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Abstract: The Vision Transformer (ViT) architecture has been remarkably successful in image restora-
tion. For a while, Convolutional Neural Networks (CNN) predominated in most computer vision
tasks. Now, both CNN and ViT are efficient approaches that demonstrate powerful capabilities to
restore a better version of an image given in a low-quality format. In this study, the efficiency of ViT
in image restoration is studied extensively. The ViT architectures are classified for every task of image
restoration. Seven image restoration tasks are considered: Image Super-Resolution, Image Denoising,
General Image Enhancement, JPEG Compression Artifact Reduction, Image Deblurring, Removing
Adverse Weather Conditions, and Image Dehazing. The outcomes, the advantages, the limitations,
and the possible areas for future research are detailed. Overall, it is noted that incorporating ViT
in the new architectures for image restoration is becoming a rule. This is due to some advantages
compared to CNN, such as better efficiency, especially when more data are fed to the network,
robustness in feature extraction, and a better feature learning approach that sees better the variances
and characteristics of the input. Nevertheless, some drawbacks exist, such as the need for more data
to show the benefits of ViT over CNN, the increased computational cost due to the complexity of
the self-attention block, a more challenging training process, and the lack of interpretability. These
drawbacks represent the future research direction that should be targeted to increase the efficiency of
ViT in the image restoration domain.

Keywords: vision transformer; transformer; self-attention; image restoration; image super-resolution;
image denoising; general image enhancement; JPEG compression artifact reduction; image deblurring;
removing adverse weather conditions; image dehazing

1. Introduction

Image Restoration is an umbrella term incorporating many computer vision tasks.
These approaches seek to generate a better version of an image that is retrieved in a
lower-quality format. The leading seven tasks of image restoration are: Super-Resolution,
Image Denoising, General Image Enhancement, JPEG Compression Artifact Reduction,
Image Deblurring, Removing Adverse Weather Conditions, and Image Dehazing. All
these tasks share among them many common characteristics. First of all, they are image
generation tasks. This means that we generate new data that tries to mimic the authentic
representation of the information being captured inside the image. Second, they all try to
remove a specific type of corruption applied to the image. This corruption may be a noise,
a bad quality image sensor, a capturing imperfection, a weather condition that hides some
information, etc. Third, all of them are now becoming based on deep learning techniques.
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This architectural change is due primarily to their effectiveness compared to old techniques.
Hence, any advancement in deep learning theory directly affects these tasks and brings
new ideas for any image restoration researcher.

1.1. Techniques Used in Image Restoration

Since deep learning popularity began in the computer vision field in 2012 [1], Con-
volutional Neural Networks (CNN) have been the default feature extractor used to learn
patterns in the data. An overwhelming number of models and architectures have been
designed and improved over the years to increase the learning capability of CNNs. Generic
architectures, as well as task-specific architectures, were designed. Before 2020, it was the
rule for any image restoration researcher to customize a model based on CNN to increase
the efficiency of the state-of-the-art works on his task [2–5]. This approach is adopted in
most computer vision tasks [6–14].

Since 2017, the Transformer architecture has made a significant breakthrough in the
Natural Language Processing (NLP) domain. The self-attention mechanism and the new
proposed architecture have proven to have a considerable ability to manage sequential
data efficiently. Nevertheless, adoption in the computer vision domain was delayed until
2020, when the Vision Transformer (ViT) architecture was first introduced [15]. Up to now,
ViT has proven efficient and competed very well with CNN. Here also, an overwhelming
number of architectures inspired by ViT have been introduced with an attractive efficiency.
Moreover, ViT has been demonstrated to solve many issues traditionally associated with
CNN. Therefore, a debate between these two architectures’ advantages and drawbacks has
emerged to decide where to go in future research directions.

Many techniques have been developed for image restoration, including those based
on CNNs and ViTs. However, CNNs have several limitations regarding their ability to
learn a mapping from degraded images to reach their original counterparts. In addition,
the quality of the images generated by CNNs is often far from the original images. In
contrast, some techniques address these challenges of CNN. These techniques include the
Generative Adversarial Networks (GANS) [16] and the Diffusion model [17], as shown
in Figure 1. GANs are a class of deep learning models that involve training two neural
networks, a generator, and a discriminator, to work together to generate new, synthetic
data similar to the real data. Despite the success of GANs in various tasks, their application
in image restoration methods has often been found to produce suboptimal results due to
issues such as pattern collapse, excessive smoothing, artifacts, and training instability. The
Diffusion model, on the other hand, is a generative model that uses a diffusion process to
generate new images by modeling the image formation process. However, while diffusion
models have been used in image generation and denoising tasks, they may struggle to
generate images with accurate global features and require a high computational cost. This
is because the diffusion process models the image formation process, but they may not be as
effective as other models in capturing global features. Additionally, the high computational
cost is a limitation that needs to be considered when using these models.
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The current study aimed to answer the question: what is the impact of ViT on the
Image Restoration domain? The study is based on a study of around 70 papers. First,
every research work has been classified into the seven fields of image restoration. Then, a
description of the state-of-the-art techniques in these seven fields is presented. Later, the
advantages, drawbacks, and future research directions are discussed.

