
Citation: Barranquero, M.; Olmedo,

A.; Gómez, J.; Tayebi, A.; Hellín, C.J.;

Saez de Adana, F. Automatic 3D

Building Reconstruction from

OpenStreetMap and LiDAR Using

Convolutional Neural Networks.

Sensors 2023, 23, 2444.

https://doi.org/10.3390/s23052444

Academic Editor: Denis Laurendeau

Received: 30 December 2022

Revised: 17 February 2023

Accepted: 21 February 2023

Published: 22 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Automatic 3D Building Reconstruction from OpenStreetMap
and LiDAR Using Convolutional Neural Networks
Marcos Barranquero , Alvaro Olmedo , Josefa Gómez , Abdelhamid Tayebi , Carlos Javier Hellín
and Francisco Saez de Adana *

Computer Science Department, Universidad de Alcalá, 28801 Alcalá de Henares, Spain
* Correspondence: kiko.saez@uah.es

Abstract: This paper presents the implementation of an automatic method for the reconstruction
of 3D building maps. The core innovation of the proposed method is the supplementation of
OpenStreetMap data with LiDAR data to reconstruct 3D urban environments automatically. The only
input of the method is the area that needs to be reconstructed, defined by the enclosing points in
terms of the latitude and longitude. First, area data are requested in OpenStreetMap format. However,
there are certain buildings and geometries that are not fully received in OpenStreetMap files, such as
information on roof types or the heights of buildings. To complete the information that is missing in
the OpenStreetMap data, LiDAR data are read directly and analyzed using a convolutional neural
network. The proposed approach shows that a model can be obtained with only a few samples of
roof images from an urban area in Spain, and is capable of inferring roofs in other urban areas of
Spain as well as other countries that were not used to train the model. The results allow us to identify
a mean of 75.57% for height data and a mean of 38.81% for roof data. The finally inferred data are
added to the 3D urban model, resulting in detailed and accurate 3D building maps. This work shows
that the neural network is able to detect buildings that are not present in OpenStreetMap for which
in LiDAR data are available. In future work, it would be interesting to compare the results of the
proposed method with other approaches for generating 3D models from OSM and LiDAR data, such
as point cloud segmentation or voxel-based approaches. Another area for future research could be
the use of data augmentation techniques to increase the size and robustness of the training dataset.

Keywords: OpenStreetMap; LiDAR; convolutional neural network; 3D reconstruction; transfer
learning; machine learning

1. Introduction

In recent years there has been an increasing need to generate 3D urban environments
that contain detailed data such as roads, buildings, vegetation information, or ground
surface information [1]. There are important applications of 3D urban environments in
a wide range of fields, from engineering and architecture to public safety. For example,
in GPS navigation systems [2], which can be of great help in vehicle and public transport
navigation, route planning, and avoiding obstacles such as construction or congested roads.
This links into the field of computer vision, where it can be used for object, person, and
vehicle detection in security applications such as surveillance of urban areas or detection
of suspicious objects [3]. One of the most common uses of 3D urban environments is in
simulators. These three-dimensional environments can be used to create realistic simula-
tions of urban scenarios, which can be of great help in driver training, preparing personnel
for emergency situations, and simulating evacuation situations in the event of natural
disasters [4]. In addition, 3D urban environments can be useful in simulating situations
related to forest fire prevention and control, as well as radio propagation in urban areas [5].

Although highly accurate 3D maps are required in many of these applications, it is
difficult to create a consistent method that automatically generates these 3D urban envi-

Sensors 2023, 23, 2444. https://doi.org/10.3390/s23052444 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052444
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6147-5902
https://orcid.org/0000-0002-7650-4374
https://orcid.org/0000-0003-0111-8898
https://orcid.org/0000-0002-6216-257X
https://orcid.org/0000-0002-1576-5466
https://orcid.org/0000-0002-3454-7982
https://doi.org/10.3390/s23052444
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052444?type=check_update&version=2


Sensors 2023, 23, 2444 2 of 18

ronments. Many of the existing approaches are based on a single data source and take full
advantage of that data to create the most accurate environments possible; however, the
information that allows for reconstructing the 3D environment is not always complete.
Obviously, this can limit the precision and quality of the obtained results. Therefore,
new approaches are needed that combine different types of data and use advanced im-
age processing and machine learning techniques to automatically create high quality 3D
urban environments.

Before defining the hypothesis of this research, we briefly review the current state of
the research field.

1.1. LiDAR

LiDAR is a system that uses lasers to determine distances. It is used for navigation
and mapping, where it can provide precise distance measurements. Recent works have
shown that LiDAR can be useful in multiple fields, such as archaeology [6], flooding [7],
forest biomass estimation [8], and autonomous vehicle control [9]. In relation to urban
environments, satellite imagery or aerial measurements can be used to include information
on buildings and non-natural elements of the landscape. The data collected from these
measurements can be used to generate a DSM that includes the terrain altitude, geometry,
and position of non-natural landscape elements such as buildings in urban environments.
In [10], the authors proposed a method for automatic segmentation of LiDAR point cloud
data at different height levels for 3D building extraction. The method scans the point
cloud data from the highest to the lowest height level and extracts the building points at
each height level. The building points are then clustered into different building segments,
and trees and non-building points are removed. The method is based on the assumption
that the building points are distributed in a cluster-like manner. The method then can
extract roof points of the buildings. It achieves high accuracy, particularly on roofs with
shapes that are not flat, where it can read the coplanarity of the points. The results show
that the method is able to extract building points at different height levels with high
accuracy. However, buildings with low heights are poorly detected, and vegetation may
be processed as building points in certain cases. A more exhaustive study was carried out
in [11], where an automatic building segmentation method was presented. The authors
collected LiDAR data using an unmanned aerial vehicle and used the data to directly
segment buildings. They used a dynamic convolutional neural network (DCNN) algorithm
to separate buildings and vegetation, then used Euclidean clustering to segment each
building. The authors concluded that this method is an effective way to segment buildings
using LiDAR data.

LiDAR allows the creation of accurate maps of 3D scenarios, including indoor en-
vironments, for applications such as building mapping, autonomous indoor navigation,
and obstacle detection in indoor environments. In [12], the authors proposed an improved
approach for energy modeling of already-existing buildings. Their solution enables rapid
generation of the building geometry from point clouds, increasing the speed with which
3D geometry of existing industrial buildings can be created, and has potential applications
in building energy modeling and subsequent thermal simulation. Although 3D building
reconstruction was carried out, this algorithm is not automated.

