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Abstract: Giving emotional intelligence to machines can facilitate the early detection and prediction
of mental diseases and symptoms. Electroencephalography (EEG)-based emotion recognition is
widely applied because it measures electrical correlates directly from the brain rather than indirect
measurement of other physiological responses initiated by the brain. Therefore, we used non-invasive
and portable EEG sensors to develop a real-time emotion classification pipeline. The pipeline trains
different binary classifiers for Valence and Arousal dimensions from an incoming EEG data stream
achieving a 23.9% (Arousal) and 25.8% (Valence) higher F1-Score on the state-of-art AMIGOS dataset
than previous work. Afterward, the pipeline was applied to the curated dataset from 15 participants
using two consumer-grade EEG devices while watching 16 short emotional videos in a controlled
environment. Mean F1-Scores of 87% (Arousal) and 82% (Valence) were achieved for an immediate
label setting. Additionally, the pipeline proved to be fast enough to achieve predictions in real-time
in a live scenario with delayed labels while continuously being updated. The significant discrepancy
from the readily available labels on the classification scores leads to future work to include more data.
Thereafter, the pipeline is ready to be used for real-time applications of emotion classification.

Keywords: online learning; real-time; emotion classification; AMIGOS dataset; wearable EEG (muse
and neurosity crown); psychopy experiments

1. Introduction

Emotions play a crucial role in human communication and cognition, which makes
comprehending them significant to understanding human behavior [1]. The field of affec-
tive computing strives to give emotional intelligence to machines that can recognize and
interpret human affects [1,2], offering exciting possibilities for education, entertainment,
and healthcare. Early detection and prediction of (mental) diseases or their symptoms can
be facilitated, since specific emotional and affective states are often indicators thereof [3].
Moreover, long-term stress is one of today’s significant factors causing health problems,
including high blood pressure, cardiac diseases, and anxiety [4]. Notably, some patients
with epilepsy (PWE) report premonitory symptoms or auras as specific affective states,
stress, or mood changes, enabling them to predict an oncoming seizure [5]. This associa-
tion of premonitory symptoms and seizure counts has been analyzed and validated from
patient-reported diaries [6], and non-pharmacological interventions were proven to reduce
the seizure rate [7]. However, many PWE cannot consistently identify their prodromal
symptoms, and many do not perceive prodromes [8], emphasizing the necessity of objective
prediction of epileptic seizures. In a previous work, the authors proposed developing a
system to predict seizures by continuously monitoring their affective states [9]. Therefore,
identifying pre-ictal states by measuring and predicting affective states in real-time through
neurophysiological data could aid in finding pre-emptive therapies for PWE. That would
be incredibly beneficial, especially to people with drug-resistant epilepsy, and would im-
prove their quality of life [3,8]. Consequently, emotion detection in this paper is motivated
by the idea that allowing computers to perceive and understand human emotions could
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improve human–computer interactions (HCI) and enhance their ability to make decisions
by adapting their reactions accordingly.

Since emotional reactions are seemingly subjective experiences, neurophysiological
biomarkers, such as heart rate, respiration, or brain activity [10,11], are inevitable. Ad-
ditionally, for continuous monitoring of affective states and thus detecting or predicting
stress-related events reliably, low-cost, consumer-grade devices rather than expensive and
immobile hospital equipment would be more meaningful [12]. This is an important area of
interest in cognitive science and affective computing, with use cases varying from design-
ing brain–computer interfaces [13,14] to improving healthcare for patients suffering from
neurological disorders [15,16]. Among these, electroencephalography (EEG) has proven to
be an accurate and reliable modality without needing external annotation [17,18]. Since
clinical EEG is the gold standard for epileptic seizure detection [19], utilizing EEG-based
emotion classification in detection systems could potentially predict seizures by knowing
the affective states. Moreover, with recent advancements in wearable technology, consumer-
grade EEG devices have become more accessible and reliable, opening possibilities for
countless real-life applications. Wearable EEG devices such as the Emotiv EPOC headset
or the Muse S headband have become quite popular tools in emotion recognition [20–22].
The Muse S headband has also been used for event-related potential (ERP) research [12]
and for the challenge of affect recognition in particular. More specifically, Muse S has
already been used in experimental setups to obtain EEG data from which the mental state
(relaxed/concentrated/neutral) [13] and the emotional state (using the valence-arousal
space) [23] could be reliably inferred through the use of a properly trained classifier.

1.1. Problem Statement

A challenging but essential step to identifying stress-related events or improving
HCI in real-life settings is to recognize changes in peoples’ affect by leveraging live data.
The EEG-based emotion classifications mentioned in the literature have nearly exclusively
been employed in traditional machine learning strategies, i.e., offline classifiers, and are
often combined with complex data pre-processing techniques on static datasets [24,25].
Such cases expect the whole dataset, including labels, to be present for model training,
unlike real application scenarios, where the data source is primarily a live data stream
and classification results are required in real-time. Moreover, a live data stream from
a non-stationary EEG data source presents challenges associated with, for example, the
online arrival of data, the velocity of data, the data volume over time, and the dynamic
nature of data [26]. The training and classification time for the offline models and the static
behavior dealing with upcoming data streams makes real-time classification of affective
states infeasible. Therefore, for live emotion classification, employing online learning
by updating a pre-trained model continuously on new data is inevitable. Additionally,
to ensure the usability of such a system in daily life, it is necessary to classify the data
from a portable EEG device. Furthermore, the existing methodologies in the literature
have primarily been developed and evaluated on curated EEG datasets, which need more
reproducibility to apply to live data from real applications.

Regarding the mentioned problems, the primary goal of this paper is to answer the
research question of how reliably an online classifier classifies emotion from state-of-the-art
AMIGOS data [22] and how accurately the classifier can perform affective state prediction
while curating EEG data from wearable EEG devices in live settings.

1.2. Key Contributions

Therefore, firstly, the key contribution of this paper is the establishment of a lightweight
emotion classification pipeline that can classify a person’s affective state based on an
incoming EEG data stream in real-time, efficiently enough to be used in real applications,
e.g., for seizure prediction. The developed pipeline leverages online learning to train
subject-specific models on data streams by implementing binary classifiers for the affect
dimensions: Valence and Arousal. The pipeline is validated by streaming an existing dataset
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of established quality, AMIGOS, with better classification performance than state-of-the-
art contributions.

Secondly, an experimental framework is developed, similar to the AMIGOS dataset,
which can collect neurophysiological data from a wide range of commercially available EEG
devices and show live prediction results of the subjects’ affective states even when labels
arrive with a delay. Data from 15 participants were captured by using two consumer-grade
EEG devices.

Thirdly, the most novel contribution of this paper is to validate the pipeline on the
curated dataset by wearable EEG devices in the first experiment with consistent classifi-
cation performance on the AMIGOS dataset. Following this, live emotion prediction was
performed successfully on an incoming data stream in the second experiment with delayed
incoming labels.

