

 sensors-23-02445

sensors-23-02445

Sensors 2023, 23(5), 2445; doi:10.3390/s23052445

Article

EEOA: Cost and Energy Efficient Task Scheduling in a Cloud-Fog Framework

M. Santhosh Kumar[image: Orcid] and Ganesh Reddy Karri *[image: Orcid]

School of Computer Science and Engineering, VIT-AP University, Amaravathi 522237, Andhra Pradesh, India

*

Correspondence: ganesh.reddy@vitap.ac.in

Received: 23 December 2022 / Revised: 16 February 2023 / Accepted: 20 February 2023 / Published: 22 February 2023

Abstract

:

Cloud-fog computing is a wide range of service environments created to provide quick, flexible services to customers, and the phenomenal growth of the Internet of Things (IoT) has produced an immense amount of data on a daily basis. To complete tasks and meet service-level agreement (SLA) commitments, the provider assigns appropriate resources and employs scheduling techniques to efficiently manage the execution of received IoT tasks in fog or cloud systems. The effectiveness of cloud services is directly impacted by some other important criteria, such as energy usage and cost, which are not taken into account by many of the existing methodologies. To resolve the aforementioned problems, an effective scheduling algorithm is required to schedule the heterogeneous workload and enhance the quality of service (QoS). Therefore, a nature-inspired multi-objective task scheduling algorithm called the electric earthworm optimization algorithm (EEOA) is proposed in this paper for IoT requests in a cloud-fog framework. This method was created using the combination of the earthworm optimization algorithm (EOA) and the electric fish optimization algorithm (EFO) to improve EFO’s potential to be exploited while looking for the best solution to the problem at hand. Concerning execution time, cost, makespan, and energy consumption, the suggested scheduling technique’s performance was assessed using significant instances of real-world workloads such as CEA-CURIE and HPC2N. Based on simulation results, our proposed approach improves efficiency by 89%, energy consumption by 94%, and total cost by 87% over existing algorithms for the scenarios considered using different benchmarks. Detailed simulations demonstrate that the suggested approach provides a superior scheduling scheme with better results than the existing scheduling techniques.

Keywords:

electric fish optimization; earthworm optimization algorithm; internet of things; HPC2N; CEA-CURIE

1. Introduction

The Internet of Things (IoT) is a modern invention that has a significant impact on information and communication technologies (ICT). The IoT and its related technologies, such as machine-to-machine (M2M) advancements, expand Internet access to a variety of gadgets and household objects (such as artifacts, devices, automobiles, and residential complexes), enabling them to carry out a range of applications and functions (e.g., vehicular networking, energy management, traffic control, medical treatment, and health care) [1,2,3,4]. Incredible amounts of data are being produced by these smart devices, which must be maintained, processed, and analyzed to gain important ideas and make them accessible to end users and/or client software [5,6].

Fog computing has developed as a unique framework to complement cloud computing and the fast evolution of the IoT [7,8,9]. To address the issue of data latency, the fog attempts to extend the cloud to the network’s edge, near where IoT data are generated. For delay-sensitive, energy-efficient, high-privacy, and security applications, data are processed at edge nodes, and the high volumes of data are transferred to the cloud for processing and storage. Both computing paradigms are very important for all types of IoT data [10]. In addition to that, the edge-to-cloud continuum improves the quality of service (QoS) [11].

Resources in the fog can be globalized, just like in cloud computing. In light of this, a fog node might be a virtual machine (VM) [12,13,14]. The processing capacity of the fog resources is often constrained, in contrast to the cloud computing model.

The QoS and financial cost are both greatly impacted by the work scheduling issue in collaborative fog-cloud computing systems [15,16,17]. There are numerous latency-sensitive and latency-tolerant IoT applications with various requirements in the real world. This makes organizing and scheduling them more difficult. As a result, we must offer an effective method of task scheduling in this situation [18,19,20]. Additionally, the cost of computation and communication for scheduling workflows is significant, especially for science-related workloads that deal with areas such as space exploration and the natural sciences, two of the most well-liked cloud platforms.

Service providers offer customers distinct functions in cloud computing at different prices. Usually, quicker resources are costlier than stronger [21,22]. The scheduler therefore has a range of resources for workflow, resulting in a range of runtimes and prices as well as a range of user limitations. The deadline makes sure that the procedure is finished in the allotted time. The cost constraint guarantees that the expense does not exceed the customer’s spending limit. The ideal answer balances these two demands [23,24,25]. Additionally, when defining the problem, the majority of the existing techniques fail to consider the system’s violation cost.

Therefore, in this study, we take into account the importance of tasks based on their cost, duration, and energy consumption when scheduling them in fog-cloud computing. To accomplish this, an efficient hybrid approach based on the electric fish and earthworm optimization algorithms, termed the electric earthworm optimization algorithm (EEOA), is created to perform cost and energy-conscious job scheduling in cloud/fog environments. The benefits of both metaheuristic algorithms are used to execute efficient scheduling while taking SLA requirements into account.

The following list summarizes the article’s contributions:

	
To execute efficient task scheduling in cloud-fog environments, a hybrid evolutionary algorithm called EEOA is proposed. This algorithm combines the adaptive EOA technique with the fundamental EFO methodology to enhance convergence speed and searching explorations.

	
Creating an energy-efficient cost model that takes into account the QoS requirements and energy requirements of IoT tasks sent for processing in a cloud-fog framework.

	
Assessing the proposed scheduling method’s efficiency to other strategies on real-world workloads such as HPC2N and CEA-Curie in terms of makespan, task execution cost, and power consumption.

The remainder of the article is organized as follows. In Section 2, the study on existing work scheduling techniques is covered. The system design is detailed in Section 3 and Section 4 and describes the problem formulation and objective function. In Section 5, the suggested EEOA job scheduling algorithm is explained. The effectiveness of the EEOA technique is shown in Section 6. The conclusion and the work’s future focus are presented in Section 7.

2. Literature Review

To establish an effective scheduling method for integrating software applications in a cloud-fog framework, Arshed et al. [26] presented a genetic-algorithm-based scheduling technique. The suggested method first encodes the problem’s chromosome-based representation by taking into account the application and fog device attributes. The solutions were then evolved utilizing a variety of parameter modifications using genetic-algorithm-based crossover and mutation operators. In terms of run time, bandwidth, and financial cost, the suggested technique has been assessed and contrasted against existing techniques.

Ghafari and Mansouri [27] developed a task scheduling technique for the cloud system that maps workloads through the resources available using a grey wolf optimizer. This paper’s main objective was to reduce execution costs, energy use, and make-up time. This involves sending input tasks to the cloud system job queue. The VM controller subsequently received incoming tasks from the job queue. The VM management team then evaluates the resource situation. The tasks were assigned to the existing VMs if it was practicable to do so; otherwise, new VMs were generated.

Arshed and Ahmed [28] suggested the resource aware cost-efficient scheduler (RACE), which allocates the received application modules to fog systems that increase the utilization of resources at the fog layer and lower the cost in the cloud with the least amount of bandwidth utilization. There are two algorithms in this RACE. The arriving application modules were categorized by the module scheduler in RACE based on their computing and bandwidth needs and are subsequently positioned by a compare module.

Sindhu and Prakash [29] presented the CBTSA algorithm to symmetrically balance energy efficiency, cost, and task scheduling. First, this technique uses a directed acyclic graph to represent the priority of the workload that is accepted for processing. A node was chosen to process the workloads that had been given the highest priority. The tasks are handled on a fog or cloud node based on an optimal efficiency factor that yields the completion time, expense, and power. Along with the reinforcement learning algorithm, a Markov decision process was used to figure out where the best resources should go.