1.2. Convolutional Neural Networks

Neural networks can be used to extract relevant features from LiDAR data and use it
to classify different types of objects in the scene, such as buildings, vegetation, and other
objects. In addition, neural networks can be used to perform segmentation tasks to separate
individual buildings from a LiDAR scene. Convolutional Neural Networks (CNN) are
used in deep learning to classify images. They can process data from satellite imagery or
aerial scans and use information from the curves and shapes of the buildings to classify
them into different categories. GIS data such as building location and size information can
be used to improve classification accuracy.



Sensors 2023, 23, 2444 3 of 18

In the field of GIS data, several authors and researchers have used neural networks to
detect different geospatial datasets. In [13], terrain classification was achieved using a hier-
archical deep learning framework with a CNN and a prediction preprocessing step. In [14],
the authors used CNN to classify satellite images, comparing various CNN architectures.
Even more accurate object detection was achieved in [15] using a multi-scale CNN able to
detect objects such as airplanes or ships from high-resolution satellite images. Different
neural networks have been used as well; [16] used a generative adversarial network (GAN)
and CNN to classify partial discharge patterns in GIS. In [17], the authors used a CNN to
classify COVID-19 infection transmission using GIS data and COVID-19 data materials.
The authors of [18] used the YOLOv2 open-source deep learning model and GIS-based
algorithms to track vehicles, achieving 91% accuracy. In [19], a deep learning model was
used to detect cracks in asphalt surfaces, providing surface images for subsequent training
and model validation.

An interesting use case of CNN models is to read and transform 2D images to 3D
environments. This idea has been applied in works in different fields. In [20], the authors
presented a method for reconstructing 3D models of objects from 2D correspondences of
points in a single image. The method uses a deformable shape model in which the shape
of an object is represented as a linear combination of base shapes. The authors developed
an efficient algorithm to solve the proposed convex program, and extended the model to
handle outliers in the input 2D correspondences. They applied their method to images of
people in different positions or performing actions such as walking, running, jumping, etc.,
achieving efficient results in terms of accuracy and speed. In [21], the authors show how
geometric images can be used to classify and retrieve 3D shapes in 3D shape datasets and
propose a CNN architecture for this purpose. Their experimental results showed that this
method is capable of classifying and retrieving 3D shapes accurately and efficiently.

1.3. OpenStreetMap

OSM is a collaborative project to create a free and editable map of the world. Founded
in 2004, it is made up of volunteers who collect and contribute data about roads, buildings,
and other features in their local area. The resulting map is free to use and download, and
provides an alternative to traditional proprietary maps.

A study on the activity of its members has shown that approximately 1.2 million nodes
and 130,000 paths are added daily [22]. Especially in metropolitan regions, a large amount
of building data has been added recently. Figure 1 shows a comparison between the node
density maps for 2014 and 2022 [23]. Here, a lighter color means a higher node density,
whereas darker color means a lower node density.

Figure 1. Evolution of the available data provided by OSM. Left: Node density map in 2014.
Right: Node density map in 2022.

OSM stores a wide variety of information about the features that appear on the
map, including roads, buildings, natural features, and more. Among the specific types of
information related to buildings that OSM stores are the type of building, its height and
shape, its roof height and shape, and more.

OSM has been used in multiple projects and scopes. In [24], the authors provided a
framework that analyzes information provided in OSM with the goal of detecting faulty
information. OSM has been used in smart cities [25] and in studies of the impact of natural



Sensors 2023, 23, 2444 4 of 18

disasters on the built environment [26]. Studies have been conducted to analyze the impact
of location-based games on OSM [27]. OSM stores points of interest [28], and has been
used in studies comparing inequalities in accessibility [29]. It has been used to analyze the
impact of urbanization on green infrastructure [30] and to identify locations along railway
networks with the highest tree fall hazard [31]. OSM data can be used to extract the road
network of cities [32] or even to extract more complicated roads such as desert roads [33].
In addition, OSM has been used along with other data sources to generate 3D maps of the
built environment [34].

In [35], the authors proposed a supervised learning-based approach that classifies
buildings into residential or non-residential for different areas of the United States. The
model uses existing OSM data that captures non-spatial attributes as well as geometric
and topological properties of building footprints, including type of adjacent roads, prox-
imity to parking lots, and building size. The model uses a decision tree and is trained
and tested using OSM data on the residence type. The paper shows that this approach
achieves accuracy in predicting residence type for selected areas. However, there are more
sophisticated methods to infer information than decision trees, such as deep learning,
which is the method used in our work.

1.4. Hypothesis

According to the state of the art, LiDAR data can be used to improve the accuracy of
OSM maps. In this sense, the present paper proposes a method that combines OSM data
with LiDAR data to generate more accurate 3D environments. The method proposes using
OSM data to create 3D models of buildings and other structures, then using LiDAR data
to fill in potential gaps and provide a more detailed view by applying image processing
techniques. This can improve the overall accuracy and detail of the map, especially in
urban areas where buildings and other structures are densely packed. Additionally, neural
networks can be used to process LiDAR data and read certain details of buildings, such as
the shape and pitch of roofs. Therefore, we propose a neural network trained on a LiDAR
dataset to develop a model capable of automatically extracting information about rooftops.
This can improve the accuracy and detail of the building information provided by OSM.
For training the neural network, we proposed using LiDAR images of a particular area
and extrapolating them to other urban areas with the generated model in order to analyze
new images and extract features that can provide more complete OSM data on these new
urban areas.

In general, and unlike the works reviewed above, the proposed methodology allows
us to answer the following research questions:

1. Whether it is possible to combine OSM data with LiDAR data;
2. Whether it is possible to improve the accuracy of 3D urban environments generated

with OSM data through LiDAR data analysis;
3. Whether it is possible to extract features from LiDAR data in order to generate com-

plete OSM data via LiDAR image analysis by creating models based on a convolutional
neural network;

4. Whether a model based on a convolutional neural network trained with LiDAR data
on a particular region can then extrapolate from those data to analyze new regions
and complete the OSM data on these new regions.

The rest of this paper is organized as follows: Section 2 presents the method for
generating 3D models of buildings and other structures from OSM data and the process
of adding inferred heights and roofs from LiDAR; Section 3 presents the results; finally,
Section 4 discusses the limitations of this work, lays out possible future lines of work,
and presents our conclusions.



Sensors 2023, 23, 2444 5 of 18

2. Materials and Methods
2.1. Generating 3D Models of Buildings and Inferring Heights

To process LiDAR data, we relied on two approaches. The first was to complement
the missing building height data from OSM directly with the LiDAR data. For this, a plane
segmentation algorithm was used to detect the buildings from the LiDAR data. With
the building coordinates available, the floor and roof heights could then be read for each
building. The second approach was to complement the roof type data by applying a neural
network to identify the roof type of each building. For this, a CNN was trained to identify
the roofs of the buildings. LiDAR data were converted to an 8-bit TIFF, then the TIFF file was
used as input to the CNN. The CNN model supports a TIF image generated from LiDAR
and approximates the roof type to the OSM roof classification, thereby complementing the
data. This process can be seen in the diagram in Figure 2.