The curated data from the experiments and metadata are accessible to the designated
researchers as per the participants’ consent. Therefore, the dataset is available upon
request for scientific use via a contact form on Zenodo: https://doi.org/10.5281/zenodo.
7398263 (accessed on 18 February 2023). The Python code for loading the dataset and
implementations of the developed pipeline have been made available on GitHub: https://
github.com/HPI-CH/EEGEMO (accessed on 18 February 2023). The next section will
explain the related works, material, and methods utilized within this paper following the
results and discussion sections.

1.3. Related Work

Recent review papers from Dadebayev et al. [24] and Suhaimi et al. [25] mention
several articles on EEG-based emotion recognition using various affect dimension scales,
EEG devices, machine learning algorithms, and performance matrices. However, only a few
research works have mentioned real-time emotion classification. Müller et al. [27] proposed
an online linear discriminate analysis (LDA) classifier by utilizing spectral features in
the EEG data obtained from a brain–computer interface (BCI) device. However, while
demonstrating the application of real-time arousal monitoring, the researchers used data
from one participant to train an offline LDA classifier. Moreover, the data acquisition took
place utilizing a 128-channel BCI, and applying the methodology to the data from wearable
EEG devices was mentioned in their future work, which already falls into the scope of
this paper.

Liu et al. [28,29] showed promising results on emotion recognition using the fractal
dimension (FD) model on a 14-channel EEG headset. The applied methodology in real-
time application was reflected as computer avatars demonstrating a person’s emotion
based on live data. The fractal algorithm required 1024 samples at a time, obtained by the
device’s buffer function. The buffer function may not be useful for general applications
and EEG devices. A follow-up work was proposed by Lan et al. [30,31], analyzing the
stable features of the previously mentioned application. Hou et al. [32] further developed a
meter to visualize the intensity of the felt emotion. However, the mentioned live emotion
classification was based on a static model and was not updated during prediction. We
propose a general emotion classification pipeline that deals with a selection of consumer-
grade EEG devices and general applications, which can be validated on the published
dataset from the researchers mentioned above [33].

Additionally, Javaid et al. [34] reported a 25.44% higher accuracy while switching
from eight to three wet electrodes of an openBCI Kit while quantifying four basic emotions
using an FD threshold-based classifier similar to [28]. However, the authors also mentioned
incorporating an Emotiv EPOC device in a second session of their proposed method, but
the follow-up research still needs to be reported.

Sarno et al. [35] used power features in the K-nearest neighbor (KNN) classifier to
train 14-channel EEG data offline and predict binary and tertiary emotion in an online
stage. An evaluation only of accuracy was reported, which is compatible with our re-
sults, given that the F1-Score reported in our paper is relatively high. Moreover, our
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paper uses fewer electrodes and multiple algorithms and develops and publishes the data
collection framework.

Very recently, Bajada et al. [36] built an emotion classification pipeline incorporating
discrete wavelet transforms (DWT) features into a 3D convolutional neural network (3D
CNN) and support vector machine (SVM) classifiers from pre-recorded and pre-trained data
from the state-of-the-art DEAP [37] dataset. They proposed using the proposed algorithm
for real-time monitoring because it maintains a high accuracy of up to 92%, reducing from
32 channels to 5 channels. Li et al. [38] addressed the challenge of when a model can see
the data only once by leveraging cross-subject and cross-session data by implementing the
Fast Online Instance Transfer (FOIT) algorithm. They validated their methodology on two
state-of-the-art datasets: SEED [39] and SEED-IV [40]. However, these mentioned studies
need to apply live incoming data streams similar to our approach, which pose challenges
such as velocity, veracity, and concept drift. To the best of our knowledge, only Nandi
et al. [41] have employed online learning to classify emotions from an EEG data stream
from the DEAP dataset and proposed an application scenario in e-learning, but have yet to
report undertaking any such live experiments. They compared the performance of different
state-of-the-art online classifiers, such as adaptive random forest (ARF) [26] and Hoeffding
adaptive tree (HAT) [42], against their own real-time emotion classification system (RECS)
on the DEAP dataset.

Indeed, more research is needed on using online machine learning for emotion recognition.
Moreover, multi-modal labeled data for the classification of affective states have

been made freely available through annotated affective databases, such as DEAP [37],
DREAMER [43], ASCERTAIN [44], SAFE [33], and AMIGOS [22], which play a signifi-
cant role in further enhancing the research of this field. They include diverse data from
experimental setups using differing emotional stimuli such as music, videos, pictures, or
cognitive load tasks in an isolated or social setting. Such databases enable the development
and improvement of frameworks and model architectures with existing data of ensured
quality. However, none of these published datasets include the data collection framework
to be reused in curating the data from wearable EEG devices in live settings.

2. Materials and Methods
2.1. Dataset I: AMIGOS Dataset

The developed emotion classification pipeline in this paper was evaluated on the
state-of-art dataset for affect, personality, and mood research on individuals and groups
(AMIGOS) published by Miranda-Correa et al. [22], which is further referred to as Dataset I.
Upon following the data receiving protocol, all data from the AMIGOS dataset that are used
in this work stem from short video individual experiments where 40 healthy participants
(13 female) aged between 21 and 40 (mean age 28.3) were asked to watch 16 videos
from defined movie clips. The EEG data were recorded using the Emotiv EPOC headset
(https://www.emotiv.com/epoc-x/ (accessed on 20 February 2023)) with a sampling
frequency of 128 Hz and a 14 bit resolution. This device records EEG data from 14 channels
(AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4) of the brain according to the
10–20 system as depicted in Figure 1a.

Additionally, Dataset I reports the Self-Assessment Manikin [45] with a scale from
1 to 9 as recording participants’ affect ratings of the dimensions valence, arousal, and
dominance. The participants were also asked to rate their familiarity with the videos and
whether they liked them, and had to select at least one option from a list of basic emotions
felt after watching each video. However, only the obtained valence and arousal ratings
were considered the ground truth for this paper. Furthermore, the participants answered
the Positive and Negative Affect Schedules (PANAS) [46] questionnaire at the beginning
and end of the experiment; only one overall calculated PANAS score is reported. Pre-
processed data files were used for classification, where the EEG data were down-sampled
to 128 Hz, averaged to a common reference, and a band pass filter was applied from
4.0–45.0 Hz as described in the description on the website (http://www.eecs.qmul.ac.uk/

https://www.emotiv.com/epoc-x/
http://www.eecs.qmul.ac.uk/mmv/datasets/amigos/readme.html
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mmv/datasets/amigos/readme.html (accessed on 20 February 2023)). The files containing
electrocardiogram (ECG) and galvanic skin response (GSR) data were removed for the
analysis of this paper.

