good balance between detection accuracy and model
complexity from a practical application perspective is a challenge for decision-makers.

Current target detection can be broadly divided into one-stage detection models and
two-stage detection models. The two-stage detection approach usually starts by acquiring
a candidate region and then performing a regression prediction from that candidate region
to ensure the accuracy of the detection. However, this step-by-step detection approach
is not friendly to embedded systems. The end-to-end, one-stage detection model has the
advantage of fast inference speed and is gaining more attention in the field of detection.The
use of direct regression bounding boxes in the SSD [1] series, YOLO [2] series, etc. is
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a milestone in the first stage of detection. FCN [3] was the first to introduce fully con-
volutional networks to the task of semantic segmentation, although their performance
was limited by resolution. PSPNet [4] proposes pyramid pooling to extract multi-scale
features to improve detection performance. Enet [5] reduces the size of the feature map.
SSN [6] incorporates conditional random field units in the post-processing stage to improve
segmentation performance. LaneNet [7] proposes to use a single lane line as the object of
instance segmentation. Layer-by-layer convolution is a technique used by spatial CNN [8]
that enables the transfer of feature information between ranks in a layer. Enet SAD [9], on
the other hand, uses a self-focused distillation method so that the feature maps can learn
from each other.

Although the above algorithms are effective for their respective single-task detections,
they can cause unnecessary network delays if they are used to achieve multi-task detection
by acquiring the corresponding features through different task networks one by one. Multi-
tasking networks, however, are better achieved by sharing information between multiple
tasks. Mask R-CNN [10] extends Faster R-CNN [11] by mask branching to parallelize the
detection task with the segmentation task. A similar approach is used by LSNet [12] for
tasks such astarget detection, instance segmentation, etc. An encoder–decoder structure
is suggested by MultiNet [13] to carry out the scene perception job concurrently.On the
BDD100K dataset [14], YOLOP [15] is the first multi-tasking problem that implements
panoramic driving perception, i.e., traffic target detection, driveable area segmentation, and
lane detection, with high accuracy and speed at the same time with the help of embedded
devices. YOLOP uses an efficient network structure and passes the feature information
extracted from the images to the different decoders for their respective detection tasks.
However, the use of separate segmentation heads for the driveable area and lane line
segmentation tasks leaves room for multi-network optimization, i.e., these tasks can be
fused into an overall segmentation task. HybridNets [16] uses a lighter backbone network
than YOLOP, and to achieve a higher level of feature fusion, the neck network uses a
weighted bi-directional feature network that treats each top-down and bottom-up bi-
directional path as a feature network layer. However, the anchor mechanism is used in
the detection task to return vehicle position information, which requires pre-clustering
of anchor boxes in order to better fit the target size and has cumbersome subsequent
processing during the prediction process. In this paper, we propose a more efficient multi-
tasking network after a thorough study of previous approaches and incorporating the idea
of an anchor-free architecture.

The CenterPNets backbone feature extraction network uses the CSPDarknet [17]
module pre-trained on ImageNet and fuses the path aggregation neck network to achieve a
good balance between detection accuracy and computational overhead. The PANet [18]
decoder uses multi-scale feature data for tasks such as segmentation and detection. For
model optimization, CenterPNets employs a multi-task joint loss function. CenterPNets
abandons the anchor mechanism with high recall in the detection head in favor of an
anchor-free mechanism that returns the target center position information without the need
for time-consuming anchor frame clustering and subsequent processing, such as NMS,
thereby increasing the network’s overall inference speed. In the segmentation task, shallow
features are rich in fine-grained information, which is essential for image segmentation.
For this reason, we fuse multi-scale features with shallow features to retain the detailed
information of the image and make the segmented edges smoother.

In this paper, in addition to using an end-to-end training strategy, we have also tried a
frozen training approach. Using the freeze training strategy, this approach has been shown
to be effective at preventing information interference from other non-relevant modules in
the network and the completed training tasks are instructive for other tasks.