Figure 2. Diagram of the full process used to generate the 3D environment.

The developed application used a NodeJS Typescript architecture. The OSM data
were fetched from different sources and then transformed to a 3D file containing the urban
environment. This process is described in detail below.

Hypertext Transfer Protocol Secure (HTTPS) was used to obtain information about
specific map tiles using X, Y, and Z indexes. The obtained information was encoded in
JSON, and included detailed descriptions of building geometry within the specified tile,
including shape, size, and location.

Tools such as Overpass and OSMBuildings can be used to fetch OSM data. Overpass is
a web service for querying the OSM database, while OSMBuildings is a tool for retrieving
OSM data as tiles for visualization. Both tools were utilized in the development of the
application through an asynchronous process. The data obtained were transformed into
GeoJSON, a widely-used open standard format for encoding geographic data structures.
GeoJSON data can be easily processed and visualized by a variety of tools and libraries.



Sensors 2023, 23, 2444 6 of 18

After the OSM data were retreived, the process of 3D reconstruction began with a
preprocessing step. First, the region containing all the buildings was identified using
the maximum and minimum coordinates of the received data. The average height of the
buildings was calculated at this stage as well.

During the 3D reconstruction process, the polygons for each building were extracted
from the OSM data. These polygons served as the foundation for the building, taking
into account any gaps that may be present. If the OSM data included a height value for
the building, the roof was placed at that height. Walls were then added to the building
as described in Figure 3. If the OSM data included information about the type of roof, it
was added on top of the building. This process was repeated for all buildings in the area.

Figure 3. Simple building polygon reconstruction in 3D.

In certain cases, a single building may be divided into multiple polygons in the
OSM data in order to improve 3D visualization. However, it may be more important to
prioritize data accuracy over visualization. To address this issue, the possibility of merging
overlapping or adjoining buildings can be added. In our case, this was done by converting
the 3D building data into a Three.js [36] mesh object and using the Constructive Solid
Geometry (CSG) join operation, calling the Three-CSG [37] library. Finally, the Three.js
library was used to export the 3D building data to the Wavefront OBJ or GL Transmission
Format (GLTF) file format for further use. The fetched OSM area data were then parsed to
OSM format using OSMtoGeoJSON [38].

The LiDAR point cloud can be used to complement the OSM data obtained through the
approach described above. To process the LiDAR point cloud, we used two different tools,
LasTools and PDAL. LasTools is a mostly open source command line tool for Windows
platforms that can perform operations on LiDAR files, among which are decompressing
files from LAZ to LAS format, generating color images from the point cloud, filtering the
point cloud by LiDAR classification, etc. Several of the LasTools tools are limited in that
they cannot be used on Linux, or cannot be used on Windows for LAZ files larger than
5 million points without a license.

The second tool, PDAL, is an open source command line tool for Linux and Windows
platforms that can perform operations on LiDAR files. Unlike LasTools, PDAL has no file
size limitations and is significantly more flexible. It is integrated in Python and allows
concatenating operations on LiDAR files in pipelines in a single script. PDAL can perform
operations such as filtering the point cloud by LiDAR classification, clipping the point
cloud by a region of interest, reading minimum and maximum heights from the point
cloud, extracting the bounding box from the point cloud, etc.

To supplement the building heights in OSM, a PDAL script was developed. The script
utilizes the PDAL pipeline shown in Figure 4 for each building area.

The pipeline reads the specified LAZ file and crops it to the area of interest for the
building. The minimum and maximum height for each building is then obtained. This
pipeline is executed from a Python script that reads the execution result values from
an array.

To remove potential noise points, filters were applied to the LAZ files to remove points
that do not belong to buildings. The PDAL filter filters.range was used to remove points
that do not fall within a range of values. In this case, it was used to remove points classified
as vegetation (classifications 3, 4, and 5) and points classified as water (9). In addition,
the PDAL filters.outlier filter was used to remove points considered as noise.



Sensors 2023, 23, 2444 7 of 18

Figure 4. PDAL Script.

In OSM, buildings are represented by polygons with latitude and longitude. To crop
an area of interest in a LAZ file with PDAL, the coordinates must be indicated as an XYZ
coordinate bounding box in meters. The following steps were taken to convert the data:

1. The latitude and longitude of all vertices of the polygon representing the building
are obtained.

2. The minimum and maximum latitude and longitude of the polygon vertices are
obtained, generating the bounding box.

3. The information of the LAZ file is obtained using pdal info, including the projection
and bounding box of the file in EPSG projection and native (in meters).

4. The range of X and Y coordinates and latitude and longitude of the LAZ file bounding
box is extracted. The building bounding box is then mapped to the LAZ file bounding
box (in meters).

5. The script which crops the LAZ file with PDAL and reads the minimum (ground) and
maximum (roof) height of the building area is executed using the building bounding
box (in meters).

6. A sensitivity parameter was added to allow increasing or decreasing the size of the
bounding box of the building area, which is useful in cases where the building is not
fully contained in the LAZ file or when there are buildings very close together.

7. The minimum and maximum heights obtained are stored in an array, which is then
used to update the OSM data with the height values of each building.

The results of this process are discussed in Section 3.

2.2. Using CNN to Add Inferred LiDAR Data to OSM

An important task in the reconstruction of buildings in 3D is to correctly classify the
type of roof to be added to the different buildings. This is because not all information
is included when a request is made to the OSM server. In order to solve this difficulty,
in this work we propose training a CNN to classify the different types of roofs given a
certain geographical area, thereby completing the OSM data and allowing detailed 3D
reconstruction of the buildings to be performed.

In Section 1.2, we introduced CNNs as a type of neural network used in deep learning
to classify images. In the particular case of this work, a CNN was implemented using the
YOLOv7 repository [39], which is a version of CNN optimized for object detection in images
and video in real time that is very fast, accurate, and easy to implement [40,41]. For this
reason, we used CNN YOLOV7 in the experiments carried out in this work for classification
of roofs for reconstructing the buildings by processing LiDAR data. Specifically, we
tested whether YOLOv7 was able to recognize different roof shapes according to the
roof classification provided by the OSM catalog [42]. Particularly, YOLOv7 was tested with
gabled, flat, hipped, and pyramidal roofs. Figure 5 shows a comparison of the schematic
view provided by OSM, the real view provided by LiDAR, and the view of the reconstructed
buildings as 3D objects for each type of roof. Other roof types such as gambrel, round, and



Sensors 2023, 23, 2444 8 of 18

round–flat were used to train the neural network, though in smaller proportions than the
former roof types.