(a) Emotiv EPOC (b) Muse S Headband (c) Neurosity Crown
Figure 1. Different electrode positions according to the international 10–20 system of the EEG devices
used in Dataset I (a) and in Dataset II and III (b,c). Sensor locations are marked in blue, references are
in orange.

To validate the established pipeline in daily life and live setup, two different datasets
with individual experimental protocols, named Dataset II and Dataset III, were curated with
the description of participants, data acquisition, and experimental protocols mentioned in
the following sections.

2.2. Participants

For Dataset II, eleven participants were recruited (six females and five males) between
the ages of 25 and 42 (µ = 29.27, σ = 5.41 years). Data from two participants had to be
discarded for further analysis. Dataset III was made with data from four participants (one
female and three males) between the ages of 25 and 34 (µ = 28.5, σ = 3.5 years). People
who were pregnant, older than 65 years, and had taken part in one of the experiments were
excluded from participation. All participants had normal or corrected vision and reported
no history of neurological or mental illnesses or head injuries.

2.3. Data Acquisition

Hardware: During the experiments, two consumer-grade devices, Muse S Headband Gen 1
(https://choosemuse.com/compare/ (accessed on 20 February 2023)) and Neurosity Crown
(https://neurosity.co/crown (accessed on 20 February 2023)), were used to collect the EEG
data from the participants, as depicted in Figure 2. Both devices operated with a sampling
rate of 256 Hz and the EEG data were collected with four and eight channels, respectively.

(a) Muse S Headband (b) Neurosity Crown
Figure 2. Two consumer-grade EEG devices with integrated electrodes used in the experiments.

According to the international10–20 system [47], the channels on the Muse S Headband
correspond to AF7, AF8, TP9, and TP10 (see Figure 1b), with a reference electrode at
Fpz [12]. The channel locations of Neurosity Crown are C3, C4, CP3, CP4, F5, F6, PO3,
and PO4, with reference sensors located at T7 and T8, as shown in Figure 1c. Using the
Mind Monitor App (https://mind-monitor.com/ (accessed on 20 February 2023)), the
raw EEG data were streamed from Muse to a phone via Bluetooth. The app sends the

http://www.eecs.qmul.ac.uk/mmv/datasets/amigos/readme.html
http://www.eecs.qmul.ac.uk/mmv/datasets/amigos/readme.html
https://choosemuse.com/compare/
https://neurosity.co/crown
https://mind-monitor.com/
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data to a laptop via the open sound control (OSC) protocol and the python-osc library
(https://pypi.org/project/python-osc/ (accessed on 20 February 2023)) on the receiving
end. As the incoming data tuples from the Muse Monitor App did not include timestamps,
they were added by the pipeline upon arrival of each sample. Similarly, the Crown uses
the python-osc library to stream the raw EEG data to a laptop without enabling any pre-
processing settings. In contrast to the Muse Headband, the Crown includes a timestamp
when sending data.
Software: In this paper, the experiment was implemented using the software PsychoPy
(v 2021.2.3) [48] in a way that guided the participants through instructions, questionnaires,
and stimuli. The participants were allowed to go at their own pace by clicking on the “Next”
(“Weiter” in German) button, as shown in the screenshots of PsychoPy in Figure 3.

2.4. Stimuli Selection

Inducing specific emotional reactions is a challenge, even in a fully controlled experi-
mental setting. Several datasets have tried to solve this issue with different modalities such
as pictures [49–51], music [52,53], music videos [37,54,55], or combinations of them [56].
In this work, videos depicting short movie scenes were used as stimuli, based on the
experimental setup of Dataset I [22]. Therefore, 16 short clips (51–150 s long, µ = 86.7 s,
σ = 27.8 s) depicting scenes from 15 different movies were used for emotion elicitation.
Twelve of these videos stem from the DECAF dataset [54], and four movie scenes were
taken from the MAHNOB-HCI [55] dataset. According to Miranda-Correa et al., these
specific clips were chosen because they “lay further to the origin of the scale” than all
other tested videos. This means they represent the most extreme ratings in their respective
category according to the labels provided by 72 volunteers. The labels were provided in the
two-dimensional plane spanned by the two dimensions Valence and Arousal according to
Russell’s circumplex model of affect [57]. Valence, the dimension describing one’s level of
pleasure, ranges from sad (unpleasant and stressed) to happy (pleasant and content), and
Arousal ranges from sleepy (bored and inactive) to excited (alert and active). Therefore,
the four category labels are High Arousal, Low Valence (HALV); High Arousal, High
Valence (HAHV); Low Arousal, High Valence (LAHV); and Low Arousal, Low Valence
(LALV). The selected movie scenes described in Table 1 are balanced between each of the
valence–arousal space quadrants (HVHA, HVLA, LVHA, and LVLA). The video ID 19
corresponded to a scene from the movie Gandhi, which differs from the AMIGOS dataset
but falls into the same LALV quadrant.

Table 1. The source movies of the videos used are listed per quadrant in the valence–arousal space.
Video IDs are stated in parentheses, sources marked with a † were taken from the MAHNOB-
HCI dataset [55]; all the others stem from DECAF [54]. In the category column, H, L, A, and
V stand for high, low, arousal, and valence, respectively. This table has been adapted from
Miranda-Correa et al. [22].

Category Source Movie

HAHV Airplane (4), When Harry Met Sally (5), Hot Shots (9), Love Actually (80)†

LAHV August Rush (10), Love Actually (13), House of Flying Daggers (18),
Mr Beans’ Holiday (58)†

LALV Gandhi (19), My Girl (20), My Bodyguard (23), The Thin Red Line (138)†

HALV Silent Hill (30)†, Prestige (31), Pink Flamingos (34), Black Swan (36)

2.5. Behavioral Data

PANAS: During the experiments, participants were asked to assess their baseline levels
of affect in the PANAS scale. As depicted in Figure 3a, in total 20 questions (10 questions
from each of the Positive Affect (PA) and Negative Affect (NA) dimensions) were answered
using a 5-point Likert scale with the options ranging from “very slightly or not at all” (1) to
“extremely” (5). To see if the participants’ moods generally changed over the course of the

https://pypi.org/project/python-osc/
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experiments, they were asked to answer the PANAS once at the beginning and once again
at the end. For the German version of the PANAS questionnaire, the translation of Breyer
and Bluemke [58] was used.
Affect Self-Assessment: The Affective Slider (AS) [59] was used in the experiment to
capture participants’ emotional self-assessment after presenting each stimulus, as depicted
in the screenshot in Figure 3b (https://github.com/albertobeta/AffectiveSlider (accessed
on 20 February 2023)). The AS is a digital self-reporting tool composed of two slider
controls for the quick assessment of pleasure and arousal. The two sliders show emoticons
at their ends to represent the extreme points of their respective scales, i.e., unhappy/happy
for pleasure (valence) and sleepy/wide awake for arousal. For the experiments, AS was
designed in a continuous normalized scale with a step size of 0.01 (i.e., a resolution of 100),
and the order of the two sliders was randomized each time.

