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Abstract: The sensitivity and selectivity profiles of gas sensors are always changed by sensor drifting,
sensor aging, and the surroundings (e.g., temperature and humidity changes), which lead to a serious
decline in gas recognition accuracy or even invalidation. To address this issue, the practical solution
is to retrain the network to maintain performance, leveraging its rapid, incremental online learning
capacity. In this paper, we develop a bio-inspired spiking neural network (SNN) to recognize nine
types of flammable and toxic gases, which supports few-shot class-incremental learning, and can be
retrained quickly with a new gas at a low accuracy cost. Compared with gas recognition approaches
such as support vector machine (SVM), k-nearest neighbor (KNN), principal component analysis
(PCA) +SVM, PCA+KNN, and artificial neural network (ANN), our network achieves the highest
accuracy of 98.75% in five-fold cross-validation for identifying nine types of gases, each with five
different concentrations. In particular, the proposed network has a 5.09% higher accuracy than that
of other gas recognition algorithms, which validates its robustness and effectiveness for real-life
fire scenarios.

Keywords: spiking neural network; few-shot learning; incremental learning; gas recognition

1. Introduction

With the development of artificial intelligence and sensing technology, the electronic
nose (E-nose) is becoming increasingly intelligent. As a bionic detection technique that
mimics the mammal’s olfaction system well [1], the E-nose has been developed for nearly
40 years [2] and is remarkably successful in many applications including food safety [3–5],
environment monitoring [6], agriculture [7], industry [8], public safety [9,10] and so on.

Generally, the E-nose is composed of two parts (shown in Figure 1): a gas sensing
system and an information processing system [11,12]. The “gas sensing system” obtains
gas data from the gas sensor array, and the “interface readout circuit” converts the sen-
sor signals into electrical signals. Finally, the “gas recognition circuit” outputs the final
recognition results with gas recognition algorithms. In the E-nose system, gas recognition
algorithms play an important role as they determine the decision-making result of the
system. As reported in [13], for E-nose systems it is vital to improve the gas qualitative
recognition accuracy; if the gas type is recognized incorrectly, gas concentration quanti-
tative estimation is meaningless. As said in [14], the reasonable improvement of the gas
recognition algorithms is an important support for the development of the E-nose system.
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Figure 1. E-nose system framework.

Many gas recognition algorithms have been proposed, including k-nearest neighbor
(KNN) [15,16], support vector machine (SVM) [17,18], decision tree (DT) [19], and naive
Bayesian model (NBM) [20]. However, these algorithms are able to identify less than five
kinds of gases as reported, which is not applicable for real-time multi-gas recognition tasks.
As we know, in fire various toxic gases will be generated before and after the explosion of
flammable and explosive gases, which requires identifying a wide range of gases, including
flammable, explosive, and toxic gases. Unfortunately, there are no distinct examples to
offer evidence that these common gas recognition algorithms are able to identify multiple
gases [21].

On the other hand, with the rapid development of the artificial neural network (ANN),
it is proved that an increasing number of ANNs including the back propagation neural
network (BPNN) [22], convolutional neural network (CNN) [23], and radial basis function
neural network (RBFNN) [24] perform well in gas recognition. In 2021, D. Ma et al. [25]
proposed a 15-layer CNN to recognize 10 different VOCs (volatile organic compounds) with
92% accuracy. Additionally, the spiking neural network (SNN) has also been developed
for gas recognition in recent years. In 2020, Imam Nabil and Cleland T.A [26] presented
an SNN with one-shot learning and identification of odorant samples. The two-layer
network with 72 channels reached 92% accuracy for 10 kinds of gas recognitions under 40%
noise. However, this work needs high-dimensional gas sensor data, which are difficult to
implement in the wild.

One fundamentally ill-posed problem that needs to urgently be addressed is sensor
drift, with which the sensitivity and selectivity profiles of gas sensors gradually change over
the time of use or disuse [27]. Fortunately, SNNs have a good anti-noise ability [28], and
are robust to the gas data easily affected by surroundings like temperature and humidity.
In addition, SNN-based biological plausible learning methods, like STDP, perform well
in online learning [26,27], which is meaningful for gas recognition. Moreover, in [27] the
SNN exhibits 94.93% classification accuracy after few-shot learning without catastrophic
forgetting, which is a challenge for most ANNs [29].