Figure 5. Comparison of different roof types.

In the next subsection, we detail the process used to detect roof shapes, starting with
the preprocessing performed on the LiDAR data to build a set of images with which to train
the proposed YOLOv7 CNN and then moving on to the parameters used during training.

2.2.1. LiDAR Data Pre-Processing and Image Set Construction

In order to train and test the YOLOv7 CNN, we used a set of real images of rooftops.
These images were taken from LiDAR, specifically a top view of six areas: Madrid, Alcalá
de Henares, Córdoba, Barcelona, Zaragoza, and Luxembourg. The reason for selecting these
six areas was simply that they all had a set of buildings with roofs that could be detected in
order to train the neural network. In addition, all six areas have a LiDAR resolution of at
least one point per square meter, which is sufficiently detailed for our purposes.

The LiDAR data were downloaded from the official website of the National Center
for Geographic Information in .laz file format [43]. Processing of the information began
with decompression using the laszip tool and generating a point cloud in .las format. The
point cloud contained features of the entire selected geographic region, defined by classes
associated with vegetation, soil, buildings, rivers, etc., as well as redundant information
generated in the process of constructing the LiDAR data. For this reason, after decom-
pression the point cloud was pre-treated with filters such as drop_class 12, which removes
overlapping data from the point cloud, and classes 3, 4, and 5, which remove vegetation.
After cleaning, surface or raster images were generated in .png format with Red, Green,
and Blue (RGB) attributes and a pixel size of half a meter. For this task, the RGB and step
filters of the blast2dem tool were used. With these generated images, the process of labeling
the roofs was performed. In essence, this process consists of marking the relative position
of the roofs within the geographical area, then generating coordinates within the images
that provide information about the type of roof during the training process. This labeling
process was performed with the Image Annotation Lab program [44]. This process, from
downloading the LiDAR data to labeling the images, is summarized in the five steps shown
in Table 1.



Sensors 2023, 23, 2444 9 of 18

Table 1. Process for generating an image set using LIDAR data.

Process Tool/Filters Comments

Download Web browser Download LIDAR data in .laz format
Descompression laszip Generate point cloud in .las format

Cleanup blast2dem/drop_class Overlap and vegetation points are removed
Generation blast2dem Images are generated in png format

Labeling Image Annotation Lab Mark coordinates of rooftops

It is important to note that laszip and blast2dem are limited free software tools that
come bundled with LAStools, which is a suite of tools for LiDAR data processing. While
the steps summarized in Table 1 are difficult to automate, this is necessary in order to build
the image set needed to train the network.

2.2.2. Training the YOLOv7 CNN

Before training the network by using the set of preprocessed images to generate a
model that can make inferences about roof types, it is necessary to adjust a series of param-
eters in order to evolve the weights used for the CNN. We used the following parameters:

1. epochs: this refers to the number of iterations performed on the image set. For training,
approximately 3000 epochs were initially used, starting from a pre-trained model
and performing transfer learning on it. This allowed us to create a new neural
network model with updated weights based on the roof images used for training.
Taking into account that the neural network incorporates features or patterns as it is
trained, the updated weights model was then incorporated into the training process
to continue performing transfer learning. A total of approximately 9000 additional
epochs were tested, obtaining acceptable results for the final model generated using
the constructed image set.

2. batchsize 2: this parameter corresponds to the number of images passed to memory
per iteration within an epoch, allowing the weights of the CNN to be updated.

3. img 2000 2000: this indicates the size of the images to be resized. Because the input
images all had a size of 2000 × 2000, no resizing was executed for this training.

4. weights ’model.pt’: this parameter indicates where the initial weights are located. It
should be noted that the model.pt changes as training progresses over a given number
of epochs, always taking the best model.

The main goal of training the YOLOv7 CNN was to generate a model able to correctly
classify the roofs of buildings contained in a raster image constructed from LiDAR data.
It should be noted that while the network had labels for all of the different types of roofs
supported by OSM, only gabled, flat, hipped, and pyramidal roofs were supported in 3D
rendering. With the correct classification of roofs, it was possible to reconstruct buildings
by following the steps described below:

1. The OSM polygon representing the building is obtained.
2. The bounding box and center in terms of the latitude and longitude of the polygon

are extracted.
3. The LiDAR area, transformed into an image with LASTools, is processed by the neural

network. The result is a label file with the position of each detected roof in the image
indicated in pixel coordinate format.

4. The labels of the image are mapped to the latitude and longitude coordinates of
the building using the bounding box of the building and its center. A sensitivity
parameter allows the size of the bounding box of the building to be increased or
decreased, which is useful in cases where the building is not fully contained in the
LiDAR area or when there are buildings very close together.

5. The roof is written to the resulting OSM file.
6. The 3D generator receives the resulting OSM and generates the 3D model.



Sensors 2023, 23, 2444 10 of 18

The steps described above and the role played by the trained YOLOv7 CNN are shown
in Figure 6.

Figure 6. Process of adding a roof to a building using the neural network.

Using the network to generate this model is important, as it is later used to process the
LiDAR data. This process is called post-processing, and involves using the trained model
to identify a particular roof from a raster image. If the model can classify the roof, then
it can provide information about its location in the image. An algorithm then uses this
information to incorporate the roof into the building reconstruction.

Finally, it should be indicated that the performance evaluation of the trained network
was measured using the proprietary metrics already incorporated with the YOLOv7 frame-
work, among which we used precision, sensitivity, mAP, and F1. Precision provides the
percentage of the results that are true positive (TP) from among all the positive results,
which corresponds to the sum of true positives plus false positives (FP). Sensitivity, some-
times called recall, determines the proportion of the results that the trained model is able
to identify as true positives from among the sum of true positives plus false negatives
(FN) based on the imposed confidence. The Mean Average Precision (mAP) is a measure
that combines the precision curve with the sensitivity curve, and is able to report where
the developed model is both accurate and sensitive. F1 is another way of contrasting the
accuracy curve against the sensitivity curve. All these metrics are based on the confusion
matrix [45,46].

It is important to note that confidence is a value that reflects the extent to which the
trained model finds an object within the bounding box. In other words, it is a probabilistic
measure that ensures that the parameter to be estimated is within the estimated value.

In terms of execution times, the neural network was been trained for over 40 h with
over 70 images and more than 1200 labels on a computer with an RTX 5000 graphic card.
This is an area for future development, as better results can be achieved with more training
and validation images and more time. In terms of complementing data with heights,
the execution time depends on the number of buildings to be processed. The largest of the
datasets we processed, Barcelona, took approximately 20 h to process on a computer with
an i5 8350U and 8 GB of RAM.