(a) PANAS questionnaire. (b) Affective slider.
Figure 3. Screenshots from the PsychoPy [48] setup of self-assessment questions. (a) Partial PANAS
questionnaire with five different levels represented by clickable radio buttons (in red) with the levels’
explanation on top, (b) AS for valence displayed on top and the slider for arousal on the bottom.

Familiarity: The participants were asked to indicate their familiarity with each video on a
discrete 5-point-scale ranging from “Have never seen this video before” (1) to “Know the
video very well” (5). The PsychoPy slide with this question was always shown after the AS.

2.6. Dataset II

Briefing Session: In the beginning, each participant went through a pre-experimental brief-
ing where the experimenter explained the study procedure and informed the participant
of the experiment’s duration, i.e., two parts of approximately 20 min each with a small
intermediate break. The participant then received and read the data information sheet,
filled out the personal information sheet, and signed the consent to participate. Personal
information included age, nationality, biological sex, handedness (left- or right-handed),
education level, and neurological- or mental health-related problems. The documents and
the study platform (i.e., PsychoPy) were provided according to the participant’s choice
of study language between English and German. Afterward, the experimenter explained
the three scales mentioned in and allowed the participant to accustom to the PsychoPy
platform. This ensured the understanding of the different terms and scales used for the
experiment without having to interrupt the experiment afterwards. The participant could
refrain from participating at any moment during the experiment.
Data Collection: After the briefing, the experimenter put either the Muse headband or
the Crown on the participant by a random choice. Putting headphones over the device,
the participant was asked to refrain from strong movements, especially of the head. The
experimenter then checked the incoming EEG data and let the participant begin the ex-
periment. After greeting the participant with a welcome screen, a relaxation video was
shown to the participant (https://www.youtube.com/watch?v=S6jCd2hSVKA (accessed
on 20 February 2023)) for 3 min. They answered the PANAS questionnaire to rate their
current mood and closed eyes for half a minute to get a baseline measure of EEG data.
Afterwards, they were asked to initially rate the valence and arousal state with the AS.

https://github.com/albertobeta/AffectiveSlider
https://www.youtube.com/watch?v=S6jCd2hSVKA
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Following this, an instruction about watching eight short videos was provided. Each of
those was preceded by a video counter and followed by two questionnaires: the AS and the
familiarity. The order of the videos and the order of the two sliders of AS were randomized
over both parts of the experiments, fulfilling the condition that the labels of the videos are
balanced. The first part of the experiment ended after watching eight videos and answering
the corresponding questionnaire. The participant was allowed a short break after taking
the EEG device and the headphones off.

In the second part of the experiment, the experimenter put the device that had not been
used in the first part (Muse or Crown, respectively) and the headphones on the participant.
Subsequently, the experimenter started the second part of the experiment, again after
ensuring that the data collection was running smoothly. The participant followed the exact
same protocol: watching the relaxation video, closing their eyes, and watching eight more
movie scenes with the AS and familiarity questions in between. Lastly, they were asked
for a final mood self-assessment via a second PANAS questionnaire to capture differences
before and after the experiment. The experimental setup for curating Dataset II is depicted
in Figure 4.

In this experiment, one PC (with a 2.4 to 3.0 GHz Dual Intel Core i5-6300U and
12 GB RAM) was used to present the stimuli and store EEG data to be used only after the
experiment session.

Relaxation
video

Neurosity
Crown

3 min

PANAS
Baseline eye
closing

30 s

Video clips
AS slider Familiarity

8 videos two per category

~20 min

10 min Break

Muse
PANAS

Baseline eye
closing

30 s

Video clips
AS slider

~20 min

8 videos two per category

FamiliarityRelaxation
video

3 min

Figure 4. Experimental setup for curating Dataset II. The participants watched a relaxation video
at the beginning and eight videos, two of each dimension category wearing one of the two devices.
Between the eight videos, they answered AS slider and familiarity with the video.

2.7. Dataset III: Live Training and Classification

The experimental setup for curating Dataset III is depicted in Figure 5. The participants
received the same briefing as mentioned in Section 2.6. For both parts of the experiment,
the same device was used. The protocol for the stimuli presentation in the first part (before
the break) was the same as that as for the experiment with Dataset II, i.e., a relaxation
video, PANAS, eye closing, eight video stimuli, and the AS and familiarity questions. One
additional instruction after each AS was shown, which includes the original label of the
videos. This additional information was given to the participant since the arousal ratings
given in Dataset II were very imbalanced. During the break, the recorded EEG data were
pre-processed and used to train an initial model in an online way. This initial model training
was necessary because the data needed to be shuffled, as explained in Section 3.2. The initial
model was continuously trained and updated during the second part of the experiment
where a live prediction of affect is performed. The second part of the experiment was
conducted similar to the first part: a relaxation video, eye closing, eight video stimuli, and
the AS and familiarity questions. However, one additional prediction was performed and
was available to the experimenter before the AS label from the participant. Furthermore,
the AS label was used to update the model training and the prediction was running in
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parallel. Figure 6 displays the initialized model in the bottom gray rectangle that performed
live emotion classification on the incoming EEG data stream. However, the prediction
results were only displayed to the experimenter to avoid additional bias. Since the objective
of this experiment was live online learning and classification, the data were coming in an
online stream; however, the data were also stored for later evaluation and reproducibility.

Relaxation
video

N
eu

ro
si

ty
C

ro
w

n 3 min

PANAS
Baseline eye
closing

30 s

AS
sliderVideo clips

Familiarity

8 videos two per category

~20 min

10 min break
Pre-processing 
Model training

M
us

e

PANAS
Baseline eye
closing

30 s

AS
sliderVideo clips

~20 min

8 videos two per category

Familiarity

or

Same device
from session 1

AS
label O

ffl
in

e 
se

ss
io

n

Relaxation
video

3 min

AS
label Li

ve
 s

es
si

on

Live prediction available
 to the experimenter

Delayed
labels 

Figure 5. Experimental setup for curating Dataset III. In the first session, the participants watched a
relaxation video at the beginning and eight videos, two of each dimension category wearing one of
the two devices. Between the eight videos, they answered AS slider, familiarity with the video, and
had seen the actual AS label. In the second session, they watched the same set of videos while the
prediction was available to the experimenter before the delayed label arrived.
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Figure 6. Overview of pipeline steps for affect classification. The top gray rectangle shows the
pipeline steps employed in an immediate label setting with prerecorded data. For each extracted
feature vector the model (1) first classifies its label before (2) being updated with the true label for
that sample. In the live setting, the model is not updated after every prediction, as the true label of a
video only becomes available after the stimulus has ended. The timestamp of the video is matched to
the samples’ timestamps to find all samples that fall into the corresponding time frame and update
the model with their true labels (shown in dotted lines).
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In this experiment, the same PC from the previous experiment was again used to
present the stimuli. Additionally, the AS label was sent to a second machine (MacBook Pro
(2019) with a 2.8 GHz Quad-Core (Intel Core i7) and 16 GB). It also received EEG data, and
performed data pre-processing, online model training, and live emotion classification.