A multi-swarm particle swarm optimization (MS-PSO) technique was created by Subramoney and Nyirenda [30] to enhance the schedule of scientific activities in cloud-fog frameworks. The classic PSO has an early convergence issue that results in less-than-ideal outcomes. MS-PSO attempts to solve this issue. This method divided the particles into swarms, each with its own intellectual and socialization factors. It also developed a multi-criteria optimal task scheduling solution with four goals: load balancing for cloud and fog layers, price, power, and computation time. The GA-PSO, differential evolution, genetic algorithm, and conventional PSO methodologies were all used to assess the strategy’s effectiveness.

A multi-queue priority-based scheduling task was created by Fahad et al. [31] to perform a balanced task allocation for latency-sensitive fog applications and programs that can accept a certain degree of processing delay. This method classifies jobs as short or lengthy based on their burst time during execution. Each job category was maintained in its own task queue by the MQP algorithm, which also dynamically updates the preemption time slot value. It decreases reaction times for data-intensive applications in the fog computing environment, including both latency-sensitive jobs and those that are less latency-sensitive, thereby resolving the hunger issue for less latency-sensitive workloads.

Chhabra et al. [32] introduced a hybrid oppositional differential evolution-enabled WOA (h-DEWOA) technique to reduce task duration and energy consumption. It extends the capabilities of the traditional WOA method by incorporating the fitness-based balancing method, differential evolution, opposition-based learning, and chaotic maps. This leads to an adequate exploration/exploitation tradeoff, quicker convergence, and improved exploration throughout the algorithm’s execution. In addition, to enhance resource assignment, an allocation technique was incorporated into the h-DEWOA technique. The performance of scheduling methods was assessed using HPC2N and CEA-Curie workloads. To compare performance, two sequences of tests were performed. One uses WOA-based heuristics, and the other uses non-WOA-based metaheuristics.

Authors in [33] developed a task scheduling model which avoids local search problem and improves the scheduling performance in cloud environment by improving makespan, energy consumption. For this simulation, authors used improved cuckoo and OBL approaches by adding a differential evolution parameter to improve searching capability and thereby improvement of scheduling approach. Simulation carried out on Cloudsim and workload traces captured from HPC2N and evaluated against existing metaheuristic approaches and observed improvement over existing baseline approaches for above mentioned parameters.

In [34], authors formulated a task scheduling mechanism to improve the Quality of Service and minimize energy consumption. For this to happen, authors used CSPSO approach by improving velocity of cuckoo search. This simulation carried out on Cloudsim by taking supercomputing work logs and compared over existing baseline approaches and from simulation results, it was revealed that FARA outperforms existing approaches by minimizing makespan, energy consumption and improves quality of service.

In [35], authors worked on scheduling process in cloud environment with HPC workloads and they addressed the problem of generating scheduling decisions in HPC cloud environment by addressing energy performance trade-off. They used genetic algorithm as their methodology to generate schedules for their parallel computational tasks. It was implemented on Cloudsim and they compared their model with existing baseline approaches and finally results revealed that their approach greatly minimizes energy consumption and improved the performance of the scheduler.

Electric fish optimization (EFO) is a meta-heuristic algorithm that functions based on the electrolocation and electrocommunication capabilities of electric fish [36]. Electric fish have the ability to use electrolocation to sense their surroundings and identify potential prey. Active electrolocation and passive electrolocation are the two main branches that explore the electrolocation capacity of electrified fish. This algorithm is mainly used to solve high-dimensionality problems, and task scheduling in fog computing is a highly dynamic scenario. Therefore, it can be helpful to solve task scheduling problems in fog computing. By using this electric fish optimization, the process in the solution space is balanced between local search and global search.

Wang, Gai-Ge et al. [37] proposed a bio-inspired metaheuristic algorithm for consistent and discrete constrained optimization problems. The earthworm’s beneficent effect on the natural world served as inspiration. Natural type 1 reproduction never produces hybrids between different species. It is possible to reproduce with multiple species using Reproduction 2. The EOA method can find optimal solutions on a global and a local scale.

From the above classification mentioned in the Table 1, we clearly observed that earlier authors used parameters such as makespan, energy consumption, and SLA-based trust parameters in cloud computing paradigms. In order to schedule tasks effectively in a fog environment, we proposed an effective cost and energy-concerned electric earthworm optimization algorithm (EEOA), which addresses makespan, total cost, and energy consumption by using EFO and EOA approaches. The proposed approach is really helpful in the real-time applications, i.e., smart cities, and it also helps greatly in scheduling latency sensitive applications such as vehicular networks.

3. System Architecture

Figure 1 depicts the three-layer architecture of the cloud-fog computing framework. The IoT devices (i1, i2, …, in) that make up the first layer acquire data and deliver them to the immediate upper layer for processing. Fog nodes (f1, f2, …, fg) that are fitted with computers, mini-servers, and smart gateways make up the intermediate fog layer. With constrained computing, storage, and internet connectivity, each fog node serves as a smart device. The tasks that a fog node Fg receives are atomic and independent of one another; they do not contain any data that can be shared with tasks from other fog devices. Fog node F transmits data that cannot be handled locally to a distant cloud for additional processing and analysis. High-performance servers with adequate processing and storage capacity make up the top cloud layer, as depicted in Figure 1. Each server is made up of a number of virtual machines, such as (VM1, VM2, …, VMk). Each virtual machine has a memory and processing speed that define it.

Depending on the request made at the time of processing, data can transfer from fog to cloud as well as from cloud to fog. The fog layer has a task scheduler and a cloud fog manager (CFmanager), which collects all the resources and tasks. The job is transferred after the task-scheduling strategy decides whether it will be carried out in the cloud node or the fog. The task’s execution result is returned to the CF manager. All of the results are combined by the CF manager before being sent to the IOT systems. To create an effective job execution schedule, the proposed task-scheduling algorithm is installed in CFmanager.

4. Problem Formulation

The scheduling system is represented as a direct acyclic graph (DAG) as shown in Figure 2, in which T stands to the vertex and denotes the collection of n tasks t1, t2, …, tn, and E is the collection of directed edges, which denotes the dependency or priority restrictions among jobs in the workflow. A complete graph G = (P, EG) can also be used to depict the cloud-fog network’s processors.

Assume Pcn and Pfn stand for the numerous cloud nodes and fog nodes, respectively. Then, P = Pcn∪Pfn can be used to represent the total number of nodes. When pr = 1, 2, …, m, the processing rate and bandwidth of a processor are denoted as Pprt[pr] and Pba[pr], respectively. The processing rates of each heterogeneous cloud and fog processor vary. Although the fog nodes are placed in one layer and far from the cloud, their bandwidth is equivalent to that of the cloud nodes because of this. It is assumed that a task that is transferred to the cloud will begin running right away without having to wait in line.

In Figure 2, we take the fog computing processors as Pf1, Pf2, …, Pfn and cloud computing processors as Pc1, Pc2, …, Pcn, with eight dependent tasks (T1, T2, …, Tn) represented in a DAG. The input tasks are initially processed by fog nodes and then by cloud nodes as well as the results of earlier actions. The main goal is to allocate jobs to the processing units in a way that maximizes system performance while minimizing energy and cost usage. Here, our task scheduler takes into account all of these factors when scheduling tasks on processors.

4.1. Objective Functions

The main goal of this article is to reduce costs, energy use, and makespan to boost customer happiness and enhance the service provider’s profit. So, the following is how the objective functions are calculated.