3. Results

LiDAR files from Spain’s 2016 campaign by DGTOE of IGN were used for experimental
results in Spanish cities [43], while public LiDAR data from Luxembourg Public Data were
used in Luxembourg through an interactive tool [47]. The selected cities and areas were
randomly chosen, with the only constraint being that the LiDAR data must have a resolution
of at least one point per square meter.



Sensors 2023, 23, 2444 11 of 18

Our proposed approach to supplementing building heights was tested in several
areas in Spain and Luxembourg, including different areas with varying levels of building
complexity; the results are shown in Table 2.

Table 2. Height results.

Alcalá Luxemb. Córdoba Madrid Zaragoza Barcelona

N◦ of buildings 28 288 537 543 2035 7455
Original heights 1 1 27 200 17 7238
Added heights 27 287 533 336 2016 133

Buildings left without height 0 0 4 7 2 84
% of added heights 96.42% 99.65% 94.67% 61.87% 99.06% 1.78%

As can be seen, the amount of building data with heights varies depending on the
area. This is due to the fact that OSM is a collaborative database, and not all buildings have
their heights recorded. The table shows that there are more data available on buildings
with heights in the city of Barcelona compared to the city of Madrid. This is because the
OSM community in Barcelona has made a greater effort to add data on building heights.
In the city of Madrid, the OSM community has added more data on buildings without their
heights; thus, we used the proposed approach to obtain the heights of the buildings.

The number of buildings without heights is relative to the building position in the
received data. In Barcelona in particular there are several buildings that collide with the
limits of the LiDAR data; these have been left without heights, as the inferred heights would
not have the same precision as those for the rest of the buildings. In addition, the OSM data
can contain more buildings within the limits than the LiDAR data.

In less populous cities such as Córdoba, Alcalá de Henares, and Zaragoza there
is a significant improvement in the amount of data on buildings that contain heights.
In Luxembourg, there are almost no original heights in the OSM data on the area, resulting
in a remarkable height addition percentage.

Results Obtained Using CNN for 3D Reconstruction of Building Roofs

To obtain better post-processing performance of the generated model, and thereby
guarantee better results, the CNN could have been trained with a considerable number
of images; however, the neural network was trained and validated using only 40 and
39 images, respectively, which was achieved with a total of 1274 labels. In addition, it
should be recalled that the selection of this set of images was made arbitrarily from LiDAR
data from the town of Alcalá de Henares.

Although the set seems small, favorable practical results were obtained, mainly due to
the fact that rooftops in other urban areas not found in the original training and validation
image set could be inferred. Before commenting on these results, the metrics presented in
the methodology and provided by YOLOv7, namely, precision, recall, mAP, and F1 [45],
are discussed.

In Figure 7a, it can be seen that the precision is maintained between 0.4 in a confidence
band that ranges from 0.2 to 0.9. In Figure 7b, it can be seen that the trained model becomes
less sensitive as confidence increases. It is important to note that sensitivity is inversely
proportional to accuracy, that is, the more accurate the model is, the less sensitive it will
be. The mAP metric shown in Figure 7c confirms how inversely proportional precision
and sensitivity are. The F1 metric shown in Figure 7d reveals the confidence value within
the contrast made between precision and sensitivity, revealing an average value for both.
Note that this value sits at 0.2. The difference between both mAP and F1 is that the former
does not reveal the value of the trust imposed, while the latter does. Confidence is a value
that reflects the extent to which the trained model finds an object within the delimiting box
(see Figure 8). In Figure 7a,b,d, precision, sensitivity, and the contrast between precision
and sensitivity are respectively plotted against the confidence. It can be appreciated from
Figure 7a,b that as confidence increases, precision increases while sensitivity decreases.



Sensors 2023, 23, 2444 12 of 18

This is why the F1 curve is particularly interesting in the implementation of the trained
model, as it allows the compromise between precision and sensitivity to be analyzed for a
selected confidence value. Figure 7d shows a low value of precision–recall with a confidence
value around 0.2. This same result can be seen in the precision–sensitivity curve shown in
Figure 7c, with the difference that it does not allow the confidence value to be examined.

(a) (b)

(c) (d)

Figure 7. Metrics: (a) precision, (b) recall, (c) mAP, and (d) F1.

For the selected confidence value, Figure 7a reflects a precision around 0.4, which is
quite acceptable because it means that 70% of the predictions are correct. On the other
hand, for this same confidence value Figure 7b reflects a low sensitivity of less than 0.1,
indicating that less than 10% of the predictions made for the same image are correct.

These results, interpreted by the metrics provided by YOLOv7, seem discouraging.
However, the reality is that the neural network was trained with a very low number
of images, as noted at the beginning of this section; again, it is worth noting that only
40 images were used for training and 39 for validation, with a total of 1274 labels.

Even with only the images of Alcalá de Henares used for training and validation,
it was possible to identify buildings in other urban areas of Spain, namely, Cordoba,
Madrid, Zaragoza, and Barcelona. Even when the whole model was tested by executing the
inference on an urban area outside Spain, specifically in Luxembourg, the results were very
satisfactory. In other words, by training the model with data from one area it was possible
to transfer the model to other areas of the same country and even to another country. This
demonstrates the robustness and generalizability of the model, as it was able to accurately
classify buildings in new locations that did not contribute information to the model.



Sensors 2023, 23, 2444 13 of 18

Figure 8. Bounding boxes of Alcalá de Henares imposed by the trained neural network model.

As indicated, it can be understood that these results are quite satisfactory from the
point of view of the building reconstruction process. When used to process raster images
generated from LiDAR, the trained neural network model reasonably classifies roofs even
in urban areas not advertised in the roof classification model, allowing for roof detection
and successful completion of the building reconstruction process.

To further evaluate the performance of the constructed neural network, we can ex-
amine the data in Table 3. This table presents the number of buildings in the five selected
locations within Spain: Alcalá de Henares, Córdoba, Madrid, Zaragoza, and Barcelona. In
addition, it presents the information for the urban area of Luxembourg, which is outside of
Spain. According to the information obtained from OSM, there are 28, 288, 537, 543, 2035,
and 7455 buildings in these locations, respectively (see row “N◦ of buildings” in Table 3).
However, OSM provides little or no information on roof type (see the “Original roofs” row
in Table 3). Using our neural network trained with a limited number of samples from only
the urban area of Alcalá de Henares, we can see the results obtained in the row “Added
roofs”, where 17, 160, 148, 226, 392, and 2331 roofs are detected, for an average percentage
of 38.82% successfully reconstructed roofs.