To sum up, the main contributions of this research are: (1) This paper proposes an
effective end-to-end shared multi-task network structure that can jointly handle three
important traffic sensing tasks: lane detection, driveable area segmentation, and road
target detection. The network’s encoders and decoders are shared to fully exploit the
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correlation between each task’s semantic features, which can help the network reduce
model redundancy. (2) The detection head adopts an anchor-free mechanism to directly
return the target key point information, size, and offset, without the need for pre-clustering
anchor box ratio and tedious subsequent processing, thus enhancing the overall inference
speed of the network. (3) In the segmentation head section, similar features from the
shared detection task are used and proposed to fuse multi-scale, deep semantic information
with shallow features so that the feature information extracted from the segmentation task
is rich in fine-grained information, thus enhancing the detail segmentation capability of
the model.

2. Methods
2.1. Network Architecture

This paper proposes a multi-task traffic panorama perception architecture that can be
jointly trained, called CenterPNets. As shown in Figure 1, the structure mainly contains
encoders, decoders, and task-independent detection heads to handle the corresponding
detection tasks, and there are no redundant parts between the modules, which reduces
computational consumption to a certain extent.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 15 
 

 

To sum up, the main contributions of this research are: (1)This paper proposes an 
effective end-to-end shared multi-task network structure that can jointly handle three 
important traffic sensing tasks: lane detection, driveable area segmentation, and road 
target detection. The network’s encoders and decoders are shared to fully exploit the 
correlation between each task’s semantic features, which can help the network reduce 
model redundancy. (2)The detection head adopts an anchor-free mechanism to directly 
return the target key point information, size, and offset, without the need for 
pre-clustering anchor box ratio and tedious subsequent processing, thus enhancing the 
overall inference speed of the network. (3)In the segmentation head section, similar fea-
tures from the shared detection task are used and proposed to fuse multi-scale, deep 
semantic information with shallow features so that the feature information extracted 
from the segmentation task is rich in fine-grained information, thus enhancing the detail 
segmentation capability of the model. 

2. Methods 
2.1. Network Architecture 

This paper proposes a multi-task traffic panorama perception architecture that can 
be jointly trained, called CenterPNets. As shown in Figure 1, the structure mainly con-
tains encoders, decoders, and task-independent detection heads to handle the corre-
sponding detection tasks, and there are no redundant parts between the modules, which 
reduces computational consumption to a certain extent. 

Concat + CSP

Focus

Conv_BN_SiLU

Conv_BN_SiLU

CSPLayer

Conv_BN_SiLU

CSPLayer

Conv_BN_SiLU

CSPLayer

Conv_BN_SiLU

CSPLayer

SPP

Conv_BN_SiLU

UpSampling

Concat + CSP

Conv_BN_SiLU

UpSampling
DownSample

Concat + CSP

DownSample

Concat + CSP

P 4_out

P 3_out

P 5_out

UpSampling

Concat 

P1

P2

P3

P4

P5

Input

Neck

Detection Head

Segmentation Head

UpSampling

SPP Attention

UpSampling

Conv

Conv

 
Figure 1. HybridNets Architecture has one encoder: backbone network and neck network;two de-
coders: Detection Head and Segmentation Head. 
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rently extract features directly using networks that have good detection performance in 
the ImageNet dataset. One of the most traditional deep networks, Darknet, combines 

Figure 1. HybridNets Architecture has one encoder: backbone network and neck network;two
decoders: Detection Head and Segmentation Head.

In the encoder part, feature extraction is the core structure in the network, which di-
rectly determines the accuracy of the network detection. Many modern networks currently
extract features directly using networks that have good detection performance in the Ima-
geNet dataset. One of the most traditional deep networks, Darknet, combines Resnet [19]
features to ensure excellent feature representation while avoiding the gradient issues that
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come with overlying deep networks. CenterPNetsusesCSPDarkNet as the backbone, which
combines the advantages of CSPNet and SPP [20] modules to maximize the difference in
gradient union, and its use of gradient stream splitting and merging to avoid different
layers of learning to duplicate gradient information is effective enough to reduce duplicate
gradient learning. As a result, the backbone network of CenterPNets can extract crucial
feature information while lowering the network’s computational cost.