In this paper, we propose a novel bio-inspired SNN with few-shot class-incremental
learning for gas recognition from 24 sensors. The network is able to recognize over nine
types of gases commonly found in fires with five different concentrations. Meanwhile, it
achieves at least 98.75% classification accuracy with only five training samples per gas,
and retrains the network with new gases with little accuracy loss. Additionally, due to
the characteristics of SNNs, a lot of multiplication is avoided. Sparse synapse connections
further reduce the calculation cost.

The rest of the paper is organized as follows: In Section 2, we introduce the gas data
acquisition experiments. The proposed SNN is presented in Section 3, and the experimental
results are discussed in detail in Section 4. Section 5 concludes the paper.

2. Experiments

We collected gas data through an E-nose gas sampling system from Suzhou Huiwen
Nanotechnology Co., Ltd. (Suzhou, China) The system consists of 24 gas sensors, each
of which is sensitive to different gases. With the fire station’s recommendation, we chose
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nine types of flammable and toxic gases common in fires: formaldehyde, ethanol, propane,
methanol, methane, carbon monoxide, acetone, hydrogen sulfide, and ammonia, as illus-
trated in Table 1. Each type of gas was tested 25 times for five different concentrations,
thereby 225 samples were obtained of nine categories.

Table 1. Analyses and their concentration used in this work.

Analyses Concentration Levels (ppm) Flammability Toxicity

Formaldehyde 0.10, 0.15, 0.30, 0.50, 0.70 Low Moderate
Ethanol 50, 100, 200, 500, 1000 Low Low
Propane 200, 500, 800, 1000, 1500 Low Low

Methanol 10, 20, 50, 80, 100 Moderate Moderate
Methane 1000, 2000, 3000, 5000, 8000 Low High

Carbon monoxide 100, 150, 200, 250, 300 Moderate Moderate
Acetone 10, 20, 50, 80, 100 Low Low

Hydrogen sulfide 0.20, 0.50, 0.80, 1.00, 1.50 Low High
Ammonia 5.0, 10.0, 20.0, 50.0, 80.0 Moderate Moderate

The gas sample collecting process of the E-nose system has four steps: (1) preparation
step: the E-nose system works at a supply voltage of 3.3 V and the sampling frequency is set
to 1 Hz. In the test environment, the temperature is set in the range of 25.6~27.9 ◦C and the
relative humidity is between 40~50%. (2) baseline test step: it takes 15~30 min for the system
to fill with pure air until all 24 gas sensors reach their steady value Vsteady0, . . . , Vsteady24.
(3) target gas test step: Continuously injecting the target gas into the E-nose sample
system and waiting for about 5 min until all 24 sensors reach their steady response value
Vresponse0, . . . , Vresponse24. (4) baseline recovery step: injecting clean air to extract the target
gas from the system and waiting for about 10~15 min until all 24 gas sensors return to the
original baseline value Vsteady0, . . . , Vsteady24.

If we take 2000 ppm methane (CH4) as an example, its response curves of the 24 gas
sensors are represented in Figure 2, from which we can see that in the baseline test step
and the response curves Vsteady0, . . . , Vsteady24(t) are stable. When we continuously inject
the target gas (2000 ppm methane), the response voltages (Vresponse(t)) of the 24 sensors are
different, as shown in the middle of the response curve in Figure 2. Finally, when we inject
the clean air, the response voltages return to the baseline value. According to the study [30],
we use the differential method to process the sensor data and reduce the fixed external
interference δ caused by noise and drift as described in Formula (1), where i = 1, 2, . . . , 24.

Voutputx(t) =
(
Vresponsex(t) + δ

)
−
(

Vsteadyx(t) + δ
)
= Vresponsex(t)−Vsteadyx(t) (1)

Figure 2. The response curve of 24 gas sensors with 2000 ppm CH4. (a) Response curves of the first
twelve chemical gas sensors; (b) Response curves of the last twelve chemical gas sensors.
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3. Methods
3.1. Signal Preprocessing

As the gas data collected by the E-nose system are inevitably interfered by the envi-
ronment and sensor drift, to ensure reliable classification performance, the gas data are
pre-processed to alleviate the interference. We propose a novel preprocessing algorithm to
normalize the gas sensor data to match the proposed SNN.