4.1.1. Makespan

The length of time it takes to execute a workflow from beginning to end is known as its makespan. As a result, makespan, MKS, is determined as follows:

 MKS = max { F S T t i , t i ∈ T } − min { S R T t i , t i ∈ T }

(1)

Here SRTti and FSTti stand for task ti beginning and concluding times in a workflow, respectively.

4.1.2. Energy Consumption

The active and idle parts of the energy consumption model are represented by Eact and Eide, respectively. The term “Eact” describes the power used when a job is being performed and “Eide” refers to the energy spent when a resource is idle. The active energy is determined using

 E a c t = ∑ i = 1 n α f r i v l i 2 (F S T t i − S R T t i)

(2)

Here, the supply voltage and frequency for the resources of task i is represented by v l i 2 and fri, and α is a constant. The resource enters a state of sleep during the time it is not being used, where the relative frequency and voltage supply level are at their lowest levels. As a result, the following equation is used to calculate the amount of energy used while inactive:

 E i d e = ∑ j = 1 m ∑ i d e j ∈ I D E j α f r min j v l min j 2 L N j

(3)

Here, frminj and v l min j 2 are denoted as the frequency and lowest supply voltage on resource j, correspondingly, and the length of idling time for idej is denoted as LNj. The total amount of energy (TE) used by the cloud-fog system to complete the full operation is

 T E = E a c t + E i d e

(4)

4.1.3. Computation Cost

There is a monetary cost associated with each work that one computing node completes. There are two components to the computing cost of a given task: processing and memory costs, which can be estimated as follows.

 C S i c m p = ∑ j = 1 m (c s j p × E i j + c s j m × T i m e m) × x i j ,     ∀ i ∈ { 1 , … … n }

(5)

Here, xij is zero or one; if cloud and fog nodes are available for task ti, the xij value is 1, otherwise the xij value is 0, and c s j m c s j p are constants that indicate the cost of using the RAM and CPU for node Nj, respectively. The amount of main memory needed for task Ti is denoted by T i m e m . This equation leads to the following definition of the total computing cost TCmp for a set of n tasks,

 T C m p = ∑ i = 1 n C S i c m p

(6)

4.1.4. Communication Cost

The cost of communication is included for a particular task in addition to the computation cost. The total size of the task’s output and input items as well as the price of bandwidth utilization per node data unit determine this cost. Let c s j b be the node Nj’s cost of bandwidth usage per data unit and T i b d w the task Ti’s bandwidth requirement in bytes. The following is how the task Ti communication cost is determined.

 C S i c o m u = ∑ j = 1 m (c s j b × T i b d w) × x i j ,   ∀ i ∈ { 1 , … … n }

(7)

Consequently, the following equation gives the total cost of communication for all n tasks.

 T C o m u = ∑ i = 1 n C S i c o m u

(8)

4.1.5. Total Cost

Now we can obtain the total cost using the following equation.

 T Cos t = T C o m u + T C m p

(9)

Finally, from the above description, the objective function is defined as

 O b j = min (M K S + T E + T Cos t)

(10)

5. Proposed Task Scheduling Algorithm

Due to the numerous parameters and requirements in the objective function, scheduling the task problem in cloud-fog computing is challenging to solve in polynomial time. We combined the benefits of the electric fish optimization (EFO) and earthworm optimization algorithms (EOA) to build a hybrid heuristic algorithm that minimizes the latency of all jobs and lowers the energy consumption of nodes. It fixes the cloud-fog computing environment’s optimal job scheduling complexities.

The fitness value and random sample serve as the basis for the execution of the EEOA algorithm. The objective function of the strategy is connected with a random value that was originally assigned. If FNi > rnd, the EFO algorithm’s active electrolocation is used for position updating; otherwise, EOA is used in place of passive electrolocation to enhance the effectiveness of the suggested strategy.

The position of the electric fish’s prey and its communication patterns are taken into account when developing the EFO algorithm. Here, the search space (cloud-fog environment) in which the electric fish population N (number of VMs) is produced is generated randomly (11).

 f n i , j = f n min j + δ (f n max j − f n min j)

(11)

In the population of size |N|, where i = 1, 2, … |N| and an arbitrary value is called that ranges among [0, 1], the position of the ith element is expressed as fni,j in the search area. In Equation (11), fnminj and fnmaxj denote the lower and upper boundaries correspondingly. Based on the fitness value given in Equation (12), an individual’s frequency value (makespan, energy, and cost) is calculated

 f r i t = f r min + (F N w r s t t − F N i t F N w r s t t − F N b s t t) + (f r max − f r min)

(12)

Electric fish are significantly nearer to the food supply, in the range of fnminj to fnmaxj, and have their frequency values determined at time t. The best and worst fitness values, which are determined by individuals in the population at iteration t, are denoted as F N b s t t and F N w r s t t , respectively. A probability computation is then performed using the frequency values frmax and frmin, which are fixed t 0 and 1, respectively. The amplitude of the ith element is determined at time t utilizing the weight of the individual’s prior amplitudes as indicated in Equation (13).

 A m p i t = α • A m p i t − 1 + (1 − α) f r i t

(13)

Here, a constant value is denoted as α, which is located between [0, 1]. Here each individual’s starting frequency value fri is allocated to their starting amplitude value. By taking into account each person’s frequency value across all iterations, the population is divided into two sets. The algorithm adheres to “both passive and active electrolocation” energetic electrolocation NActive: The EFO algorithm’s ability to leverage local search is dependent on active electrolocation. In the following equation, the amplitude parameter Ampi is utilized to compute the active range of each fish.

 a c i = A m p i (f n max j − f n min j)

(14)

To locate nearby individuals (B|B ⊂ N) within the sensing or active range, it is necessary to determine the distance between the ith individual and the remainder of the population N. The distance (ds) between people i and k are calculated using the Cartesian distance formula, as stated in Equation (15).

 d s i k = ‖ f n i − f n k ‖ = ∑ j = 1 d (f n i j − f n k j) 2

(15)

Equation (16) is utilized if there is just one neighbor in the active sensing field; otherwise, Equation (17) is used.

 f n i j c n d e = f n i j + δ (f n k j − f n i j)

(16)

 f n i j c n d e = f n i j + δ • a c i

(17)

A randomly selected individual, k, is obtained from the ith individual neighbor set in Equation (17), where δ ∈ [−1, 1], dsik ≤ aci, and k ∈ B. This f i j c n d e is then depicted as a feasible solution for the ith individual. The mathematical modeling presented in Equation (18) is utilized, where the jth variable value is greater than the problem space border.

 f n i j c a n d i d a t e = { f n min j         f n i j c n d e < f n min j f n i j c n d e f n max j > f n i j c n d e > f n min j f n max j         f n i j c n d e > f n max j

(18)

The passive electrolocation is updated using the EOA algorithm to boost the performance of the suggested method. It was created using the earthworms’ contribution to nature as its model. Since earthworms are hermaphrodites, a young earthworm can be born to just one parent. Equation (19) has a mathematical formulation of the reproduction process.

 E R l 1 . m = E R max . m + E R min . m − η E R l . m

(19)

where the earthworm is located, the lower and upper positions of the earthworm are designated by ERmax.m and ERmin.m, respectively. The new location of the lth earthworm is represented by ERl1.m. The number l is denoted by ERl.m. The symbol stands for the similarity factor, which establishes how far off the parent and child are from one another. When there is little similarity between them, their distance from one another is minimal. When ERl1 is close to ERl, a local search is conducted. If η = 0, there is a significant distance between them, as shown in Equation (20).