The feature map extracted by the encoder is passed to the neck structure of the network.
The Feature Pyramid Network(FPN) module [21] a feature extractor design for generating
multi-scale feature maps to obtain better information. However, the limitation of FPN
is that the information features are inherited by a uni-directional flow. As a result, the
CenterPNets neck network makes use of the PANet module with the addition of a top-down
feature pyramid behind the FPN layer. Through its structural properties, it can effectively
compensate for the fact that FPN only enhances the semantic information of the feature
pyramid and lacks localization information.

A. Anchor-free detection head

As shown in Figure 2, in the detection head section, CenterPNets integrates informa-
tion from the P3_out, P4_out, and P5_out multi-level feature maps in the neck network at
the same resolution in order to obtain multi-level semantic features, followed by pyramid
pooling and attention mechanisms to reinforce the relevant feature information, which is
recovered by upsampling to a feature map with 1/4 of the input image resolution. CenterP-
Nets uses an anchor-free mechanism [22] for direct regression prediction, eliminating the
need for K-means clustering to determine pre-defined anchor box proportions and tedious
NMS follow-up, allowing for direct regression of key point heatmaps, size prediction, and
offset prediction, thus improving the overall speed of inference in the network.
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Keypoint heatmap:
Assume that the input image is I ∈ RW•H•3, where W and H are the width and height

of the input image, respectively, C is the category type of the detection target, and R is the
output step. In this paper, only the car category label is detected, so C = 1. We use the
default output step of R = 4 and deflate the output prediction by R. For the real category
labeling point P ∈ R2, a low-resolution equivalent point P̂ =

⌊
P
R

⌋
is used instead. Generate

a heat map of key points Ŷ ∈ [0, 1]W×H×C during model training, where C represents the
number of category labels detected.In this paper, only the car category is detected. Ŷ = 1
means that the target to be measured is detected at (x, y) out.Ŷ = 0 indicates a background
area. For each ground truth keypoint P, we splat it onto a heatmap using a Gaussian

kernel Yxyc = exp
(
− (x−px)

2+(y−py)
2

2δ2
p

)
, δp is an object size-adaptive standard deviation [23].

When there are two Gaussian kernels that overlap, the maximum value of the elements
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is taken in this paper [24]. The difference between the predicted and real heatmaps is the
pixel-wise focus loss [25].

Lk = −
1
N ∑

xyc


(1− Ŷxyc)

α log(Ŷxyc) Yxyc = 1
(1−Yxyc)

β(Ŷxyc)
α otherwise

log(1− Ŷxyc) otherwise
(1)

where α and β are hyperparameters of focal loss and N is the number of critical points. In
our experiments, we used α = 2, β = 4 [23].

Size prediction:
Assume that the kth bounding box has coordinates

(
xk

1, yk
1, xk

2, yk
2

)
and a width and

height sk =
(

xk
2 − xk

1, yk
2 − yk

1

)
. The coordinates of its center point are pk =

(
xk

1+xk
2

2 , yk
1+yk

2
2

)
.

We calculate the predicted loss using L1 only at the center of the target.

Lsize =
1
N

N

∑
k=1

∣∣Ŝpk − sk
∣∣ (2)

Offset prediction:
The output feature map will contain accuracy errors when remapping to the original

image size because the decoder outputs features at a resolution that is one-fourth that of
the original input image. As a result, an extra local offset is applied for each key point to
make up for the inaccuracy.

Lo f f =
1
N ∑

p

∣∣∣Ôp̃ −
( p

R
− p̃

)∣∣∣ (3)

where Õ p̃ denotes the offset of the network prediction, P denotes the image centroid
coordinates, and R denotes the heatmap scaling factor.