First, we adopt the variant of Minimum-Maximum Normalization (MMN) for gas data
scaling to compensate for the heterogeneity of the 24 different gas sensors. The maximum
and minimum response of each sensor can be easily found from the gas dataset collected
by the E-nose system. Let G1, G2, . . . , Gn be the responses of n sensors to a given gas, and
M1, M2, . . . , Mn and S1, S2, . . . , Sn be the maximum and minimum response values of
the n sensors, respectively. Next, the set S :

{
ρ G1−S1

M1−S1
, ρ G2−S2

M2−S2
, . . . , ρ Gn−Sn

Mn−Sn

}
are deemed

as the sensor-scaled values, and we keep γ maximum elements among the set S where ρ
and γ are the scaling factor and cutoff factor, respectively. With this we aim to eliminate
the interference caused by the insensitivity of the sensors to a given gas. It is proven that
this step could improve the recognition performance significantly (Section 3.4).

3.2. Neuron Model

In order to model neuron dynamics, we adopt the integrate-and-fire (IF) model to
simulate the basic functions of biological neurons, which are described in Equation (2):

τ
dV(t)

dt
= (Vrest −V(t)) + τexcVin(t)− τinhVin(t) (2)

where V(t) is the membrane voltage, Vrest is the resting membrane voltage, Vin(t) is
the changing voltage caused by input spikes, τexc and τinh are conductance constants
of excitatory and inhibitory synapses, respectively, and τ is the timing constant. When
the spike Sexc from excitatory synapses arrives at the neuron model, τexcVin(t) causes
an increase in the membrane voltage V(t). On the contrary, when Sinh from inhibitory
synapses arrives, V(t) decreases. Once V(t) reaches a membrane threshold Vth, the neuron
model fires and V(t) is set to Vrest immediately. Then, the neuron model is in a refractory
period, in which it cannot receive any spikes from any neurons or itself spike.

3.3. Network Architecture

The proposed network consists of the two layers shown in Figure 3. The first layer
is the excitatory layer containing 24 neurons, where each is connected to one gas sensor.
The second layer is the inhibitory layer including 120 neurons, where every 5 neurons
correspond to one excitatory neuron. Each excitatory neuron and its corresponding five in-
hibitory neurons are regarded as a group called a glomerulus, hence there are 24 glomeruli
in this model. Each glomerulus aims to increase the spiking levels of its own excitatory neu-
ron inside and decrease the spiking levels of excitatory neurons from the other glomeruli.

We adopt a spike precedence coding method [31] for the excitatory neurons in the first
layer, which is timing-based. With the method, the stronger input of sensor, the earlier spike
phase. As described in [26], this spike timing-based coding offers considerable speed and
efficiency advantages. After signal preprocessing, the gas data are transformed into spikes
with spike precedence coding, and the number of spikes is proportional to the Voutputx(t) of
the gas sensor. The connection between the excitatory and inhibitory neurons in the same
glomerulus is called excitatory synapses, the connection probability is chosen to be 0.80
based on experiments in our work. The inhibitory neurons are randomly connected to the
other excitatory neurons in different glomeruli with a connection probability of 0.25, in
our case, and the connections are called inhibitory synapses. The excitatory and inhibitory
synapses are adjusted by the conductance constants τexc and τinh, respectively.
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Figure 3. Schematic model of the proposed spiking neural network.

The inhibitory synaptic connection causes lateral inhibition and competition among
the excitatory neurons. To ensure the lateral inhibition is neither too weak, which means
it does not have any influence on the weight update in the training stage, nor too strong,
which leads to an imbalance between the winner and loser neurons, we set a ratio ϕ = τexc

τinh
between the excitatory and inhibitory synapse to adjust the connection strength.

3.4. Learning Rule

Spike-Timing-Dependent Plasticity (STDP) is adopted as the learning rule for both
excitatory synapses and inhibitory synapses. STDP is a local learning method, where the
synaptic plasticity is sensitive to the spiking time of the pre- and post- neurons. We have
adopted the exponential variant STDP in (3) to update the weights of synapses through the
spike-timing difference between the postsynaptic inhibitory and the presynaptic excitatory
neurons. When the spike time t1 of the post-neuron is earlier than the spike time t2 of
the pre-neuron (t1 < t2), the weight w will increase by ∆w. Otherwise, the weight w will
decrease by ∆w. The variable ∆w is described below:

∆w =

 ηexce
t2−t1
εexc (t1 < t2)

−ηinhe
t2−t1
εinh (t2 < t1)

(3)

where ηexc and ηinh are learning rates of excitatory and inhibitory synapses, respectively,
and εexc and εinh are used to measure the balance between the excitation degree caused by
excitatory synapses and the inhibition degree caused by inhibitory synapses, respectively.