 E R l 1 . m = E R max . m + E R min . m

(20)

When the similarity factor has a value of η = 1(Equation (21)), a global search is initiated. This is also referred to as the optimal-based learning approach.

 E R l 1 . m = E R max . m + E R min . m − E R l . m

(21)

In the reproduction process, making adjustments to the value of η balances the exploration and exploitation stages. The passive electrolocation is then updated using the EOA method. The tasks are assigned based on the updated value, which also identifies the optimal fitness values.

The EEOA’s pseudo-code is provided by Algorithm 1.

	Algorithm 1: The EEOA’s pseudo-code

	
	
Input:Tn, N, Pcn, Pfn

	
Output: optimal mapping of tasks by minimizing MKS, TE, TCost

	
Initialize the population N (no. of VMs)

	
Calculate each individual’s fitness FN

	
Determine frequency values x (energy, cost, makespan) and amplitude Amp by Equations (12) and (11)

	
 for every iteration t ∈ N

	
  if FNi > rnd

	
   updating the solution using the EFO algorithm's active electrolocation

	
   select at random j for the adjustment

	
   Calculate active range aci by Equation (13).

	
   Compute distance dsik by Equation (14)

	
   Recruit nearby residents in the B sensing area.

	
    if B ≠ φ

	
    Select a random individual k in the search space

	
    change jth parameter using Equation (15)

	
   else

	
    change jth parameter using Equation (16)

	
   end if

	
  else

	
   update the passive electrolocation solution based on EOA using Equation (19)

	
  end if

	
  Identify and upgrade the optimum result

	
 end

6. Results and Discussion

This section describes the experimental setting and compares our suggested EMCS algorithm to a few other current methods to evaluate it. The algorithms used in this work were tested and put into place using the CloudSim 3.0.3 simulator with Java on a personal computer with an i7-8550U CPU running at 1.80–2.0 GHz (8 Cores), 16 GB of RAM, and the Windows 10 operating system.

The data workflows for the performance assessment of the suggested method are extracted from two real-world supercomputing sites. They are the High-Performance Computing Center North (HPC2N) and Curie supercomputers executed at the CEA research center (CEA-Curie) in Sweden (https://www.cs.huji.ac.il/labs/parallel/workload, accessed on 14 October 2022). The implementation traces generated from the processing of concurrent HPC tasks are contained in such workload logs. Table 2 provides an overview of these workload logs. To shorten the execution duration of the simulations in this investigation, we built 10 workloads using these HPC2N and CEA-Curie task logs.

We take into account both fog and cloud nodes with various processing, cost, and energy rates. The processing speed of each node is determined by its MIPS (million instructions per second) and communication costs. Cloud networks have VMs and servers with increased processing speeds and bandwidth, but the fog nodes have low bandwidth and processing speeds, which places a price on the use of the processors. The fog nodes have a wider bandwidth than the cloud nodes. Grid Dollars (G$) are used to indicate the cost. Table 3 displays the configuration information for the presented work.

6.1. Simulation Results

The effectiveness of the implemented task scheduling techniques was compared to other existing scheduling techniques using simulation experiments. These scheduling policies included cuckoo search particle swarm optimization (CSPSO), cuckoo search and differential evolution algorithm (CSDEO), hybrid oppositional differential evolution-enabled whale optimization algorithm (h-DEWOA) [32], and blacklist matrix-based multi-objective algorithm (BLEMO). To eliminate uncertainty from the investigational data acquired, every simulation trial was performed 30 times while maintaining the identical workload and test settings. The average of the 30 measurements was then recorded.

6.2. CEA-Curie Workload Results

Table 4 and Figure 3 display the makespan outcome for all scheduling techniques for CEA-Curie workloads. Due to its failure to take advantage of the diversity of virtual machines, CSPSO produced the worst outcomes. CSDEO was also unable to get good results because it did not have a reason for how jobs were assigned and how task orders were made.

Additionally, it can be shown in Figure 3 that the results obtained by h-DEWOA and BLEMO are often fairly similar and do not exceed the proposed approach. This indicates that the scheduling decisions made by these algorithms regarding the distribution of resources or the sequencing of jobs have little impact on the makespan results. The combination of EFO and EOA, which directs the algorithm toward position updating without compromising the computational cost, is responsible for the performance observed with our suggested approach. This strategy aids in the quickest possible return of the local best answer by our suggested method. Additionally, it contributes to enhancing the quality of solutions at the end of the search process, making it more effective for cloud task scheduling.

A comparison based on energy consumption is shown in Figure 4. The proposed method uses the least amount of energy across all workloads, as would be predicted. H-DEWOA and BLEMO achieve comparable energy usage in all workloads, whereas CSPSO and CSDEO perform poorly in the majority of workloads. The proposed approach achieves significantly more energy consumption on the EE02 and EE05 workloads as contrasted to all other workloads. However, it uses the least amount of energy when compared to existing methods. The CSPSO performs poorly on the EE04 and EE05 tasks, while the CSDEO and H-DEWOA perform similarly. The CSPSO records the highest overall energy use. This further demonstrates how unreliable and ineffective the CSPSO algorithm is. It uses a single homogeneous population, which is the cause of this. Thus, the potential for early convergence is always present.

Figure 5 shows the cost of communication, calculation, and overall execution. These figures show that each job has a different total execution cost. The presented EEOA task scheduling algorithm operates better and outperforms the h-DEWOA, CSDEO, CSPSO, and BLEMO task allocation algorithms in terms of minimizing execution costs. The results obtained further demonstrate the scalability and ability of the suggested approach to schedule large jobs in a heterogeneous environment while incurring the minimum execution costs. For EE01 and EE10 workloads, our proposed EEOA algorithm improves the quality of its solutions by allocating tasks to the finest VMs with the lowest execution costs.

6.3. HPC2N Workload Results

Results for the HPC2N workload in terms of makespan, cost, and energy usage are shown in this section. Table 5 and Figure 6 show the makespan results of the proposed methodology compared with other algorithms. It shows how much better makespan is than the existing algorithms for workload situations. This is because the EOA algorithm has been hybridized into the EFO algorithm, which provides a balance between global and local search, improving the result globally.

The graphical representation of the best makespan results for all scheduling strategies is shown in Figure 6 and was obtained by running the EE01–EE10 workloads of the HPC2N trace. The graph makes it clear that, out of all scheduling strategies, the proposed technique leads to the lowest makespan findings. It provides compelling evidence of the proposed scheme’s stability and robustness. The worst outcomes, which include unanticipated terrible behavior, are produced by other meta-heuristic techniques such as CSPSO and BLEMO, which are notably different from the others. However, compared to these methods, the h-DEWOA meta-heuristic produced better results.

The same evaluation was carried out to see how much energy the strategies saved. When employing EEOA, the system used 10% less energy than when using the other approaches for the HPC2N workloads in Figure 7. This implies that it reduced both energy and food consumption. This is because of an efficient hybrid mechanism that combines the EFO and EOA algorithms’ superior searching capabilities. The suggested hybrid policy had access to effective and varied schedules at every generation owing to hybridization, and the EEOA algorithm’s final iterations showed no loss of variety.

The entire amount that the clients pay to the service supplier depending on the number of resources utilized is known as the execution cost. Figure 8 displays the communication cost, computation cost, and total cost figures for the various algorithms. The EEOA algorithm can reduce the cost for a variety of workloads while improving performance more than any other method.