3. Emotion Classification Pipeline
3.1. Data Pre-Processing

In this paper, the already pre-processed data from Dataset I were used, whereas
Dataset II and Dataset III went through significant pre-processing to remove artifacts from
the data [60,61]. Figure 6 depicts the pre-processing steps applied to both the immediate
label setting (top) and in a live application (bottom). To remove the power-line interference
visible on raw EEG recordings as a sinusoidal at 50 Hz (in Europe) [62], a second-order
IIR notch digital filter was applied [63]. Furthermore, a fifth-order Butterworth band pass
frequency filter from 0.5 to 45.0 Hz was applied to remove noise on irrelevant frequencies.
Additionally, the data were average-referenced after filtering, i.e., the overall average
potential was subtracted from each channel [22,37]. This method “relies on the statistical
assumption that multichannel EEG recordings are uncorrelated” [64] and assumes an even
potential distribution across the scalp. The pre-processing had to be minimal instead of
using computation-heavy steps, since the live prediction had to be time efficient.

3.2. Data Windowing and Shuffling

Since EEG data are considered stationary only over short time intervals, the pre-
processing and the feature extraction were performed in tumbling windows with a fixed
size and no overlap. Figure 7 shows that one window of the incoming data stream includes
all samples xi, xi+1, . . . arriving during the specified window length. The pipeline extracts
one feature vector, Fi, per window. All feature vectors extracted from the windows of a
video duration (between tstart and tend) received a label yi, corresponding to the reported
label, Yj, by the participants. Different window lengths, l ε [1s, 2s, 3s, 4s, 5s], were tested on
Dataset I and Dataset II to find the optimal one for the classification pipeline. As mentioned
in the algorithm in Appendix A, a window, |w|, included l × s f samples with the sampling
frequency denoted by s f .

Fi+1
Extracted 

Feature Vectors

window

…

Label Yj

…

t2start

Start Video 2

t2end

End Video 2

t1end

End Video 1

t1start

Start Video 1

xi, xi+1, …, xi+w-1Incoming Data 
Stream

… … Fi+m

Labels

Label Yj+1

Fi+4

yi-k yi yi+1 yi+4 yi+m

Fi-k Fi

Figure 7. The incoming data stream is processed in tumbling windows (gray rectangles). One window
includes all samples xi, xi+1, . . . arriving during a specified time period, e.g., 1 s. The pipeline extracts
one feature vector, Fi, per window. Windows during a stimulus (video) are marked in dark gray.
Participants rated each video with one label per affect dimension, Yj. All feature vectors extracted
from windows that fall into the time frame of a video (between tstart and tend of that video) receive a
label yi corresponding to the reported label, Yj, of that video. If possible, the windows are aligned
with the end of the stimulus; otherwise, all windows that lie completely inside a video’s time range
are considered.
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Figure 7 shows that a lot of samples in a row received the same label of the duration
of each video up to several minutes. Internal testing implied that training a model by
streaming the data resulted in classifiers that did not learn from features but only returned
the same class until seeing a different one. Therefore, the time windows were shuffled
among one another with the corresponding labels. Since shuffling needs all data and
labels to be present before feature extraction, it was not performed during live training
and classification.

3.3. Feature Extraction

Similar to [22], power spectral density (PSD) features per channel were derived from
the raw EEG data by using the Welch method [65] on each window. The PSD from
each of the five frequency bands (Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–16 Hz), Beta
(16–32 Hz), and Gamma (32–45 Hz)) and the total power over all frequency bands were
extracted. Moreover, the power ratios between each pair of frequency bands were obtained.
Therefore, a total of sixteen power-related features (five frequency bands + one total power
+ ten power ratios) were extracted from each channel, resulting in a different number of
features per device as depicted in Table 2.

Table 2. Number of channels and derived features for each device: Muse Headband: 64 features;
Neurosity Crown: 128 features; Emotiv EPOC: 224 features.

Device Number of Channels Number of Derived Features

Muse Headband 4 64
Neurosity Crown 8 128
Emotiv EPOC 14 224

3.4. Labeling

During the live streaming of Dataset III, labels had to be mapped to their corresponding
sample. Therefore, the labels were sent in a stream of tuples: L1, A,L1, V ,L2, A, L2, V , . . .,
where

Lj, dimension = (Yj, dimension, tstart, tend) (1)

A and V stand for arousal and valence, respectively, and Yj, dimension represents the AS label
given by the participant after each video of two timestamps, tstart and tend. One labeled
tuple Lj, dimension per video and dimension was sent from the PC running the PsychoPy
experiment to the PC training the classification model. The included timestamps were
used to match the incoming ratings, Yj, dimension, as labels to the samples that the model had
classified before. This was performed in a way that all the samples that fell into the time
period between tstart and tend received the respective class label for each dimension. The
model could then be updated with these labels.

3.5. Evaluation

Online Learning and Progressive Validation: This paper aims at building a classification
pipeline from evolving data streams. Therefore, the static data from Dataset I and Dataset II
were streamed using a library for online learning: river [66]. Progressive validation, also called
test-then-train evaluation [67], was used for model evaluation in the supervised immediate
label setting, when the labels for all samples were present at processing time [68]. Figure 8a
shows the training process of an online classifier including progressive validation. Every
time the model sees a new sample xi, it first classifies this sample as the test step of the
test-then-train procedure. In the training process, the model will calculate the loss by
comparing the true label, yi, which might come from a different data source than the
samples. The updated model will go on to classify the next incoming sample, xi+1, before
seeing its label, yi+1, and, again, execute the training and performance metric updating step.
This continues as long as data are streamed to the model. In this way, all samples can be
used for training as well as for validation without corrupting the performance evaluation.
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(a) (b)
Figure 8. (a) Progressive validation incorporated into the basic flow of the training process (‘test-
then-train’) of an online classifier in an immediate label setting. (xi, yi) represents an input feature
vector and its corresponding label. (b) Evaluation incorporated into the basic flow of the training
process of an online classifier when labels arrive delayed (i ≥ j).