The results obtained with the trained neural network demonstrate that this model
can be effectively used for building reconstruction. Moreover, it has been shown that
satisfactory results can be obtained even with a small number of images and training
epochs. Therefore, if an even larger set of images were used to train the same neural
network it is likely that even better percentages of buildings with supplemented roofs
could be achieved.



Sensors 2023, 23, 2444 14 of 18

Table 3. Roof results.

Alcalá Luxemb. Córdoba Madrid Zaragoza Barcelona

N◦ of buildings 28 288 537 543 2035 7455
Original roofs 0 0 0 4 0 174
Added roofs 17 160 148 226 392 2331

Buildings left without roof 12 128 389 334 1643 5124
% of added roofs 60.71% 55.55% 27.56% 40.88% 19.26% 28.93%

Finally, in Figure 9, an urban area, close to El Paseo de la Castellana in Madrid, can be
seen. In the left part of this figure, the buildings are displayed without roofs. This is because
the trained neural network was not used to process this image in the reconstruction system.
In the right part of the figure, the same urban area can be appreciated with added roofs.
In this case, the output of the neural network has been integrated into the reconstruction
system, allowing inference as to the type of roof as well as its location in the urban plan.

A different reconstructed area located in the city of Barcelona is shown in Figure 10.
In this case, many buildings with roofs can be observed in the right part of the figure.

Figure 9. Madrid area without inferred roofs (left) and with inferred roofs (right).

Figure 10. Barcelona area without inferred roofs (left) and with inferred roofs (right).

These results show that OSM data can be complemented with LiDAR data by process-
ing the point cloud directly or indirectly through a neural network. The amount of data that
can be complemented depends on the accuracy of the LiDAR data and the performance of
the neural network. In this case, the neural network was trained with LiDAR data from the
same area, resulting in relatively acceptable results. Thus, it can be verified that the neural
network is able to detect buildings for which there are LiDAR data even when they are not
present in OSM.

4. Conclusions

In this paper, a method for reconstructing 3D urban environments from OSM data
supplemented with LiDAR data is proposed. A novel approach for generating 3D models



Sensors 2023, 23, 2444 15 of 18

of buildings and other structures from OSM data is first presented. Then, it is demonstrated
how the proposed method can be complemented with different data sources, such as
LiDAR data, to improve the accuracy and detail of the generated models. In particular, it
is shown how LiDAR data can be processed with neural networks to extract information
about the shape and slope of roofs, as well as other additional data. The results of the
proposed method are compared to the original data provided by OSM.

This work has demonstrated that a better representation of the 3D environment can be
obtained using LiDAR data and a CNN to improve the accuracy of OSM data.

This work does have a number of limitations. One major limitation is the cost and
time required to collect and process the LiDAR data. LiDAR surveys can be expensive,
particularly when covering large areas, and the data must be carefully processed and
analyzed in order for it to be useful. Additionally, LiDAR data are only useful for a
specific area and time period, and regular updates may be needed to maintain the accuracy
of the map. This means that the results presented in the previous section could vary if
the method were replicated in the future. Another challenge is the need for a large and
diverse dataset of LiDAR data and corresponding building information in order to train the
neural network effectively. These datasets can be difficult to obtain or generate, and may
require significant pre-processing before they can be used by the neural network. This
can be a time-consuming and resource-intensive task, particularly when working with
large datasets.

In addition, it is important to note that not all countries have their cities mapped with
LiDAR data. This means that the use of LiDAR data to improve OSM accuracy is currently
only applicable to certain regions. There are several projects in Europe and North America
that have mapped their cities with LiDAR; however, many other countries do not have
access to this type of data. This limits the generalizability of the proposed method and its
potential applications. In the Results section, the analyzed areas are all located in Europe,
where there are enough available data to test the proposed method. Furthermore, even
in regions where LiDAR data are available, the coverage and resolution of the data may
vary widely. This can affect the accuracy and detail of the generated 3D models, and may
require the use of additional data sources or techniques to compensate for the limitations
of LiDAR data. Overall, the availability and quality of LiDAR data are key factors that
determine the feasibility and effectiveness of using LiDAR to improve OSM accuracy.

In future work, it would be interesting to explore different approaches for improving
the performance of the neural network and for extracting more information from the LiDAR
data. This could involve using more and different types of data for training the network,
such as satellite images or street-level photographs, as well as using more advanced neural
network architectures. Additionally, it would be useful to evaluate the performance of
the method in different urban environments and with different types of OSM data and
LiDAR data. Furthermore, it would be interesting to compare the results of the proposed
method with other approaches for generating 3D models from OSM and LiDAR data, such
as point cloud segmentation or voxel-based approaches. Another area for future research
could be in the use of data augmentation techniques to increase the size and robustness of
the training dataset, which can help to reduce overfitting and improve the generalization
ability of the neural network.

In the future, it may be worthwhile to consider alternative approaches to reconstruct
3D buildings, such as using machine learning techniques to directly process the point cloud
rather than generating images from it. Techniques such as point cloud classification or
segmentation could potentially extract more detailed and accurate information from the
LiDAR data, allowing for a more efficient reconstruction process. Other data that could be
extracted with LiDAR include vegetation and trees, as well as roofs with shapes that are
different from those used in this work.



Sensors 2023, 23, 2444 16 of 18

Author Contributions: Conceptualization, M.B., A.O. and F.S.d.A.; software, M.B. and A.O.; valida-
tion, M.B. and A.O.; resources, C.J.H.; writing—original draft preparation, M.B., A.O., J.G., A.T. and
C.J.H.; writing—review and editing, F.S.d.A.; supervision, A.T.; project administration, A.T.; funding
acquisition, J.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the program “Programa de Estímulo a la Investigación de
Jóvenes Investigadores” of the Vice rectorate for Research and Knowledge Transfer of the University
of Alcala and Comunidad de Madrid (Spain): Project CM/JIN/2021-033.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

OSM OpenStreetMap
CNN Convolutional Neural Network
DEM Digital Elevation Model
DFM Digital Feature Model
DTM Digital Terrain Model
DSM Digital Surface Model
DCNN Dynamic Convolutional Neural Network
HTTPS Hypertext Transfer Protocol Secure
JSON JavaScript Object Notation
CSG Constructive Solid Geometry
HTTP Hypertext Transfer Protocol Secure
JSON JavaScript Object Notation
CSG Constructive Solid Geometry
GLTF GL Transmission Format
DGTOE Direction General of Teledetection and Earth Observation
IGN National Geographic Institute
GPU Graphics Processing Unit
RGB Red, Green, Blue

References
1. Biljecki, F.; Stoter, J.; Ledoux, H.; Zlatanova, S.; Çöltekin, A. Applications of 3D City Models: State of the Art Review. ISPRS Int. J.