It has been noted that CSPSO has the highest cost, EEOA has the lowest cost, and CSDEO and BLEMO have the average cost of using cloud and fog for EE01 and EE10 workloads, as illustrated in Figure 8. While ignoring additional prices and energy, CSPSO concentrates on the task’s processing time. Therefore, its price is the highest. h-DEWOA can save more on average cost when compared to CSDEO; it can save 25.38% of the average cost of CSPSO and 3.5% of the average cost of CSDEO. This is because the suggested technique shortens overall execution time by assigning the work to the resource that can perform it most quickly, which can also help lower costs.

As demonstrated in Table 6, the suggested EEOA approach generated good scheduling solutions with appropriate convergence speeds for both workloads. The suggested scheduling policy’s time requirements are lower than those of the h-DEWOA and CSDEO meta-heuristic-based scheduling strategies. The computation time of the h-DEWOA algorithm is quite higher than that of other techniques. However, it is feasible despite the significant makespan, cost, and energy consumption. Finally, the proposed methodology gives the best results in terms of efficiency, cost, and energy usage with the least amount of computing time when compared to the other methods. As a result, it can be said that the EEOA has proven to be a potent and successful solution for resolving complex task-scheduling issues on a large scale.

7. Conclusions and Future Work

The management of the allocation and execution of IoT jobs in a cloud-fog computing environment proves the effectiveness of the cost-aware task scheduling system. To solve the job scheduling problem, we suggest a novel adaptive algorithm in this article that integrates the earthworm optimization algorithm (EOA) with the electric fish optimization algorithm (EFO). The goal of the provided EEOA approach was to increase the fundamental EFO algorithm’s capacity for use. The effectiveness of the proposed algorithm was assessed using several assessment criteria and compared to that of the other metaheuristics already in use. The presented scheduling method performs better than alternative methods in general across all scientific workflows and all performance measures according to the results. It holds its own against other procedures reasonably well and produces the best outcomes in the shortest amount of time. The proposed mechanism is applied in real-time applications, i.e., smart cities, and it also helps greatly in scheduling latency sensitive applications such as vehicular networks. One of the limitations we discovered in our current research is that our algorithm cannot predict upcoming workloads and cannot decide whether or not to offload the task. As a result, in the future, the scheduling algorithm will need to incorporate a machine learning model that predicts upcoming workloads and intelligently offloads tasks at the fog nodes. Furthermore, we will test our proposed work in an edge-cloud environment to determine the efficiency of our algorithm.

Author Contributions

Conceptualization, design and Implementation, Writing draft—M.S.K. Conceptualization, supervision, validation, draft checking—G.R.K. The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data will be made available on request.

Conflicts of Interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

References

	

Shukri, S.E.; Al-Sayyed, R.; Hudaib, A.; Mirjalili, S. Enhanced multi-verse optimizer for task scheduling in cloud computing environments. Expert Syst. Appl. 2021, 168, 114230. [Google Scholar] [CrossRef]

	

Bezdan, T.; Zivkovic, M.; Bacanin, N.; Strumberger, I.; Tuba, E.; Tuba, M. Multi-objective task scheduling in a cloud computing environment by hybridized bat algorithm. J. Intell. Fuzzy Syst. 2022, 42, 411–423. [Google Scholar] [CrossRef]

	

Amer, D.A.; Attiya, G.; Zeidan, I.; Nasr, A.A. Elite learning Harris hawks optimizer for multi-objective task scheduling in cloud computing. J. Supercomput. 2022, 78, 2793–2818. [Google Scholar] [CrossRef]

	

Fortino, G.; Guerrieri, A.; Pace, P.; Savaglio, C.; Spezzano, G. Iot platforms and security: An analysis of the leading industrial/commercial solutions. Sensors 2022, 22, 2196. [Google Scholar] [CrossRef]

	

Chen, F.; Deng, P.; Zhang, D.; Vasilakos, A.V.; Rong, X. Data mining for the internet of things: Literature review and challenges. Int. J. Distrib. Sens. Netw. 2015, 11, 431047. [Google Scholar] [CrossRef]

	

Anawar, M.R.; Wang, S.; Azam Zia, M.; Jadoon, A.K.; Akram, U.; Raza, S. Fog computing: An overview of big IoT data analytics. Wirel. Commun. Mob. Comput. 2018, 2018, 7157192. [Google Scholar] [CrossRef]

	

Attiya, I.; AbdElaziz, M.; Abualigah, L.; Nguyen, T.N.; Abd El-Latif, A.A. Improved hybrid swarm intelligence for scheduling iot application tasks in the cloud. IEEE Trans. Ind. Inform. 2022, 18, 6264–6272. [Google Scholar] [CrossRef]

	

Lim, J. Latency-Aware Task Scheduling for IoT Applications Based on Artificial Intelligence with Partitioning in Small-Scale Fog Computing Environments. Sensors 2022, 22, 7326. [Google Scholar] [CrossRef]

	

Hussain, S.M.; Begh, G.R. Hybrid heuristic algorithm for cost-efficient QoS aware task scheduling in fog–cloud environment. J. Comput. Sci. 2022, 64, 101828. [Google Scholar] [CrossRef]

	

Available online: https://eucloudedgeiot.eu/ (accessed on 14 February 2023).

	

Milojicic, D. The edge-to-cloud continuum. Computer 2020, 53, 16–25. [Google Scholar] [CrossRef]

	

Najafizadeh, A.; Salajegheh, A.; Rahmani, A.M.; Sahafi, A. Multi-objective Task Scheduling in cloud-fog computing using goal programming approach. Clust. Comput. 2022, 25, 141–165. [Google Scholar] [CrossRef]

	

Attiya, I.; Abualigah, L.; Elsadek, D.; Chelloug, S.A.; AbdElaziz, M. An Intelligent Chimp Optimizer for Scheduling of IoT Application Tasks in Fog Computing. Mathematics 2022, 10, 1100. [Google Scholar] [CrossRef]

	

Yin, Z.; Xu, F.; Li, Y.; Fan, C.; Zhang, F.; Han, G.; Bi, Y. A Multi-Objective Task Scheduling Strategy for Intelligent Production Line Based on Cloud-Fog Computing. Sensors 2022, 22, 1555. [Google Scholar] [CrossRef]

	

Abohamama, A.S.; El-Ghamry, A.; Hamouda, E. Real-time task scheduling algorithm for IoT-based applications in the cloud–fog environment. J. Netw. Syst. Manag. 2022, 30, 1–35. [Google Scholar] [CrossRef]

	

Jing, W.; Zhao, C.; Miao, Q.; Song, H.; Chen, G. QoS-DPSO: QoS-aware task scheduling for the cloud computing system. J. Netw. Syst. Manag. 2021, 29, 1–29. [Google Scholar] [CrossRef]

	

Yadav, A.M.; Tripathi, K.N.; Sharma, S.C. An enhanced multi-objective fireworks algorithm for task scheduling in the fog computing environment. Clust. Comput. 2022, 25, 983–998. [Google Scholar] [CrossRef]

	

Bisht, J.; Vampugani, V.S. Load and Cost-Aware Min-Min Workflow Scheduling Algorithm for Heterogeneous Resources in Fog, Cloud, and Edge Scenarios. Int. J. Cloud Appl. Comput. (IJCAC) 2022, 12, 1–20. [Google Scholar] [CrossRef]

	

Cheng, F.; Huang, Y.; Tanpure, B.; Sawalani, P.; Cheng, L.; Liu, C. Cost-aware job scheduling for cloud instances using deep reinforcement learning. Clust. Comput. 2022, 25, 619–631. [Google Scholar] [CrossRef]