In the experimental setup acquiring Dataset III, the labels were available after the pre-
diction, in contrast to the immediate labeling setting and progressive validation. Therefore,
a delayed progressive validation was performed with the delayed labels, which is mostly the
case for real-life scenarios. Figure 8b depicts the delayed progressive validation procedure,
where the samples are classified by the model until unseen labels are available. However,
the model can be updated as in the immediate label setting. Whenever new labels become
available, the performance metric is updated without any further calculations [69]. Once
the model has been updated with all available labels, the classification of further samples
continues with the new updated model. This can, of course, be implemented in parallel as
well. These steps continue as long as there are incoming data.

3.6. Machine Learning Classifiers

In this paper, three different algorithms, Adaptive Random Forest (ARF) [26], Stream-
ing Random Patches (SRP) [70], and Logistic Regression (LR), have been evaluated and
compared on Dataset I and Dataset II to find the best-performing setup for Dataset III. The
ARF and the SRP with a Hoeffding Adaptive Tree (HAT) [42] are two ensemble architectures
with integrated drift detection algorithms. Ensemble learners, which combine multiple
weak learners, are popular in online learning not only because they tend to achieve high
accuracy rates, but also because the individual learners of the ensemble can be trained in
parallel. Furthermore, the structure of ensemble learners innately supports drift adaption,
as drift detection algorithms can be easily incorporated and component learners can be
reset [70,71]. The LR was included in the comparison as a sort of naïve baseline model
by training on mini-batches (with partial fit) of one sample (i.e., a feature vector extracted
from one window) to resemble the online learning process. Furthermore, it uses stochastic
gradient descent for optimization with a learning rate of 0.1; no regularization was applied.
For all models, the implementations from the river library [66] were used with default
parameters if not specified otherwise.
Evaluation Metrics: The participants’ self-reported assessment of their valence and arousal
levels was used as the ground truth in all training and evaluation processes in this paper.
Among the different metrics of reporting the classifier’s performance [20], the commonly
reported metrics Accuracy and F1-Score will be disclosed in this work. They are defined as
follows [72]:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

F1-Score =
TP

TP + 1
2 (FP + FN)

, (3)
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where TP and TN denote the number of true positives and true negatives classified by the
model, respectively. Accordingly, FP and FN stand for the number of false positives and
false negatives classified by the model, respectively. “The higher, the better”, can be said
for both accuracy and F1-Score, i.e., a perfect model has an accuracy of one (100%) and an
F1-Score of one.

To determine whether the performance differences between the different setups were
significant, two-sided t-tests with a significance level of α = 0.05 were conducted on the
respective dataset. When important, the results of these tests will be reported by either a
p > 0.05, meaning that no significant differences could be determined at this significance
level, or by a p < 0.05, denoting that the test showed the results of the two compared
groups to be significantly different under this test setup.

4. Results
4.1. Immediate Label Setting

In this paper, at first the real-time emotion classification pipeline with immediate label
setting was applied to Dataset I and Dataset II. The data were streamed to pre-process
and to extract features from tumbling windows with a window length of 1 s. To perform
binary classification for both dimensions of AS (valence and arousal), the self-rating of the
participant was used by applying a threshold at 0.5 and defining high and low classes. As
mentioned earlier, ARF, SRP, and LR classifiers were employed for evaluation. The setting
of five trees and four trees for SRP worked best for Dataset I and for Dataset II, respectively.
ARF included five trees for both data sets. A subject-dependent model was trained with
10-fold cross-validation, and the performances were evaluated with progressive validation.

Figure 9 presents the overall model performances of Dataset I by showing the subject-
wise distribution of the evaluation matrix. The mean F1-Score for the positive and negative
classes of valence and arousal recognition, respectively, are shown only for ARF and SRP
classifiers. The LR showed a comparatively poor performance since it is not an online
model but trained on mini-batches. On the contrary, the ensemble models (ARF and SRP)
show consistently higher F1-Scores, mostly between 0.7 and 0.95, with two outliers, which
validates the emotion classification pipeline built in this paper. Two outliers are visible
from subjects 11 and 30 and might be due to a label imbalance (high/low) in the data or
insufficient data quality.

Figure 9. F1-Score for Valence and Arousal classification achieved by ARF and SRP per subject from
Dataset I.

Furthermore, the means of F1-Score and accuracy over all the subjects from Dataset I
are presented in Table 3. As depicted in “gray”, both evaluation matrices reach more
than 80% for both the ensemble models (ARF and SRP), whereas the performance of LR is
relatively poor. Additionally, Table 3 also shows the comparison to the evaluation of the
baseline results by Miranda-Correa et al. [22] with a reported approximately 50% F1-Score
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with no accuracy score reported. Siddharth et al. [73] reports a more than 70% accuracy and
F1-Score, and Topic et al. [74] achieved the current benchmark for this dataset by reporting
a 90% accuracy. However, all the related work mentioned was obtained using a hold-out or
k-fold cross-validation with computation-heavy offline classifiers, making it inadequate
for real-time classification. Consequently, the proposed online classifiers with ensemble
models can contribute to daily life setups.

Table 3. Comparison of mean F1-Scores and accuracy of Valence and Arousal recognition on Dataset I.
Gray represents the results from this paper. NR stands for not reported.

Study or Classifier
F1-Score Accuracy

Valence Arousal Valence Arousal
LR 0.669 0.65 0.702 0.688
ARF 0.825 0.826 0.82 0.846
SRP 0.834 0.831 0.826 0.847
Miranda-Correa et al. [22] 0.576 0.592 NR NR
Siddharth et al. [73] 0.8 0.74 0.83 0.791
Topic et al. [74] NR NR 0.874 0.905

Afterwards, we evaluated the pipeline using Dataset II curated by imitating a real-
world setup. Table 4 presents the F1-Score of the subject-dependent models with the
three classifiers for the positive and negative classes of arousal and valence recognition,
respectively. The F1-Scores from both employed EEG devices are shown, with the best
highlighted in bold. As depicted, all classifiers achieved higher performances on arousal
recognition than on valence, which is in line with the literature [20,22]. Furthermore, the
two ensemble methods ARF and SRP showed a better performance, with a mean F1-Score
of more than 82% with no statistically significant difference (p > 0.05) between them. LR
models showed poor performance similar to their performance on Dataset I. Moreover,
the mean F1-Score over all subject-dependent models using Crown data led to a better
performance (by at least 2% and up to 7.6%) in most cases compared to using Muse data.
However, the differences were not statistically significant (p > 0.05) because four out of
eleven cases for valence and five out of eleven cases for arousal recognition showed the
F1-Score for this dataset. Thus, the distribution of which device’s data lead to the best
performance is relatively balanced, leading to potential future work of analyzing specific
electrode positions.

Table 4. Comparison of mean F1-Scores of Arousal and Valence recognition per participant and
device from Dataset I with three classifiers using progressive validation. Bold values indicate the
best-performing model per participant and dimension. The mean total represents the calculated
average of all models’ F1-Scores.