Here, we apply the STDP rules with lateral inhibition in the training stage between
excitatory and inhibitory layers. The weight of the excitatory neuron ENi in the excitatory
layer and the inhibitory neuron INj in the inhibitory layer are as follows:

WENi(t) = WENi(t) + ∑
j∈Ps(ENi)

∆w(j)
ENi

(t) ∗ spike(t)(j) (4)

WINj(t) = WINj(t) + ∆wINj
(j)(t) ∗ spike(t)(i) (5)
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where the set Ps(ENi) includes all inhibitory neurons INs that have inhibitory synaptic
connections to the excitatory neuron ENi. The spike(t)(j) is a spike function, whose value is
1 when the neuron INj spikes with timestamp t, otherwise its value is 0.

If the input stimulus is strong enough to enable the neuron ENi to spike, the mem-
brane voltage will rise for all INj neurons that have excitatory synaptic connections in the
same glomerulus (as shown in Figure 3). When the neuron INj spikes (as described in
Formula (5)), the weight of other excitatory neurons in different glomeruli in the form of
inhibitory synapses will be updated according to Formulas (3) and (4). After several epochs,
we find the excitatory neurons with a strong input stimulus become more active, and others
relatively inactive, which is similar to the winners-take-all mechanism. As a result, the
relatively active excitatory neurons are prominent so as to obtain good classification results.

3.5. Training and Output Classifier

To train the proposed network, we collected 9 types of gases. Each type of gas has
5 different concentrations, and each gas was tested five times with each concentration.
Therefore, we obtained 225 gas samples. Generally, the ratio between the training and test
sets is 0.8. As the proposed algorithm supports few-shot learning, we set the ratio to be 0.2.
Each sample for the training set is calculated by 100 iterations. For comparison, the spiking
times of the ENs in the excitatory layer are inputs to the classifier for sample classification
according to a Manhattan distance metric. We measure the classification performance by
computing the similarity between the output of the training sample (Vtrain) and test sample
(Vtest). The test samples are classified according to the identity of the training samples that
are most similar to them.

We adopt a Pearson correlation coefficient (PCC) to assess the degree of correlation
between the training and test output vectors, Vtrain and Vtest. For n gas sensors, Vtrain and
Vtest are n-dimensional vectors. We define the PCC as follows (6)–(11):

PCC =
Pxy

Px ∗ Py
(6)

Pxy =
1

n− 1

n

∑
i=1

(xi − x)(yi − y) (7)

Px =

√
1

n− 1

n

∑
i=1

(xi − x)2 (8)

Py =

√
1

n− 1

n

∑
i=1

(yi − y)2 (9)

x =
1
n

n

∑
i=1

xi (10)

y =
1
n

n

∑
i=1

yi (11)

where n is the number of gas sensors, and xi and yi are the ith elements of the vector Vtrain
and Vtest, respectively. The value of PCC varies from 0 to 1. For k n-dimensional trained
vectors, we will obtain k PCCs and k corresponding n-dimensional test vectors. We then
choose the biggest PCC and take their corresponding ID as the recognition result.

4. Discussion

We have trained the proposed SNN including 24 excitatory neurons with 45 samples
of the gas training dataset, including nine types of gases, and each gas has five different
concentrations. Five gas samples were randomly selected for learning. The rest of the
180 samples were used for testing. For each excitatory neuron, the gas data are scaled down
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and selected using data pre-processing as described in Section 3.1, and then are transformed
into continuous spikes using the spike precedence coding approach in Section 3.3. To verify
the data pre-processing method, we trained our SNN with the raw data for comparison.
The comparison results are shown in Figure 4, from which we find that with different
numbers of training samples of each gas, an improvement of more than 19.29% in the
overall accuracy rate is obtained when using the pre-processed data.

Figure 4. The average accuracy for all 9 types of gas with different numbers of training samples for
each gas.