	

AbdElaziz, M.; Abualigah, L.; Ibrahim, R.A.; Attiya, I. IoT workflow scheduling using intelligent arithmetic optimization algorithm in fog computing. Comput. Intell. Neurosci. 2021, 2021, 9114113. [Google Scholar]

	

Hussain, M.; Wei, L.F.; Rehman, A.; Abbas, F.; Hussain, A.; Ali, M. Deadline-constrained energy-aware workflow scheduling in geographically distributed cloud data centers. Future Gener. Comput. Syst. 2022, 132, 211–222. [Google Scholar] [CrossRef]

	

Zandvakili, A.; Mansouri, N.; Javidi, M.M. Energy-aware task scheduling in cloud computing based on discrete pathfinder algorithm. Int. J. Eng. 2021, 34, 2124–2136. [Google Scholar]

	

Medara, R.; Singh, R.S. Energy-aware workflow task scheduling in clouds with virtual machine consolidation using discrete water wave optimization. Simul. Model. Pract. Theory 2021, 110, 102323. [Google Scholar] [CrossRef]

	

Mohammadzadeh, A.; Masdari, M.; Gharehchopogh, F.S. Energy and cost-aware workflow scheduling in cloud computing data centers using a multi-objective optimization algorithm. J. Netw. Syst. Manag. 2021, 29, 1–34. [Google Scholar] [CrossRef]

	

Dubey, K.; Sharma, S.C. A novel multi-objective CR-PSO task scheduling algorithm with deadline constraint in cloud computing. Sustain. Comput. Inform. Syst. 2021, 32, 100605. [Google Scholar] [CrossRef]

	

Arshed, J.U.; Ahmed, M.; Muhammad, T.; Afzal, M.; Arif, M.; Bazezew, B. GA-IRACE: Genetic Algorithm-Based Improved Resource Aware Cost-Efficient Scheduler for Cloud Fog Computing Environment. Wirel. Commun. Mob. Comput. 2022, 2022, 6355192. [Google Scholar] [CrossRef]

	

Ghafari, R.; Mansouri, N. Cost-Aware and Energy-Efficient Task Scheduling Based on Grey Wolf Optimizer. J. Mahani Math. Res. 2022, 12, 257–288. [Google Scholar]

	

Arshed, J.U.; Ahmed, M. RACE: Resource Aware Cost-Efficient Scheduler for Cloud Fog Environment. IEEE Access 2021, 9, 65688–65701. [Google Scholar] [CrossRef]

	

Sindhu, V.; Prakash, M. Energy-Efficient Task Scheduling and Resource Allocation for Improving the Performance of a Cloud–Fog Environment. Symmetry 2022, 14, 2340. [Google Scholar]

	

Subramoney, D.; Nyirenda, C.N. Multi-Swarm PSO Algorithm for Workflow Scheduling in Cloud-Fog Environments. IEEE Access. 2022, 10, 117199–117214. [Google Scholar] [CrossRef]

	

Fahad, M.; Shojafar, M.; Abbas, M.; Ahmed, I.; Ijaz, H. A multi-queue priority-based task scheduling algorithm in the fog computing environment. Concurr. Comput. Pract. Exp. 2022, 34, e7376. [Google Scholar] [CrossRef]

	

Chhabra, A.; Sahana, S.K.; Sani, N.S.; Mohammadzadeh, A.; Omar, H.A. Energy-Aware Bag-of-Tasks Scheduling in the Cloud Computing System Using Hybrid Oppositional Differential Evolution-Enabled Whale Optimization Algorithm. Energies 2022, 15, 4571. [Google Scholar] [CrossRef]

	

Chhabra, A.; Singh, G.; Kahlon, K.S. Multi-criteria HPC task scheduling on IaaS cloud infrastructures using meta-heuristics. Clust. Comput. 2021, 24, 885–918. [Google Scholar] [CrossRef]

	

Chhabra, A.; Singh, G.; Kahlon, K.S. QoS-aware energy-efficient task scheduling on HPC cloud infrastructures using swarm-intelligence meta-heuristics. Comput. Mater. Contin. 2020, 64, 813–834. [Google Scholar] [CrossRef]

	

Vila, S.; Guirado, F.; Lerida, J.L.; Cores, F. Energy-saving scheduling on IaaS HPC cloud environments based on a multi-objective genetic algorithm. J. Supercomput. 2019, 75, 1483–1495. [Google Scholar] [CrossRef]

	

Yilmaz, S.; Sen, S. Electric fish optimization: A new heuristic algorithm inspired by electrolocation. Neural Comput. Appl. 2020, 32, 11543–11578. [Google Scholar] [CrossRef]

	

Wang, G.-G.; Deb, S.; Dos Santos Coelho, L. Earthworm optimisation algorithm: A bio-inspired metaheuristic algorithm for global optimisation problems. Int. J. Bio-Inspired Comput. 2018, 12, 1–22. [Google Scholar] [CrossRef]

	

Mangalampalli, S.; Karri, G.R.; Kose, U. Multi Objective Trust aware task scheduling algorithm in cloud computing using Whale Optimization. J. King Saud Univ. -Comput. Inf. Sci. 2023. [Google Scholar] [CrossRef]

	

Mangalampalli, S.; Karri, G.R.; Ahmed, A.E. An Efficient Trust-Aware Task Scheduling Algorithm in Cloud Computing Using Firefly Optimization. Sensors 2023, 23, 1384. [Google Scholar] [CrossRef]

[image: Sensors 23 02445 g001 550]

Figure 1. System Architecture.

Figure 1. System Architecture.

[image: Sensors 23 02445 g001]

[image: Sensors 23 02445 g002 550]

Figure 2. Cloud and fog workflow diagram.

Figure 2. Cloud and fog workflow diagram.

[image: Sensors 23 02445 g002]

[image: Sensors 23 02445 g003 550]

Figure 3. Graphical representation of best makespan values on CEA-Curie workloads.

Figure 3. Graphical representation of best makespan values on CEA-Curie workloads.

[image: Sensors 23 02445 g003]

[image: Sensors 23 02445 g004 550]

Figure 4. Comparison of energy consumption on CEA-Curie workloads.

Figure 4. Comparison of energy consumption on CEA-Curie workloads.

[image: Sensors 23 02445 g004]

[image: Sensors 23 02445 g005 550]

Figure 5. Comparison of (a) communication cost, (b) computation cost, and (c) total cost of CEA-Curie workload.

Figure 5. Comparison of (a) communication cost, (b) computation cost, and (c) total cost of CEA-Curie workload.

[image: Sensors 23 02445 g005]

[image: Sensors 23 02445 g006 550]

Figure 6. Best makespan result for HPC2N workload.

Figure 6. Best makespan result for HPC2N workload.

[image: Sensors 23 02445 g006]

[image: Sensors 23 02445 g007 550]

Figure 7. Comparison of energy consumption for HPC2N workload.

Figure 7. Comparison of energy consumption for HPC2N workload.

[image: Sensors 23 02445 g007]

[image: Sensors 23 02445 g008 550]

Figure 8. Comparison of (a) communication cost, (b) computation cost, and (c) total cost of HPC2N workload.

Figure 8. Comparison of (a) communication cost, (b) computation cost, and (c) total cost of HPC2N workload.

[image: Sensors 23 02445 g008]

[image: Table]

Table 1. Analysis of scheduling parameters in the related works.

Table 1. Analysis of scheduling parameters in the related works.