Subject ID
ARF SRP LR

Crown Muse Crown Muse Crown Muse

A
ro

us
al

3 0.902 0.885 0.895 0.898 0.8 0.785
4 0.836 0.794 0.838 0.845 0.793 0.604
5 0.651 0.812 0.699 0.827 0.764 0.682
6 0.836 0.843 0.863 0.889 0.771 0.62
7 0.958 0.833 0.933 0.878 0.841 0.725
8 0.889 0.749 0.893 0.783 0.683 0.584
9 0.888 0.921 0.836 0.931 0.756 0.703

10 0.969 0.903 0.951 0.915 0.816 0.898
11 0.938 0.768 0.955 0.861 0.765 0.908
12 0.864 0.871 0.884 0.878 0.669 0.697
13 0.792 0.913 0.8 0.887 0.701 0.734

Mean 0.866 0.845 0.868 0.872 0.76 0.722



Sensors 2023, 23, 2387 15 of 23

Table 4. Cont.

Subject ID
ARF SRP LR

Crown Muse Crown Muse Crown Muse

V
al

en
ce

3 0.837 0.887 0.811 0.876 0.716 0.712
4 0.841 0.69 0.773 0.859 0.804 0.524
5 0.546 0.734 0.639 0.748 0.781 0.58
6 0.713 0.687 0.785 0.778 0.73 0.393
7 0.935 0.666 0.926 0.757 0.776 0.616
8 0.813 0.551 0.819 0.623 0.594 0.444
9 0.812 0.844 0.721 0.863 0.72 0.561

10 0.982 0.859 0.979 0.871 0.74 0.874
11 0.924 0.653 0.957 0.811 0.64 0.884
12 0.889 0.756 0.914 0.784 0.633 0.663
13 0.584 0.826 0.6 0.775 0.543 0.595

Mean 0.807 0.735 0.819 0.787 0.698 0.622

4.2. Effects of Window Size

As detailed in Section 3, the pipeline processes the incoming data and extracts the
features that are used to train the model in tumbling windows of a specified length,
l ε [1 s, 2 s, 3 s, 4 s, 5 s]. Using Dataset I and Dataset II (both Muse and Crown), the opti-
mum window length was investigated for live prediction. As depicted in Figure 10, with
10-fold cross-validation and progressive validation, the mean F1-Scores from ARF and SRP
classifiers show that the best classification performance was achieved with a window length
of 1 s irrespective of the affect dimensions, classifiers, and devices. Moreover, in most cases,
the classification performance decreases with increasing window size, emphasizing the
need for more data points. Furthermore, these plots showcase again that the ensemble
methods achieved overall higher F1-Scores than logistic regression and that all classifiers
performed better on arousal recognition than on valence.

(a) Dataset I. (b) Dataset II, Muse.

(c) Dataset II, Crown.
Figure 10. Mean F1-Score achieved by ARF, SRP, and LR over the whole dataset for both affect
dimension with respect to window length.
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4.3. Delayed Label Setting: Live Classification

In order to validate the streaming setup of Dataset II, live predictions and live online
training were performed while obtaining Dataset III. The participants wore the same EEG
device for both parts of the experiment; participants 14 and 17 wore the Muse headband
and participants 15 and 16 wore the Crown. For each participant, an ARF with four trees
was trained on the data recorded in part 1 of the experiment using a window length of
1 s and progressive delayed validation. With the pre-trained model, live predictions were
performed with the data streaming in part 2 of this experiment. The prediction results were
only available to the experimenter and the model was continuously updated whenever
new true labels became available from the participant. Therefore, the labels arrived with a
certain delay depending on the length of the video. Table 5 shows that the highest F1-Score
(in bold) obtained from each category during the live prediction was 73% for arousal
and 60% for valence. However, most of the reported accuracies in Table 5 barely reached
chance level.

Table 5. F1-Score and accuracy for the live affect classification (Dataset III, part 2). Subjects 14 and 17
wore Muse, while subjects 15 and 16 wore the Crown for data collection. The highest scores across all
participants for each evaluation matrix are marked in bold.

Subject ID
F1-Score Accuracy

Valence Arousal Valence Arousal

14 0.521 0.357 0.562 0.385
15 0.601 0.64 0.609 0.575
16 0.353 0.73 0.502 0.575
17 0.512 0.383 0.533 0.24

Furthermore, the prediction results are presented in the form of confusion matrices in
Figure 11, showing that many of the samples have been misclassified. For three out of the
four subjects, a low valence could be classified with a recall of at least 0.567, while for the
arousal dimension, a low class was misclassified most often with a low recall. Though the
proposed prediction pipeline was able to classify valence for over half the samples, it was
unsuccessful in reliably predicting accurate classes for both affect dimensions. However,
the findings from the live experiment show the importance of testing an application with
settings as close as possible to the expected production scenario in order to get a reasonable
performance estimate. Moreover, the results display the potential of emotion classification
for live applications and motivate us to further investigate frameworks for real use cases
with delayed labels instead of solely focusing on the immediate label setting.

Additionally, the lower predictive performance led us to further investigate the de-
layed labels. To imitate production settings, we induced a delay into the pipeline and
applied progressive delayed validation on Dataset II. Therefore, the subject-dependent
model was updated with the true label after 86 samples, i.e., the mean length of the video
stimuli was 86 s. Table 6 displays the F1-Scores of both the models for valence and arousal
recognition with a label delay of 86 s using an ARF with four trees and a window length of
1 s. The F1-Score for individual participants reached 77% for valence and 78% for arousal.
However, the mean F1-Score across all participants achieved 63% for arousal and did not
reach chance level for the valence classification. The performance declines significantly
compared to Table 4, when a delay is induced.
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Subject 14, Valence. recall: 0.567 Subject 14, Arousal. recall: 0.387

Subject 15, Valence. recall: 0.612 Subject 15, Arousal. recall: 0.432

Subject 16, Valence. recall: 0.582 Subject 16, Arousal. recall: 0.0

Subject 17, Valence. recall: 0.489 Subject 17, Arousal. recall: 0.008
Figure 11. Confusion matrices for the live affect classification (Dataset III, part 2). Employed model:
ARF (four trees), window length = 1 s. Recall was calculated only for a low class for both the models.

However, the findings justify the poor performance in the live settings and validate the
pipeline as a useful one with the possibility of modifications in future work. Furthermore,
the binary arousal classification with the induced label delay outperforms the baseline
results obtained by Miranda-Correa et al. [22] by 4.5% with an immediate label setting.
However, the results reported by Siddharth et al. [73] and Topic et al. [74] outperform our
work when used with immediate labels.
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Table 6. Mean F1-Scores for Valence and Arousal recognition of Dataset II, relayed per participant
and device. Obtained using ARF (with four trees), a window length of 1 s, and progressive delayed
validation with a label delay of 86 s. The bold values represent the highest scores, and the last row
shows the mean F1-Score of all participants.