To obtain an optimal network, we studied the impact of network sizes on gas test
accuracy based on the pre-processing method. First, we try to find the test accuracy with
different numbers of inhibitory neurons (INs) per excitatory neuron through experiments.
From Figure 5a, it is observed that as the number of INs increases, so does the test accuracy.
The highest accuracy of 96.25% is obtained with five INs per excitatory neuron (ENs) (i.e.,
the total neuron number is 24@120 neurons). We then needed to find the accuracies with
different numbers of synapses, including excitatory and inhibitory synapses of the network
with five INs per EN. We changed the connection probability between the excitatory and
the inhibitory layers, and the simulation results are illustrated in Figure 5b,c, from which
we found that when the connection probabilities of ENs-INs and INs-ENs are 0.8 and 0.25
respectively, the highest test accuracy of 98.75% is achieved.

Figure 5. (a) The overall accuracy for various numbers of INs (Inhibitory Neurons) for each EN
(Excitatory Neuron); (b) The overall accuracy for different connection probabilities for ENs-INs;
(c) The overall accuracy for the different connection probabilities for INs-ENs.
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Although most artificial neural networks suffer from catastrophic forgetting [32],
which means they have worse performance after they learn a new type of gas, our network
exhibits an online incremental learning ability, and only a small loss of accuracy is seen
for the trained gas after a new type of gas is learned. To verify the performance, we
built a SNN with 24 ENs, five INs for each EN, about 96 excitatory synapses with the
0.8 connection probability of ENs-INs, and about 690 inhibitory synapses with the 0.25
connection probability of INs-ENs.

We randomly selected a sample for each gas as the training set, and trained the
proposed network with one-shot learning gas one by one. After a new gas was learned,
we tested the accuracy for the new trained gas, and the results are shown as illustrated
in Figure 6. For contrast, we trained the proposed network with one-shot learning on the
same training set, and tested the accuracy of each trained gas. The results are shown in
Figure 7. By comparing Figures 6 and 7, we find that before training the fifth gas, there is
no accuracy loss for all the trained gases: methane, carbon monoxide, hydrogen sulfide,
and acetone. For the sixth to ninth trained gas, the accuracy losses are 1.9%, 0.7%, 4.9%,
and 1.1%, respectively. Although the recognition accuracies of methanol and ethanol are as
low as 33.33% and 34.61%, respectively, there is only a 0.95% overall test accuracy decline
after training the gases one by one, compared with training all nine gases with one-shot
learning. The optimistic experimental results show that even with one-shot learning, the
proposed network can effectively overcome the challenge of catastrophic forgetting which
leads to a significant drop in accuracy after learning a new gas.

Figure 6. The test accuracy after one-shot learning the gases one by one.

Figure 7. The overall test accuracy after one-shot learning gases with all 9 gases.

To further avoid the decrease in accuracy after learning a new gas, we increased the
training samples for each gas instead of using one-shot learning. We trained the network
with seven other few-shot learning schemes: two-shot, three-shot, and up to eight-shot.
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First, we needed to find out the relationship between the accuracy loss of all the trained
gases after training a new one, and the number of training samples for each gas. As
illustrated in Table 2, we found that there is no loss for few-shot learning schemes. This is
meaningful because no accuracy loss when learning a new gas proves that our network
is able to overcome the sensor drift and aging issues [27]. Once the response of the gas
sensors to a specific gas varies greatly, the network will be retrained to keep the accuracy
with an incremental learning ability to avoid catastrophic forgetting.

Table 2. The test accuracy of the proposed SNN with two different learning methods.

Overall Test Accuracy One-Shot Two-Shot Three-Shot Four-Shot Five-Shot Six-Shot Seven-Shot Eight-Shot

Learning all 9 gases (%) 74.34 ± 1.6 78.97 ± 1.3 93.99 ± 0.5 94.42 ± 0.3 98.75 ± 0.1 98.75 ± 0.1 98.75 ± 0.1 98.75 ± 0.1

Learning gases one by
one (%) 73.39 ± 2.1 78.97 ± 1.2 93.99 ± 0.9 94.42 ± 0.5 98.75 ± 0.1 98.75 ± 0.1 98.75 ± 0.1 98.75 ± 0.1

Accuracy loss (%) 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00

In addition, to improve the overall accuracy of the test set, we retrained the network
with different learning schemes. The simulation results are shown in Table 3, from which
we can see that with the increase in training samples, the accuracies for all gases rapidly
rise and then increase slowly, eventually reaching and maintaining a constant value after
training five samples for each gas. In other words, the five-shot learning scheme is the
best with the highest accuracy of 98.75%. Moreover, the scheme had a 100% accuracy
for methane, carbon monoxide, hydrogen sulfide, ammonia, formaldehyde, and propane.
It can be concluded that the proposed network does not underfit or overfit during the
testing process.