B. Segmentation heads incorporating fine-grained features

As shown in Figure 3, the segmented head section outputs 3 categories of labels,
namely background, road trafficable area, and road lane lines. There is a correlation between
the feature information of the detection task and the segmentation task, so CenterPNets
shares the same feature mapping between the two and upsamples the feature fusion with
the shallow, fine-grained feature P1 layer with rich localization information based on the
detection feature mapping, thus enhancing the network’s ability to segment image edge
details. Finally, we recover the output features to the original image resolution (W, H, 3),
storing the probability values for each pixel category label.
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2.2. Loss of Function for Joint Multi-Task Training

The end-to-end network is trained by CenterPNets using a multi-task loss function,
which sums two components to represent the entire loss function.

Lall = αLdet + βLseg (4)

where Ldet is the target detection loss and Lseg is the semantic segmentation loss. α, β are
the balance factors of the loss function in order to keep the detection task in the same order
of magnitude as the segmentation task.

Ldet = Lk + λsizeLsize + λo f f Lo f f (5)

where Lsize, Loff use the ordinary L1 loss function, which is used to regress the width and
height and centroid offsets, respectively. For heat map losses, Lk is calculated by focal loss.

Lk = −
1
N ∑

xyc


(
1− Ŷ xyc

)α
log
(
Ŷxyc

)
Yxyc = 1(

1−Yxyc
)β(Ŷxyc

)α otherwise
(6)

Multi-class mixture loss is used for multi-class segmentation of backgrounds, driveable
areas, and lane lines. Semantic segmentation is difficult due to the uneven distribution of
data. Therefore, CenterPNets combines Tversky loss LTversky [26] and focus loss LFocal [27]
to predict the class to which the pixel belongs. LTversky performs well on the class imbal-
ance problem and is optimized for score maximization, while LFocal aims to minimize
classification errors between pixels and focuses on hard labeling.

Lseg = LTversky + LFocal (7)

LTversky = C−
C−1

∑
C=0

TPp(c)
TPp(c) + ϕFNp(c) + (1− ϕ)FPp(c)

(8)

LFocal = −λ
1
N

C−1

∑
c=0

N

∑
n=1

gn(c)(1− pn(c))
γ log(pn(c)) (9)

where TPp(c), FNp(c), and FPp(c) are classes of true positives, false negatives, and false
positives. Pn(c) is the predicted probability of a class of pixels. gn(c) is denoted as the true
annotation category C for pixel n. C is the number of classes in Equation (8) and N is the
total number of pixels in the input image in Equation (9).

3. Results
3.1. Setting
3.1.1. Dataset Setting

The experiments in this paper use image data from the Berkeley DeepDrive dataset
(BDD100K) to train and validate the model. Existing multi-task networks are trained
against datasets from three tasks on BDD100K to help compare performance with other
models. In the target detection task, “car, truck, bus, train” are combined into a single
category label “car,” as MultiNet, YOLOP, and HybridNets can only detect vehicle category
labels. Basic enhancements such as rotation, scaling etc. are used in image pre-processing.

3.1.2. Implementation Details

This studyperforms backbone initialization by using CSPDarkNet weights pre-trained
on ImageNets. The optimizer uses AdamW [28], where γ = 1 × 10−3, β1 = 0.9,
β2 = 0.999, ξ = 1 × 10−8, λ = 1 × 10−2. The learning rate is a non-linear approach
with its initial value set to 1× 10−5. Optimization uses L1 and focal loss in the target
detection task, where λsize = 0.1, λo f f = 1. For the driveable area and lane splitting, the
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model uses a combination of Tversky loss and focal loss. In this study, 200 cycles are trained
on RTXA4000.