	Authors
	Technique Used
	Parameters Addressed

	[26]
	GA-IRACE
	Execution time

	[27]
	GWOTS
	Makespan, cost, energy consumption

	[28]
	RACE
	Execution time, bandwidth

	[29]
	ECBTSA-IRA
	Schedule length, cost, energy

	[30]
	MS-PSO
	Load balance, power consumption, computation time

	[31]
	MQP
	Latency

	[32]
	h-DEWOA
	Task duration, energy consumption

	[38]
	MOTSWAO
	Makespan, SLA-based trust parameters, energy consumption

	[39]
	TAFFA
	Makespan, SLA-based trust parameters.

	Proposed algorithm
	EEOA
	Makespan, total cost, and energy consumption

[image: Table]

Table 2. Description of real workloads.

Table 2. Description of real workloads.

	Workload Log
	Duration
	Parallel Tasks
	Users
	CPUs
	File

	HPC2N
	July 2002–January 2006
	202,871
	257
	240
	HPC2N-2002-2.2-cln.swf

	CEA-Curie
	February 2011–October 2012
	312,826
	582
	93,312
	CEA-Curie-2011-2.1-cln.swf

[image: Table]

Table 3. Configuration details.

Table 3. Configuration details.

	Parameter
	Cloud
	Fog
	Unit

	Number of VMs
	[10, 15, 20]
	[15, 20, 35]
	VM

	Computing power
	[3000:5000]
	[1000:2000]
	MIPS

	RAM
	[5000:20000]
	[250:5000]
	MB

	Bandwidth
	[512:4096]
	[128:1024]
	Mbps

	Cost
	[0.6:1.0]
	[0.2:0.5]
	G$

[image: Table]

Table 4. Makespan results for CEA-curie workloads.

Table 4. Makespan results for CEA-curie workloads.

	
CEA-Curie Workloads

	
Statistics

	
h-DEWOA

	
CSDEO

	
CSPSO

	
BLEMO

	
Proposed

	
EE01

	
Best

	
10,275.90

	
10,969.92

	
12,675.80

	
10,200.10

	
9987.45

	
Average

	
11,660.04

	
12,482.34

	
14,134.60

	
13,165.61

	
10,526.87

	
Worst

	
14,435.67

	
15,499.38

	
16,988.50

	
20,732.08

	
12,498.12

	
EE02

	
Best

	
12,679.97

	
13,850.81

	
16,376.80

	
11,700.21

	
10,102.87

	
Average

	
15,109.39

	
15,889.18

	
17,221.90

	
16,597.74

	
14,187.21

	
Worst

	
18,477.35

	
18,831.50

	
20,454.50

	
24,840.16

	
16,932.67

	
EE03

	
Best

	
6829.378

	
7442.08

	
10,311.67

	
7200.21

	
6456.78

	
Average

	
9560.564

	
10,186.98

	
12,798.60

	
10,413.30

	
8843.67

	
Worst

	
11,850.62

	
13,173.06

	
15,224.90

	
16,350.10

	
10,631.33

	
EE04

	
Best

	
17,764.81

	
18,177.46

	
20,445.71

	
16,650.21

	
14,933.78

	
Average

	
20,896.71

	
21,676.68

	
22,658.40

	
22,875.85

	
17,005.87

	
Worst

	
24,003.90

	
25,609.87

	
26,113.80

	
32,400.10

	
20,947.23

	
EE05

	
Best

	
13,416.31

	
14,758.71

	
17,523.90

	
13,005.17

	
11,673.20

	
Average

	
16,508.44

	
17,108.33

	
19,543.20

	
17,552.51

	
14,498.56

	
Worst

	
20,937.46

	
19,959.83

	
22,665.43

	
24,444.68

	
17,837.98

	
EE06

	
Best

	
3620.954

	
4203.09

	
5209.51

	
3798.96

	
3046.78

	
Average

	
4684.121

	
5109.55

	
6754.31

	
5483.11

	
4991.76

	
Worst

	
6140.261

	
6733.47

	
8991.11

	
8535.21

	
5821.65

	
EE07

	
Best

	
8277.555

	
8843.01

	
9411.80

	
8771.46

	
7712.96

	
Average

	
10,371.22

	
11,153.84

	
12,774.12

	
12,950.13

	
9623.12

	
Worst

	
12,517.62

	
13,390.13

	
15,934.89

	
20,400.21

	
11,178.39

	
EE08

	
Best

	
3208.096

	
3653.73

	
4788.31

	
3180.21

	
2749.81

	
Average

	
4008.443

	
4451.31

	
5683.80

	
4967.06

	
3912.78

	
Worst

	
6041.973

	
5876.96

	
6371.51

	
8325.21

	
5129.21

	
EE09

	
Best

	
4308.133

	
4929.97

	
6783.11

	
5400.1

	
4200.12

	
Average

	
5599.78

	
6093.44

	
7416.8

	
7770.17

	
4984.98

	
Worst

	
7020.00

	
8509.48

	
9003.7

	
14,850.21

	
6793.76

	
EE10

	
Best

	
3988.775

	
4368.56

	
6987.6

	
4500.21

	
3122.56

	
Average

	
6481.927

	
6876.61

	
8564.9

	
7282.67

	
5952.34

	
Worst

	
7672.408

	
7924.87

	
10,277.6

	
11,250.10

	
6932.77

[image: Table]

Table 5. Makespan results for HPC2N workload.

Table 5. Makespan results for HPC2N workload.