Table 3. The test accuracy for different gases based on the proposed SNN with different few-shot
learning methods.

Accuracy (%) One-Shot Two-Shot Three-Shot Four-Shot Five-Shot Six-Shot Seven-Shot Eight-Shot

Methane 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Carbon
monoxide 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Hydrogen
sulfide 96.42 ± 1.3 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Acetone 84.00 ± 3.2 76.00 ± 1.9 92.00 ± 1.6 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Methanol 33.33 ± 5.1 74.07 ± 1.5 92.59 ± 1.3 81.48 ± 1.2 96.29 ± 0.1 96.29 ± 0.1 96.29 ± 0.1 96.29 ± 0.1

Ammonia 59.25 ± 2.1 66.67 ± 2.1 92.59 ± 1.3 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Formaldehyde 87.50 ± 1.9 62.50 ± 1.5 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Propane 65.38 ± 2.2 84.62 ± 1.6 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Ethanol 34.61 ± 3.1 46.15 ± 2.8 69.23 ± 3.9 69.23 ± 3.3 92.31 ± 0.8 92.31 ± 0.8 92.31 ± 0.8 92.31 ± 0.8

Average 73.39 ± 2.1 78.97 ± 1.2 93.99 ± 0.9 94.42 ± 0.5 98.75 ± 0.1 98.75 ± 0.1 98.75 ± 0.1 98.75 ± 0.1

For further analysis, we collected the correct and incorrect samples and drew a nor-
malized confusion matrix for the accuracies of the nine types of gases in Figure 8; where
the horizontal coordinate represents the true class of the gas and the vertical coordinate
stands for the predicted type of the gas. As shown in Figure 6, the correct recognition is
achieved for most test samples, only a few samples are recognized as another gas: one
methanol sample is identified as carbon monoxide and two ethanol samples are recognized
as methanol.

Furthermore, we found that our network could identify different types of gases with
the same or similar concentrations, but when the test gases have different concentrations,
misidentification may happen. For example, the methanol sample at 10 ppm is recognized
as carbon monoxide at 300 ppm. Consequently, when some gas sensors are affected by
external surroundings, such as the temperature and humidity, small changes in the gas data
may lead to changes in concentration, which makes it possible of the network to identify
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the gas as another gas. The solution to these issues is to enlarge the sensor array. As more
sensors means more dimensional characteristics of the gas data, when some sensors are
disturbed or even down, other undisturbed dimensions of data characteristics will have a
positive effect on the recognition.

Figure 8. The confusion matrix for the accuracy of nine types of gases with the five-shot
learning scheme.

We compared the proposed SNN using five-shot learning with six other gas recognition
methods: SVM, KNN, DT, PCA + KNN, PCA + SVM, and ANN. We use the radial basis
function (RBF) as the kernel function of the SVM model, set K = 9 for the KNN model, and
designed the single binary tree with 24 depths according to the differences in response
values for each gas sensor, for each gas. The PCA approach is adopted for feature extraction,
which reduces the dimensionality of the data by half and then combines it with KNN and
SVM classifiers, respectively. Finally, we developed a three-layer artificial neural network
using backpropagation with 24 input neurons, 12 hidden neurons, and nine output neurons.

We randomly selected five samples of each gas as a group. Then we adopted the
five-fold cross-validation method, that is, one of five groups was taken as the training set in
turn, and the others were used as a test set. The accuracy simulation results are shown in
Figure 9, from which we can see that compared with SVM, KNN, and DT, better recognition
results are obtained with PCA + SVM, PCA + KNN, and ANN. However, PCA + SVM and
PCA + KNN performed poorly in the recognition of methane with 76% and 78% accuracy
rates, respectively, methanol with 67% and 62%, respectively, formaldehyde with 66%
and 73%, respectively, and ethanol with 73% and 73%, respectively, and the ANN model
recognized ethanol with an accuracy of 83%. However, as shown in Figure 8, the proposed
SNN had a 92% accuracy rate in the recognition of ethanol, which is 9% higher than that of
ANN. Furthermore, our work had a 100% accuracy rate in the gas recognition of methane,
carbon monoxide, hydrogen sulfide, acetone, ammonia, formaldehyde, and propane. Other
methods such as PCA+SVM could only identify less than three gases with a 100% accuracy.
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Figure 9. The confusion matrix for the accuracies of (a) SVM; (b) KNN; (c) DT; (d) PCA+SVM;
(e) PCA + KNN; (f) ANN.