3.1.3. Evaluation Indicators

In the traffic target detection task, performance is evaluated with the help of mAP50.
mAP50 is calculated by averaging the average accuracy of the categories below a single
IoU threshold of 0.5.

AP =
n−1

∑
i=1

(ri+1 − ri)Pinter(ri + 1) (10)

where r1, r2, . . . , rn are the recall values corresponding to the first interpolation of the
precision interpolation segment in ascending order.

mAP =
∑k

i=1 APi

k
(11)

In the semantic segmentation task, the IoU metric is used to evaluate the driveable
area and lane line segmentation. In this paper, mIoU is represented as the average IoU
per class and the IoU metric for individual classes. In order to illustrate the validity of the
experiment more favorably, accuracy has been added as an additional criterion.

IoU =
Bt ∧ Bp

Bt ∪ Bp
(12)

where Bp is the predicted bounding box and Bt is ground truth bounding box.

3.2. Experimental Analysis of Multi-Tasking Networks

In this section, we first train the model end-to-end, then compare it with other rep-
resentative models in the corresponding tasks and illustrate the effect of each module on
the network and the effectiveness of multi-task network learning by means of ablation
experiments and freeze-out training, respectively.

3.2.1. Road Target Detection Tasks

The CenterPNets algorithm istestedfor vehicle target detection on the BDD100K
dataset and the algorithms are compared with MultiNet, Faster R-CNN, YOLOP, and
HybridNets, and their experimental results are shown in Table 1.

Table 1. Comparison results of road target detection algorithms.

Model Recall (%) mAP50 (%)

MultiNet 81.3 60.2
Faster R-CNN 77.2 55.6

YOLOP 89.2 76.5
HybridNets 92.8 77.3
CenterPNets 81.6 75.8

As shown in Table 1, CenterPNets uses detection accuracy (mAP50) and recall (recall)
as evaluation metrics. The CenterPNets model outperforms MultiNet and Faster R-CNN
networks in terms of detection accuracy, but falls short of YOLOP and HybridNets. Since
YOLOP uses a network structure based on the anchor box mechanism of YOLOV4, it has a
high recall rate in feature regression by generating a dense anchor box approach, which
allows the network to perform target classification and bounding box coordinate regression
directly on this basis; HybridNets also uses a similar mechanism. CenterPNets, on the
other hand, uses an anchor-free box mechanism, which results in average regression box
quality because the anchor-free mechanism only predicts at locations closer to the center of
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the real box. As a result, it underperforms in terms of performance metrics when compared
to YOLOP and HybridNets.

In this study, we use the same image and video data to verify the inference speed
of the model. As can be seen from Table 2, the number of model parameters in this
study has increased compared to the benchmark algorithm, which is due to the deeper
network structure we have used to ensure detection performance. Secondly, the overall
structure of the network in this studyis more integrated and eliminates tedious subsequent
processing, etc., which optimizes the network to a certain extent. As can be seen from
Table 2, the CenterPNets algorithm has an inference speed of 8.709 FPS when we perform
unified image inference, compared to 5.719 FPS for HybridNets network inference, which
shows a roughly 1.5-times improvement in inference speed, as the anchorless framework
mechanism eliminates tedious subsequent processing. To further verify the reliability of
the experiments, CenterPNetswastested uniformly using video data for inference, and it
can be seen that the inference performance of CenterPNets is still very good.

Table 2. Inference speed for vehicle target detection.

Model Image_infer(FPS) Video_infer(S) Param(M)

HybridNets 5.719 90.632 12.83
CenterPNets 8.709 68.279 28.56

To further evaluate the effectiveness of CenterPNets in real road traffic scenarios,
images of road scenes at different times of the day areselected from the BDD100K test set for
experimental effectiveness testing. The YOLOP, HybridNets, and CenterPNets algorithms
for traffic target recognition tasks at various times of the day are visually compared in
Figure 4. The first row displays the results of the YOLOP test, the second row the results of
the HybridNets test, and the third row the results of the CenterPNets test. Orange circles
denote false negatives, and red circles false positives. The CenterPNets shared network
architecture is a further improvement compared to YOLOP and HybridNets. As shown, it
can be seen that YOLOP and HybridNets both have a certain degree of missed and false
vehicle target detection, while the CenterPNets algorithm has better vehicle target detection
capabilities and more accurate bounding boxes in different environments.