Geo-Inf. 2015, 4, 2842–2889. [CrossRef]
2. Cappelle, C.; El Najjar, M.E.; Charpillet, F.; Pomorski, D. Virtual 3D City Model for Navigation in Urban Areas. J. Intell. Robot.

Syst. 2012, 66, 377–399. [CrossRef]
3. Jovanović, D.; Milovanov, S.; Ruskovski, I.; Govedarica, M.; Sladić, D.; Radulović, A.; Pajić, V. Building Virtual 3D City Model

for Smart Cities Applications: A Case Study on Campus Area of the University of Novi Sad. ISPRS Int. J. Geo-Inf. 2020, 9, 476.
[CrossRef]

4. Xu, J.; Liu, J.; Yin, H.; Wu, T.; Qiu, G. Research on 3D modeling and application in urban emergency management. In Proceedings
of the 2011 International Conference on E-Business and E-Government (ICEE), Shanghai, China, 6–8 May 2011; pp. 1–4. [CrossRef]

5. Tayebi, A.; Gomez, J.; Saez de Adana, F.; Gutierrez, O.; Fernandez de Sevilla, M. Development of a Web-Based Simulation Tool to
Estimate the Path Loss in Outdoor Environments using OpenStreetMaps [Wireless Corner]. IEEE Antennas Propag. Mag. 2019,
61, 123–129. [CrossRef]

6. Štular, B.; Eichert, S.; Lozić, E. Airborne LiDAR Point Cloud Processing for Archaeology. Pipeline and QGIS Toolbox. Remote Sens.
2021, 13, 3225. [CrossRef]

7. Muhadi, N.A.; Abdullah, A.F.; Bejo, S.K.; Mahadi, M.R.; Mijic, A. The use of LiDAR-derived DEM in flood applications: A review.
Remote Sens. 2020, 12, 2308. [CrossRef]

8. Lu, J.; Wang, H.; Qin, S.; Cao, L.; Pu, R.; Li, G.; Sun, J. Estimation of aboveground biomass of Robinia pseudoacacia forest in the
Yellow River Delta based on UAV and Backpack LiDAR point clouds. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102014. [CrossRef]

9. Royo, S.; Ballesta-Garcia, M. An overview of lidar imaging systems for autonomous vehicles. Appl. Sci. 2019, 9, 4093. [CrossRef]

http://doi.org/10.3390/ijgi4042842
http://dx.doi.org/10.1007/s10846-011-9594-0
http://dx.doi.org/10.3390/ijgi9080476
http://dx.doi.org/10.1109/ICEBEG.2011.5887146
http://dx.doi.org/10.1109/MAP.2018.2883088
http://dx.doi.org/10.3390/rs13163225
http://dx.doi.org/10.3390/rs12142308
http://dx.doi.org/10.1016/j.jag.2019.102014
http://dx.doi.org/10.3390/app9194093


Sensors 2023, 23, 2444 17 of 18

10. Abdullah, S.M.; Awrangjeb, M.; Lu, G. Automatic segmentation of LiDAR point cloud data at different height levels for 3D
building extraction. In Proceedings of the 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW),
Chengdu, China, 14–18 July 2014; pp. 1–6. [CrossRef]

11. Gamal, A.; Wibisono, A.; Wicaksono, S.B.; Abyan, M.A.; Hamid, N.; Wisesa, H.A.; Jatmiko, W.; Ardhianto, R. Automatic LIDAR
building segmentation based on DGCNN and euclidean clustering. J. Big Data 2020, 7, 1–18. [CrossRef]

12. Garwood, T.L.; Hughes, B.R.; O’Connor, D.; Calautit, J.K.; Oates, M.R.; Hodgson, T. A framework for producing gbXML building
geometry from Point Clouds for accurate and efficient Building Energy Modelling. Appl. Energy 2018, 224, 527–537. . [CrossRef]

13. Yang, C.; Rottensteiner, F.; Heipke, C. A hierarchical deep learning framework for the consistent classification of land use objects
in geospatial databases. ISPRS J. Photogramm. Remote Sens. 2021, 177, 38–56. [CrossRef]

14. Pratiwi, N.K.C.; Fu’adah, Y.N.; Edwar, E. Early Detection of Deforestation through Satellite Land Geospatial Images based on
CNN Architecture. J. Infotel 2021, 13, 54–62. [CrossRef]

15. Guo, W.; Yang, W.; Zhang, H.; Hua, G. Geospatial object detection in high resolution satellite images based on multi-scale
convolutional neural network. Remote Sens. 2018, 10, 131. [CrossRef]

16. Wang, Y.; Yan, J.; Yang, Z.; Jing, Q.; Wang, J.; Geng, Y. GAN and CNN for imbalanced partial discharge pattern recognition in GIS.
High Volt. 2022, 7, 452–460. [CrossRef]

17. Jadhav, J.; Rao Surampudi, S.; Alagirisamy, M. Convolution neural network based infection transmission analysis on Covid-19
using GIS and Covid data materials. Mater. Today Proc. 2021 . [CrossRef]

18. Malaainine, M.E.I.; Lechgar, H.; Rhinane, H. YOLOv2 Deep Learning Model and GIS Based Algorithms for Vehicle Tracking. J.
Geogr. Inf. Syst. 2021, 13, 395–409. [CrossRef]

19. Chun, P.J.; Yamane, T.; Tsuzuki, Y. Automatic detection of cracks in asphalt pavement using deep learning to overcome weaknesses
in images and gis visualization. Appl. Sci. 2021, 11, 892. [CrossRef]

20. Zhou, X.; Zhu, M.; Leonardos, S.; Daniilidis, K. Sparse Representation for 3D Shape Estimation: A Convex Relaxation Approach.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1648–1661. [CrossRef]

21. Sinha, A.; Bai, J.; Ramani, K. Deep Learning 3D Shape Surfaces Using Geometry Images. In Computer Vision—ECCV 2016,
Proceedings of the European Conference on Computer Vision 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J.,
Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 223–240.

22. Neis, P.; Zipf, A. Analyzing the Contributor Activity of a Volunteered Geographic Information Project—The Case of Open-
StreetMap. ISPRS Int. J. Geo-Inf. 2012, 1, 146–165. [CrossRef]

23. Tyrasd. Node Density Map. 2022. Available online: https://tyrasd.github.io/osm-node-density/#2/38.0/13.0/2021,places
(accessed on 29 December 2022 ).