Participant ID
Valence Arousal

Crown Muse Crown Muse

3 0.338 0.584 0.614 0.718
4 0.674 0.429 0.551 0.575
5 0.282 0.554 0.355 0.69
6 0.357 0.27 0.608 0.619
7 0.568 0.574 0.698 0.769
8 0.266 0.286 0.561 0.574
9 0.553 0.53 0.719 0.749

10 0.767 0.561 0.784 0.691
11 0.469 0.207 0.676 0.418
12 0.443 0.51 0.575 0.679
13 0.335 0.451 0.646 0.711

Mean 0.476 0.46 0.637 0.637

5. Discussion

In this paper, firstly, a real-time emotion classification pipeline was built for binary clas-
sification (high/low) of the two affect dimensions: Valence and Arousal. Adaptive random
forest (ARF), streaming random patches (SRP), and logistic regression (LR) classifiers with
10-fold cross-validation were applied to the EEG data stream. The subject-dependent mod-
els were evaluated with progressive and delayed validation, respectively, when immediate
and delayed labels were available. The pipeline was validated on existing data of ensured
quality from the state-of-the-art AMIGOS [22] dataset. By streaming the recorded data to
the pipeline, the mean F1-Scores were more than 80% for both ARF and SRP models. The
results outperform the authors’ baseline results by approximately 25% and are also slightly
better than the work reported in [73] using the same dataset. The results of Topic et al. [74]
showed a better performance; however, due to the reported complex setup and computa-
tionally expensive methods, the system is unsuitable for real-time emotion classification.
Nevertheless, the results mentioned in the related work apply offline classifiers with a
hold-out or a k-fold cross-validation technique. In contrast, our pipeline applies an online
classifier by employing progressive validation. To the best of our knowledge, no other
work has tested and outperformed our online EEG-based emotion classification framework
on the published AMIGOS dataset.

Secondly, a similar framework to the AMIGOS dataset, Dataset II, was established
within this paper, which can collect neurophysiological data from a wide range of neuro-
physiological sensors. In this paper, two consumer-grade EEG devices were used to collect
data from 15 participants while watching 16 emotional videos. The framework available in
the mentioned repository can be adapted for similar experiments.

Thirdly, and most importantly, we curated data in two experiments to validate our
classification pipeline using the mentioned framework. Eleven participants took part in
acquiring th data for Dataset II, where EEG data were recorded while watching 16 emotion
elicitation videos. The pre-recorded data were streamed to the pipeline and showed a
mean F1-Score of more than 82% with ARF and SRP classifiers using progressive validation.
This finding validates the competence of the pipeline on the challenging dataset from
consumer-grade EEG devices. Additionally, the online classifiers consistently showed bet-
ter performance for ARF and SRP than LR on all compared modalities. However, internal
testing verified that the run-time of the training step of the pipeline of ARF is less than that
of SRP, concluding that ARF should be used in live prediction. The analysis on window
length shows a clear trend of increasing performance scores with decreasing window
length; therefore, a window length of 1 s was chosen for live prediction. Although the two
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employed consumer-grade devices have a different number of sensors at contrasting posi-
tions, there were no statistically significant differences between the achieved performance
scores found for their respective data. Therefore, we used both devices for live prediction,
and the pipeline was applied to a live incoming data stream in the experiment of Dataset III
with the above-mentioned features of the model. In the first part of the experiment, the
model was trained with the immediate labels from the EEG data stream. In the second
part, the model was used to predict affect dimensions while the labels were available after
a delay of the video length. The model was continuously updated whenever a new label
is available. The performance scores achieved during the live classification with delayed
labels were much lower than those with immediate labels, motivating us to induce an
artificial delay to stream Dataset II. The results are compatible with live prediction. The
literature reports better results for real-time emotion classification frameworks [29,30,36]
with the assumption of knowing the true label immediately after a prediction. The novelty
of this paper is to present a real-time emotion classification pipeline close to a realistic
production scenario from daily life with the possibility of including further modifications
in future work.

In future work, the selected stimuli can be shortened to reduce the delay of the
incoming labels so that the model can be updated more frequently. Otherwise, multiple
intermediate labels can also be included in the study design to ensure the inclusion of short-
term emotions felt while watching the movies. Furthermore, more dynamic pre-processing
of the data can be included with feature selection algorithms for better classification and
prediction in live settings. Moreover, the collected data from the experiments reveal a
strong class imbalance in the self-reported affect ratings for arousal, with high arousal
ratings making up 82.96% of all ratings in that dimension. This general trend towards
higher arousal ratings is also visible in Dataset I, albeit not as intensely (62.5% high arousal
ratings). In contrast, Betella et al. [59] found “a general desensitization towards highly
arousing content” in participants. The underrepresented class can be up-sampled in the
model training in the future, or basic emotions can be classified instead of arousal and
valance dimensions, solving the multi-class problem [75,76]. By including more participants
in the future for live prediction, the prediction can be visible to the participant as well
to include neuro-feedback. It will also be interesting to see if the predictive performance
improves by utilizing additional modalities other than EEG, for example, heart rate and
electrodermal activity [20,23,37].
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Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
ARF Adaptive Random Forest
AS Affective Slider
EEG Electroencephalography
HCI Human–Computer Interaction
HVLA High Valence Low Arousal (different combinations are possible)
LR Logistic Regression
OSC Open Sound Control
PANAS Positive Furthermore, Negative Affect Schedules
PSD Power Spectral Density
SRP Streaming Random Patches

Appendix A

Algorithm A1: Live Emotion Classification from an EEG Stream.
Input: Unlabelled EEG data stream S = {x1, x2, . . ., xi, . . .}

Stream of true class labels including corresponding stimulus start- and
end-times L = {(Yj, startTimej, endTimej), (Yj+1, . . .), . . .}
Sampling frequency sf
Window length |w|
Optional: model

Output: Predicted binary affect class (valence: 0/1, arousal: 0/1) per window
predictions← Dict();
extractedData← Dict();
window← emptyWindow();
windowSize← sf × |w|;
windowCounter← 0;
if no model exists

model← initialise-model();
while Stream S has next tuple x do

timestamp← current-time();
window.add(x);
windowCounter += 1;
if windowCounter == windowSize

preprocess(window);
features← extract-features(window);
predictedClass← predict-one(model, features);
display(predictedClass);
predictions[timestamp]← predictedClass;
extractedData[timestamp]← features;
windowCounter← 0;
window← emptyWindow();

if unseen labels available
foreach unseen label tuple (Y , startTime, endTime) do

matchedWindows← match-timestaps(startTime, endTime,
extractedData);

matchedPredictions← match-timestaps(startTime, endTime,
predictions);

for index in length(matchedWindows) do
performance-metric-update(Y , matchedPredictions[index]);
train-one(model, Y , matchedWindows[index]);
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