1.2. Related Surveys

To our knowledge, no literature survey has targeted this problematic. The existing
surveys about ViT are more generic in scope and do not consider the image restoration
domain’s peculiarities. For example, Khan et al. [18] have explored the use of vision
transformers in popular recognition tasks, generative modeling, multi-modal tasks, video
processing, low-level vision, and three-dimensional analysis. Han et al. [19] undertook a
generic review of ViT for different computer vision tasks; they compared their advantages
and drawbacks. Then, they classified the tasks into four classes: low-level vision, high/mid-
level vision, backbone network, and video processing. They also discussed the application
of vision transformers to real devices. Islam et al. [20] provided an overview of the best-
performing modern vision Transformer methods and compared the strengths, weaknesses,
and computational costs between vision Transformers and CNN methods on the most
benchmark datasets. Shamshad et al. [21] were more specific and focused on one domain.
They presented a comprehensive review of the application of vision transformers in medical
imaging, including medical image segmentation, classification, detection, clinical report
generation, synthesis, registration, reconstruction, and other tasks. They also discussed
unresolved problems in the architectural designs of vision transformers.

Looking for surveys that focused only on image restoration tasks, no one has elabo-
rated a study about ViT architectures in this regard. For example, Su et al. [22] generally
tackled deep learning algorithms without focusing on ViT specifically. They presented
a comparative study of deep learning techniques used in image restoration, including
image super-resolution, dehazing, deblurring, and denoising. They also discussed the
deep network structures involved in these tasks, including network architectures, skip
connection or residual, and receptive field in autoencoder mechanisms. They also focused
on presenting an effective network to eliminate errors caused by multi-tasking training
in the super-resolution task. In Table 1, the related surveys to our research are described
based on two main characteristics. The first is the algorithm studied (CNN and/or ViT).
The second is the area of the survey. As concluded, a specific survey that studies the effect
of ViT in the Image Restoration domain is still lacking in the current state of the art.

1.3. Main Contributions and Organization of the Survey

A gap is noted in these related surveys. A specific survey that analyses the impact of
only ViT-based architectures on the image restoration domain is still needed, considering
all of its peculiarities. The main contributions elaborated in this research are:

1. The study lists the most important ViT-based architectures introduced in the image
restoration domain, classified by each of the seven subtasks: Image Super-Resolution,
Image Denoising, General Image Enhancement, JPEG Compression Artifact Reduc-
tion, Image Deblurring, Removing Adverse Weather Conditions, and Image Dehazing.

2. It describes the impact of using ViT, its advantages, and drawbacks in relation to these
image restoration tasks.

3. It compares the efficiency metrics, such as The Peak Signal-to-Noise Ratio (PSNR) and
the Structural Similarity Index Metric (SSIM) of the ViT-based architectures, on the
main benchmarks and datasets used in every task of image restoration.

4. It discusses the most critical challenges facing ViT in image restoration and presents
some solutions and future work.
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Table 1. Comparison between our survey and the related surveys in image restoration.

Method Year Algorithm Region of Interest

[18] 2022 ViT

Generative modeling, low-level vision (e.g., image super-resolution, image
enhancement, and colorization), Recognition tasks (e.g., image classification,

object detection, action recognition, and segmentation), video processing
(e.g., activity recognition, video forecasting), multi-modal tasks (e.g., visual

question answering, visual reasoning, and visual grounding), and
three-dimensional analysis (e.g., point cloud classification and segmentation)

[19] 2022 ViT

Backbone network (e.g., supervised pretraining and self-supervised
pretraining), high/mid-level vision (e.g., object detection, segmentation, and

pose estimation), low-level vision (e.g., image generation, and image
enhancement), video processing (e.g., video inpainting, and video

captioning), multimodality tasks (e.g., classification, image generation, and
multi-task), and efficient transformer (e.g., decomposition, distillation,

quantization, and architecture design)

[20] 2022 ViT, CNN
Fundamental concepts, a background of the self-attention mechanism,

strengths and weaknesses, computational cost, and comparison of ViT and
CNN performance on benchmark datasets

[21] 2022 ViT Medical image segmentation, detection, classification, reconstruction,
synthesis, registration, and clinical report generation

[22] 2022 CNN, ViT

General deep learning techniques in super-resolution, dehazing, deblurring,
and image denoising. Then, a summary of the leading architectural

components involved in these tasks, such as residual or skip connection,
receptive field, and unsupervised autoencoder mechanisms.

Our - ViT

Seven image restoration tasks are deeply studied: image super-resolution,
image denoising, general image enhancement, JPEG compression artifact
reduction, image deblurring, removing adverse weather conditions, and

image dehazing.

This study is organized as follows, Section 2 introduces the ViT architecture and
presents its success keys, including self-attention, sequential feature encoding, and feature
positioning. Section 3 details the evaluation metrics used to assess the performance of
image restoration algorithms. These evaluation metrics will be used later for the whole
paper, and their definitions are worth describing from the beginning. Section 4 describes
the state of the art of ViT-based architectures in each of the seven image restoration tasks.
Section 5 presents a discussion of the advantages, drawbacks, and the main challenges of
ViT in image restoration. Finally, in Section 6, our work is concluded alongside a description
of the next research problematics to be addressed in future works.