	
HPC2N

Workloads

	
Statistics

	
h-DEWOA

	
CSDEO

	
CSPSO

	
BLEMO

	
Proposed

	
EE01

	
Best

	
18,801.74

	
20,036.63

	
22,109.82

	
21,000.10

	
17,612.91

	
Average

	
21,579.70

	
22,258.71

	
24,562.89

	
27,397.33

	
20,561.23

	
Worst

	
33,700.98

	
35,291.42

	
27,988.71

	
41,259.62

	
26,333.98

	
EE02

	
Best

	
14,953.21

	
16,522.34

	
19,822.77

	
14,644.01

	
13,451.72

	
Average

	
17,567.38

	
18,941.76

	
21,753.88

	
19,552.95

	
16,812.56

	
Worst

	
22,324.56

	
22,696.08

	
24,123.77

	
28,848.91

	
20,712.40

	
EE03

	
Best

	
16,649.19

	
17,810.82

	
20,237.12

	
16,650.10

	
15,512.89

	
Average

	
19,329.17

	
20,308.97

	
23,521.98

	
22,961.31

	
18,490.21

	
Worst

	
26,644.20

	
29,312.09

	
25,988.25

	
33,907.60

	
22,651.48

	
EE04

	
Best

	
13,366.98

	
14,515.07

	
17,452.86

	
13,522.67

	
12,911.47

	
Average

	
16,207.58

	
17,188.48

	
20,343.71

	
17,200.76

	
15,741.49

	
Worst

	
20,203.84

	
20,332.90

	
22,329.21

	
22,965.20

	
18,490.28

	
EE05

	
Best

	
9972.00

	
11,616.94

	
14,117.48

	
10,650.25

	
8328.61

	
Average

	
12,274.21

	
13,067.45

	
15,876.22

	
13,953.94

	
10,953.47

	
Worst

	
14,380.36

	
14,915.63

	
16,432.21

	
18,150.31

	
13,723.91

	
EE06

	
Best

	
3704.70

	
4017.70

	
6843.91

	
4200.10

	
3208,11

	
Average

	
5320.46

	
5576.38

	
8410.39

	
5930.53

	
4879.94

	
Worst

	
7980.15

	
7468.60

	
9988.78

	
11,625.10

	
6247.56

	
EE07

	
Best

	
7581.52

	
7828.44

	
11,447.30

	
8287.76

	
7032.81

	
Average

	
9821.84

	
10,110.14

	
13,256.89

	
10,553.76

	
8892.02

	
Worst

	
12,118.86

	
11,991.02

	
14,952.12

	
15,232.71

	
10,871.45

	
EE08

	
Best

	
3338.51

	
3778.44

	
5623.54

	
3825.10

	
2988.52

	
Average

	
5137.35

	
5380.60

	
6782.13

	
5910.08

	
4693.29

	
Worst

	
7803.77

	
7980.22

	
8705.65

	
9450.17

	
7302,27

	
EE09

	
Best

	
2969.94

	
3006.86

	
4336.83

	
3600.10

	
2100.82

	
Average

	
3834.73

	
3964.54

	
6123.98

	
4738.25

	
3319.82

	
Worst

	
5808.41

	
7878.97

	
7398.21

	
21,937.59

	
4847.62

	
EE10

	
Best

	
1875.20

	
2130.94

	
3581.54

	
2250.10

	
1211.39

	
Average

	
3436.67

	
3697.48

	
4769.21

	
4657.41

	
2931.73

	
Worst

	
5548.10

	
7232.97

	
7932.42

	
20,970.09

	
4831.29

[image: Table]

Table 6. Execution time for two workloads.

Table 6. Execution time for two workloads.

	Techniques
	CEA-CURIE (s)
	HPC2N (s)

	h-DEWOA
	14.87
	15.59

	CSDEO
	11.63
	15.97

	CSPSO
	10.73
	15.07

	BLEMO
	7.95
	11.47

	Proposed
	7.12
	10.86

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
HhODEWOA HCSDEO HCSPSO ®BLEMO M Proposed

25,000

20,000

il || || Ml wls i

EEOL EE02 EEO3 EEO4 EEOS EEO6 EEO7 EE08 EE09 EEL0
Workloads

Energy Consumption (W)

5

media/file4.png

nav.xhtml

 sensors-23-02445

 		
 sensors-23-02445

media/file16.png
«=@==Proposed e=@=BLEMO ==@=h-DEWOA ==@==CSDEQO ==@==CSPSO

2,000

1,500

1,000

Communication Cost (Price)

500
0
EEO1 EEO2 EEO3 EEO4 EEO5 EEO6 EEO7 EEO8 EE09 EE10
Number of Workloads
(a)
e=@==Proposed e=@==BLEMQO e=@==h-DEWOA ==@==CSDEQ e==@==(CSPSO
2,500
—
<P
&
= 2,000
=B
g
~
& 1500
U 7
=
R
E 1,000
=
>y
S 500
()
@
0
EEO1 EEO2 EEO3 EEO4 EEO5 EEO6 EEO7 EEO8 EE09 EE10
Number of Workloads
(b)
e=@==Proposed e==@==BlEMO e==@=h-DEWOA e==@==(CSDEQ e=@==(CSPSO
25,000
20,000
& 15,000
U ’
e’
~
3 10,000
U ’
5,000
0

EEO1 EEO2 EEO3 EEO4 EEO5 EEO6 EEO7 EEO8 EE0Q09 EE10
Number of Workloads

(c)

media/file2.png
Sl s = /
g ———
5
\“
)
J

— ; , \'___b-’
\\‘ B
s

_-/—‘-
/
/
I/
- |
| o

/

-~

T
Cloud Layer o

= o / .

1

Fog layer CF Ménager and EEOA task
scheduler

- ,-
—
3
I —

1t

IOT Devices

‘TR AR

media/file5.jpg
WhDEWOA WCSDEO WCSPSO HBLEMO M Proposed
25,000.00

20,000.00

15,000.00

10,000.00
|||| 00 B
Ml REE e 0 0

EEOl EF02 EEO3 EEO4 EEOS EEO6 EEO7 EE0S EE09 EELD
Workloads

Makespan (S)

media/file3.jpg
T T3 Te

media/file1.jpg
Cloud Layer

Foglayer CF Manager and EEOA task
scheduler

’ 10T Devices

‘TR

media/file7.jpg
25,000.00

20,00000

15,000.00

10,000.00

5,00000

Energy Consumption (W)

0.0

BhDEWOA MCSDEO BCSPSO BLEMO M Proposed

MMMMHMMmMM

EEOL EE02 EEO3 EEO4 EEOS EEO6 EEO7 EEO8 EE9 EE10
Workloads

media/file10.png
e=@==Proposed e=@==BLEMO e=@=h-DEWOA e=@=CSDEQ e=@==CSPSO

2,000

1,500

1,000

500

Communication Cost (Price)

EEO1 EEO2 EEO3 EEO4 EEO5 EEO6 EEO7 EEO8 EEO9 EE10

Number of workloads

(a)
e=@==Proposed e=@==BLEMO e=@==h-DEWOA «=@==CSDEQ ==@==CSPSO
2,500
—_
P
>
"= 2,000
-
N’
~
S 1,500
U 7
=
2
= 1,000
~
=
=3
£ 500
=
@
0
EEO1 EEO2 EEO3 EEO4 EEO5 EEO6 EEO7 EEO8 EEOQ9 EE10
Number of Workloads
(b)
e=@==Proposed e=@==BlEMO e==@==h-DEWOA e=@==CSDEQ e=@==CSPSO
20,000
15,000 \
. |
& =
= 10,000 «
72!
=
@
|
7o e
0

EE0O1 EEO2 EEO3 EEO4 EEO5 EEO6 EEO7 EEO8 EE09 EE10
Number of Workloads

(c)

media/file12.png
B h-DEWOA BCSDEO mCSPSO mBLEMO ™ Proposed

25,000

20,000

15,000
I il s,

EEO1 EEO2 EEO3 EEO4 EEO5 EEO6 EEO7 EEO8 EEQ9 EE10
Workloads

=
o

Makespan(S)
o
S

o

media/file9.jpg
s B

H
for
]

®
S

@

media/file0.png

media/file14.png
B h-DEWOA ®BCSDEO mCSPSO mBLEMO ™ Proposed

30,000
25,000

‘= 20,000

||||I “ ‘l ||||I il nll

EEO1 EEO2 EEO3 EEO4 EEO5 EEO6 EEO7 EEO8 EE09 EE10
Workloads

o
o
o

Energy Consumption (W)
o 5
o
S

o

media/file8.png
B h-DEWOA ®CSDEO mCSPSO mBLEMO mProposed

25,000.00
20,000.00

15,000.00

10,000.00
o “ “ II|II ‘ ‘ |I ||||I ||‘||
0.0 II I

EEO1 EEO2 EEO3 EEO4 EEO5 EEO6 EEO7 EEO8 EE0O9 EE10
Workloads

Energy Consumption (W)

o

media/file11.jpg
Wh-DEWOA HCSDEO HCSPSO BLEMO M Proposed
25,000

20,000

““‘ |“|| ““| |“|| |||| | |||II
, O DA ol el i

EEOL EEO2 EEO3 EEO4 EEOS EEOG EEO7 EEO EEO9
Workloads

g

Makespan(S)
g

EE10

media/file6.png
Makespan (S)

25,000.00

20,000.00

15,000.00

10,000.00

5,000.00

0.00

B h-DEWOA ®mCSDEO mCSPSO mBLEMO mProposed

EEO1 EEO2 EEO3 EEO4 EEO5 EEO6 EEO7
Workloads

EEO8 EEQ9

EE10

media/file15.jpg
8§

[

w

]

.

Iy