3.2.2. Driveable Area and Lane Detection Tasks

A. Travelable area segmentation tasks

CenterPNets uses the IoU metric to evaluate the driveable area segmentation capability
and is compared with the algorithms MultiNet, PSPNet, YOLOP, and HybridNets, whose
experimental results are shown in Table 3.

The driveable portion of the image and the backdrop are the only things the CenterP-
Nets model needs to differentiate between. Comparing the five driveable area detection
networks, Table 3 demonstrates that the CenterPNets algorithm had the highest mIoU
performance of 92.8%, an improvement of 1.3% and 2.3% over YOLOP and HybridNets,
respectively. Due to the feature correlation between the road vehicle detection task and
the road travel area segmentation task, the CenterPNets shared network can effectively
information correlation between the two; secondly, CenterPNets first fuses deep multi-
scale features and combines shallow feature information so that the extracted semantic
feature information has local fine-grained information at the same time, smoothing the road
edge segmentation.

For the driveable area segmentation task, in Figure 5, red in the depiction is a false
positive and orange is a false negative. The CenterPNets method is more precise than
YOLOP and HybridNets region segmentation, as demonstrated by a visual comparison
of the CenterPNets network with those two algorithms. YOLOP considers the intersec-
tion of bounding boxes while concentrating on determining the class to which the pixel
belongs. As a result, the YOLOP model’s detection suffers from some lane line and road



Sensors 2023, 23, 2467 9 of 15

area misdetection as well as an inability to precisely segment the driveable portion of the
road. For the neck network, HybridNets uses a BiFPN architecture, in which information
from different receptive fields is combined from different feature map levels by weight-
ing parameters, an improvement over the YOLOP segmentation structure but still with
regional underdetection. The CenterPNets algorithm uses the PANet architecture of the
neck network to fuse different scale features to make the global information richer, while
taking advantage of the correlation between multi-task features and combining it with rich
shallow fine-grained feature information to ensure that the network captures more detailed
information. The driveable area segmentation task can therefore be effectively improved
by the CenterPNets network. The CenterPNets method exhibits some inadequate area
segmentation at complicated junctions, as seen in the picture, but the overall highway
driveable area may be more precisely segregated from the backdrop and lane lines.
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MultiNet 71.6
PSPNet 89.6
YOLOP 91.5

HybridNets 90.5
CenterPNets 92.8
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B. Lane area splitting task

Lane detection is one of the main challenges for autonomous driving. CenterPNets
uses accuracy and IoU as evaluation metrics for lane detection and compares the algo-
rithms with ENet, SCNN, YOLOP, and HybridNets, whose experimental results are shown
in Table 4.

Table 4. Performance comparison of lane detection tasks.

Model Accuracy (%) Lane Line IoU (%)

ENet 34.12 14.64
SCNN 35.79 15.84

YOLOP 70.50 26.20
HybridNets 85.40 31.60
CenterPNets 86.20 32.10
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As shown in Table 4, CenterPNets’ shared network multi-tasking architecture ac-
complished both the driving area and lane line segmentation tasks in the segmentation
head section, with the CenterPNets algorithm achieving the best performance results
of 86.20% accuracy and 32.1% IoU, an improvement in performance compared to other
detection networks.