24. Almendros-Jiménez, J.M.; Becerra-Terón, A.; Merayo, M.G.; Núñez, M. Metamorphic testing of OpenStreetMap. Inf. Softw.
Technol. 2021, 138, 106631. [CrossRef]

25. Hagenmeyer, V.; KemalÇakmak, H.; Düpmeier, C.; Faulwasser, T.; Isele, J.; Keller, H.B. Information and Communication
Technology in Energy Lab 2.0: Smart Energies System Simulation and Control Center with an Open-Street-Map-Based Power
Flow Simulation Example. Energy Technol. 2016, 4, 145–162. [CrossRef]

26. Ariyanto, R.; Syaifudin, Y.W.; Puspitasari, D.; Suprihatin, Ananta, A.Y.; Setiawan, A.; Rohadi, E. A web and mobile GIS for
identifying areas within the radius affected by natural disasters based on openstreetmap data. Int. J. Online Biomed. Eng. 2019,
15, 80–95. [CrossRef]

27. Juhász, L.; Novack, T.; Hochmair, H.H.; Qiao, S. Cartographic Vandalism in the Era of Location-Based Games-The Case of Open
Street Map and Pokémon GO. ISPRS Int. J. Geo-Inf. 2020, 9, 197. [CrossRef]

28. Fan, W.; Wu, C.; Wang, J. Improving Impervious Surface Estimation by Using Remote Sensed Imagery Combined with Open
Street Map Points-of-Interest (POI) Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4265–4274. [CrossRef]

29. Weiss, D.J.; Nelson, A.; Gibson, H.S.; Temperley, W.; Peedell, S.; Lieber, A.; Hancher, M.; Poyart, E.; Belchior, S.; Fullman, N.; et al.
A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 2018, 553, 333–336. [CrossRef]

30. Klimanova, O.; Kolbowsky, E.; Illarionova, O. Impacts of urbanization on green infrastructure ecosystem services: The case study
of post-soviet Moscow. BELGEO 2018, 4, 30889. [CrossRef]

31. Bíl, M.; Andrášik, R.; Nezval, V.; Bílová, M. Identifying locations along railway networks with the highest tree fall hazard. Appl.
Geogr. 2017, 87, 45–53. [CrossRef]

32. Gharaee, Z.; Kowshik, S.; Stromann, O.; Felsberg, M. Graph representation learning for road type classification. Pattern Recognit.
2021, 120, 108174. [CrossRef]

33. Stewart, C.; Lazzarini, M.; Luna, A.; Albani, S. Deep learning with open data for desert road mapping. Remote Sens. 2020, 12, 2274.
[CrossRef]

34. Esch, T.; Zeidler, J.; Palacios-Lopez, D.; Marconcini, M.; Roth, A.; Mönks, M.; Dech, S. Towards a large-scale 3D modeling of the
built environment: Joint analysis of tanDEM-X, sentinel-2 and open street map data. Remote Sens. 2020, 12, 2391. [CrossRef]

35. Atwal, K.S.; Anderson, T.; Pfoser, D.; Züfle, A. Predicting building types using OpenStreetMap. Sci. Rep. 2022, 12, 19976.
[CrossRef]

36. Cabello, R. ThreeJS. Available online: https://threejs.org/ (accessed on 10 February 2023).
37. Alexander, S. Constructive Solid Geometry for Three.js. Available online: https://github.com/samalexander/three-csg-ts

(accessed on 10 February 2023).

http://dx.doi.org/10.1109/ICMEW.2014.6890541
http://dx.doi.org/10.1186/s40537-020-00374-x
http://dx.doi.org/10.1016/j.apenergy.2018.04.046
http://dx.doi.org/10.1016/j.isprsjprs.2021.04.022
http://dx.doi.org/10.20895/infotel.v13i2.642
http://dx.doi.org/10.3390/rs10010131
http://dx.doi.org/10.1049/hve2.12135
http://dx.doi.org/10.1016/j.matpr.2021.02.577
http://dx.doi.org/10.4236/jgis.2021.134022
http://dx.doi.org/10.3390/app11030892
http://dx.doi.org/10.1109/TPAMI.2016.2605097
http://dx.doi.org/10.3390/ijgi1020146
https://tyrasd.github.io/osm-node-density/#2/38.0/13.0/2021,places
http://dx.doi.org/10.1016/j.infsof.2021.106631
http://dx.doi.org/10.1002/ente.201500304
http://dx.doi.org/10.3991/ijoe.v15i15.11507
http://dx.doi.org/10.3390/ijgi9040197
http://dx.doi.org/10.1109/JSTARS.2019.2911525
http://dx.doi.org/10.1038/nature25181
http://dx.doi.org/10.4000/belgeo.30889
http://dx.doi.org/10.1016/j.apgeog.2017.07.012
http://dx.doi.org/10.1016/j.patcog.2021.108174
http://dx.doi.org/10.3390/rs12142274
http://dx.doi.org/10.3390/rs12152391
http://dx.doi.org/10.1038/s41598-022-24263-w
https://threejs.org/
https://github.com/samalexander/three-csg-ts


Sensors 2023, 23, 2444 18 of 18

38. Raifer, M. OSM to GeoJSON. Available online: https://github.com/tyrasd/osmtogeojson (accessed on 10 February 2023).
39. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7 Repository. Available online: https://github.com/WongKinYiu/yolov7

(accessed on 10 February 2023).
40. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection

Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976.
41. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
42. OpenStreetMap. Key:roof:shape. Available online: https://wiki.openstreetmap.org/wiki/Key:roof:shape (accessed on 10

February 2023).
43. Nacional, I.G. Centro de Descargas del CNIG. Available online: https://centrodedescargas.cnig.es/CentroDescargas/buscador.do

(accessed on 10 February 2023).
44. 4SmartMachines. Image Annotation Lab. Available online: https://ial.4smartmachines.com/ (accessed on 10 February 2023).
45. Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022.
46. Skansi, S. Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence; Springer: Cham, Switzerland, 2018.
47. Moraisferreira, D. Luxembourg LiDAR Coverage Map. Available online: https://davidmoraisferreira.github.io/lidar-coverage-

map-luxembourg/index.htmln (accessed on 10 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/tyrasd/osmtogeojson
https://github.com/WongKinYiu/yolov7
https://wiki.openstreetmap.org/wiki/Key:roof:shape
https://centrodedescargas.cnig.es/CentroDescargas/buscador.do
https://ial.4smartmachines.com/
https://davidmoraisferreira.github.io/lidar-coverage-map-luxembourg/index.htmln
https://davidmoraisferreira.github.io/lidar-coverage-map-luxembourg/index.htmln

	Introduction
	LiDAR
	Convolutional Neural Networks
	OpenStreetMap
	Hypothesis

	Materials and Methods
	Generating 3D Models of Buildings and Inferring Heights
	Using CNN to Add Inferred LiDAR Data to OSM
	LiDAR Data Pre-Processing and Image Set Construction
	Training the YOLOv7 CNN


	Results
	Conclusions
	References