The overall accuracy for comparison between the proposed network and other meth-
ods is shown in Figure 10, from which we found that the proposed network has the highest
accuracy of 98.75%, better than the SVM model with a 56.33% accuracy, the KNN model
with 62.22%, the DT with 51.00%, the PCA + SVM with 83.11%, the PCA + KNN with
84.55%, and the ANN with 93.66%. Compared with the common (SVM, KNN, DT, PCA,
and ANN) gas recognition algorithms, our work achieved an accuracy improvement of
up to 5.09%. The proposed network had a better classification performance on cross-
concentration gas recognition with the gas dataset for nine types of gases. Furthermore, the
proposed network with the five-shot learning scheme had no accuracy loss when learning
a new gas, thereby presenting incremental online learning ability.

Figure 10. The overall accuracy of all the gas recognition methods for comparison.
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To better present and validate the performance of the model, we built a deep learning
ANN model using eight layers and a CNN model using 10 layers, by experimentally tuning
the network size and parameters. The experimental results show that the deep learning
models cannot obtain satisfactory accuracy results (85.7% with the 8-layer ANN and 89.3%
with the 10-layer CNN). The reason many be that in the case of limited gas sensors (24 gas
sensor in our work), the low-dimensional input data make the synaptic weights undergo
gradient vanishing or gradient exploding during the weight update iterations, making the
deep network over fit or under fit, resulting in a low recognition accuracy.

To further verify the performance of the proposed SNN, we tested our algorithm on the
publicly available UCSD gas sensor drift dataset [32,33], which contains 13,910 gas samples
from an array of 16 chemo sensors (eight features per sensor), exposed to six types of gas
(ammonia, acetaldehyde, acetone, ethylene, ethanol, and toluene), and distributed across
10 batches that were sampled over three years to emphasize the challenge of sensor drift
over time. For every batch of the UCSD gas sensor drift dataset, we randomly split the gas
samples into a training set and a test set in a 4:1 ratio. The test accuracy results are shown in
Table 4, from which we find the proposed network has the best average accuracy of 99.26%
on the UCSD gas sensor drift dataset, which has a 4.33% average accuracy improvement to
that of [32]. The optimistic results reveal that the proposed network has a competitive gas
recognition performance.

Table 4. The test accuracy comparisons of the publicly available UCSD gas sensor drift dataset.

Accuracy (%) Batch1 Batch2 Batch3 Batch4 Batch5 Batch6 Batch7 Batch8 Batch9 Batch10 Average

SNN’2019 [32] 99.39 92.44 94.95 97.73 98.22 94.55 89.74 92.30 99.48 90.46 94.93

MLP’2021 [34] 95.63 95.42 94.53 99.56 99.20 90.27 89.96 96.50 98.11 80.81 94.00

This work 98.88 ± 0.3 99.80 ± 0.0 99.89 ± 0.0 100 ± 0.0 100 ± 0.0 98.91 ± 0.1 99.38 ± 0.1 98.31 ± 0.0 98.94 ± 0.0 98.47 ± 0.0 99.26 ± 0.0

5. Conclusions

In this work, a bio-inspired spiking neural network inspired by biological olfaction is
proposed to recognize various types of flammable and toxic gases. We adopt a variety of
min-max normalizations for data preprocessing method for feature extraction and inter-
ference resistance. Based on STDP, we innovatively designed an SNN with the inhibitory
mechanism to further highlight the spike-phase relationship of gas data in different chan-
nels to achieve the winner-takes-all effect. The comparison with other algorithms showed
that our network achieved the highest accuracy of 98.75% in a five-fold cross-validation
for the identification of nine gases, each with five different concentrations. In addition,
our network supports incremental learning, which is helpful to address sensor drifting
and aging. The experimental results show that there is no accuracy loss for all trained
gases after training a new one. To summarize, the proposed network with few-shot class-
incremental learning is a feasible approach for fast detection and noise resistance, which is
meaningful in real-life fire scenarios. In the future, we will apply the proposed network
to more applications as well as E-noses to access its versatility further. We envisage that
this can provide a universal gas recognition method. Our objective is also to improve the
structure of the neural network by, for example, adding additional classifiers, which will
enable the network to perform better recognition.
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