As shown in Figure 6 on the lane segmentation task, with the orange circles showing
false negatives and the red circles false positives, a visual comparison of the CenterPNets
network with YOLOP and HybridNet shows that there is a degree of lane pixel underdetec-
tion in YOLOP and HybridNets, while the features extracted by the CenterPNets algorithm
have richer global fine-grained information. As a result, it excels in lane detection, and the
outcomes of lane segmentation are more continuous and complete.
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C. Split task ablation experiment

CenterPNets is further used to analyze the impact of modules such as multi-scale
feature information (MFI),spatial pyramidal pooling (SPP), attention mechanism (Atten-



Sensors 2023, 23, 2467 12 of 15

tion), and superficial feature information (SCI) on the segmentation task. As can be seen
from Experiments 1 and 2 in Table 5, by introducing multi-scale information fusion, the
driveable area IoU and accuracy improved by 3.8% and 1.9%, respectively, and the lane
detection IoU and accuracy improved by 2.8% and 2.3%, respectively, thus demonstrating
the effectiveness of multi-level contextual feature information for the segmentation task.
Experiments 2, 3, 4, and 5 show that the spatial pyramid pooling and attention mechanism
effectively enhance the road-related area features, with 1.0% and 1.8% improvements in the
IoU and accuracy of the lane lines, respectively.

Table 5. Experimental analysis of semantic segmentation task ablation.

Experimental Serial
Number

MFI SPP Attention SCI
Driveable Lane Line

IoU (%) Acc (%) IoU (%) Acc (%)

1 — — — — 78.7 93.2 28.3 81.2
2

√
— — — 82.5 95.1 31.1 83.5

3
√ √

— — 82.2 94.6 31.3 84.8
4

√ √ √
— 82.9 94.8 31.5 85.5

5
√ √ √ √

82.6 94.2 32.1 85.3

3.2.3. Training Method Comparison Experiment

In order to verify the effectiveness of joint multi-task training, this paper compares the
impact of the multi-task training approach and the single-task training approach on the
overall performance of the network. Table 6 shows a comparison of the performance of
these two schemes on their specific tasks. It can be seen that the overall performance of the
model in this paper using a multi-task training scheme outperforms the performance of the
individual tasks. More importantly, the multi-task model can save a significant amount of
inference time compared to performing the respective tasks individually.

Table 6. The experimental results of various training modalities.

Training
Method

Detection Driveable Lane Line

Recall (%) AP (%) IoU (%) Acc (%) IoU (%) Acc (%)

Only(det) 80.4 74.2 – – – –
Only(seg) – – 82.6 94.2 32.1 85.3
Multi-task 81.6 75.8 82.5 93.2 32.1 86.2

Figure 7 shows the results of some of the CenterPNets tests, where yellow is the lane
line, red is the driveable area, and the green border is the traffic vehicle target. As can
be seen, CenterPNets performed relatively well in most cases.CenterPNets exploits the
correlation between the detection task and the segmentation task based on contextual infor-
mation in order to help the training model converge more quickly. Therefore, CenterPNets
in this paper can perform the traffic perception task more easily. In general, CenterPNets
can perform the detection task well in the vast majority of scenarios. However, there are
still some lane prediction interruptions and missed detections at complex intersections.
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4. Conclusions

In this paper, the effectiveness of multi-task network detection is systematically de-
scribed, and a perceptual structure called theCenterPNets shared codec is proposed to
integrate multi-scale feature information through a path aggregation network, which is
used for direct regression to target key points.In the semantic segmentation task, the de-
tailed information of the image is enhanced by fusing the multi-level features of the path
aggregation network with shallow fine-grained information and building an effective
training loss function to improve accuracy and performance.CenterPNets achieved an
average detection accuracy of 75.8% on the publicly available large-scale Berkeley Deep-
Drive dataset, with an average intersection ratio of 92.8% in the driveable area and 32.1%
in the lane area, respectively. Compared to the baseline algorithm, CenterPNets showed
a 2.3% and 0.5% improvement in the cross-merge ratio for the roadway driveable area
and lane line segmentation tasks, respectively. More importantly, CenterPNets achieved
more accurate traffic segmentation tasks with relatively fast inference compared to other
multi-task detection networks.
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