2. Vision Transformer Model

In this section, we introduce ViT and the most important principles upon which it is
built, including structure, self-attention, multi-headed self-attention, and the mathematical
background behind ViT. The ViT was introduced by [15] in 2020. The ViT is a deep neural
network architecture for image recognition tasks based on the Transformer architecture
initially developed for natural language processing tasks. The main idea behind ViT is to
treat an image as a sequence of tokens (typically, image patches). Then, the transformer
architecture is used to process this sequence. The transformer architecture, on which ViT
is based, has been adapted to many tasks and is effective in many of them, such as image
restoration and object detection [23,24].

The ViT is based on the Transformer architecture. Figure 2 shows the main stages of
VIT architecture. where the image is tokenized and embedded by dividing it into a grid
of non-overlapping patches, flattening each patch, and mapping it to a high-dimensional
space through a linear transformation followed by normalization. This process, called
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tokenization and embedding, allows the model to learn both global and local information
from an image.
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The transformer architecture is designed to process any sequence, but it does not
explicitly consider each token’s position in the sequence. To address this limitation, the
ViT architecture uses pre-defined positional embeddings. These positional embeddings
are additional vectors that encode the position of each token in the sequence, and they are
added to the token embeddings before they are passed through the transformer layers. This
mechanism allows the model to capture the relative position of the tokens and to extract
spatial information from the image.

The core of the ViT architecture lies in the Multi-head Self-Attention (MSA). This
mechanism allows the model to simultaneously attend to different parts of the image. It is
composed of several different “heads”, each of which computes attention independently.
These attention heads can attend to different regions of the image and produce different
representations, which are then concatenated to form a final image representation. This
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allows the ViT to capture more complex relationships between the input elements, as it
can attend to multiple parts of the input simultaneously. However, it also increases the
complexity and computational cost of the model, as it requires more attention to heads
and more processing to combine the outputs from all the heads. MSA can be expressed
as follows:

MultiHead(Q, K, V) = Concat(Head1, Head2, . . . Headn) (1)

where Headn = sel f Attention
(

Q.WQ
n , K.WK

n , V.WV
n

)
, n is the number of heads. MSA

depends on the self-attention mechanism introduced by the authors of [25]. The basic idea
of self-attention is to estimate how closely one element relates to the other elements in the
sequence of elements. In digital images, the image is divided into several patches, then
each patch is converted into a sequence, and then self-attention estimates the relevance of
one sequence to the rest of the sequences.

The self-attention mechanism is the backbone of transformers, which explicitly model
the interactions and connections between all sequences of prediction tasks. The self-
attention layer also collects global information and features from the entire input sequence,
distinguishing it from CNN. It is for this reason that transformers have a larger model
capacity. To understand more about the mechanism of self-attention, we may consider a
sequence of n elements {X1, X2, X3, . . .Xn} by X ∈ Rn×d, where d is the embedding
dimension to represent each element. The purpose of the attention mechanism is to estimate
the interactions and connections between all n elements by encoding each element and then
capturing global information and features. In order to implement the attention mechanism,
three learnable weight matrices must first be defined, including QueriesWQ ∈ Rd×dq , Keys
WK ∈ Rd×dk , and ValuesWV ∈ Rd×dv , where dq = dk. The X input sequence is projected
by weights matrices Q = X .W q, K = X .W k, V = X .Wv. The output of attention layer Z
is Equation (2):

Z = so f tmax

(
QKT√

dq

)
V, (2)

The attention mechanism computes the dot product of Q (query) with all K (keys) for
a given element in the sequence. Then the SoftMax operator is used for normalization to
get the attention outputs. Each element in the sequence becomes the sum weight of all
elements in the entire sequence; attention outputs generate these weights. Then, using the
dot product, the attention output is multiplied by the V (value) matrix. Figure 3 shows an
example of the self-attention model.
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The main advantage of the self-attention mechanism compared to the convolution
mechanism is that the values of the filters are calculated dynamically instead of static
filters, as in the case of the convolution operation, where the filters remain the same for
any input. In addition, self-attention is distinguished from standard convolution in the
stability of permutations and changes in the number of insertion points. As a result, it
can process irregular data and input. Based on literature reviews, it appears theoretically
that the process of self-attention with positional encodings is more flexible in extracting
local features than convolutional models [26]. Cordonnier et al. [27] investigated the
connections between self-attention and convolution operations. Their results show that
self-attention with sufficient parameters is a very flexible and more general process that
can extract local and global features. Furthermore, based on previous studies and research
findings on various computer vision tasks, self-attention can learn both local and global
features. It also provides adaptive learning of kernel weights, as in research on deformable
convolutions [28].

The ViT architecture requires a large amount of data for training to achieve optimal
performance. This is a common challenge encountered with transformer models. To
address this limitation, a two-stage training approach is often employed. In the first
stage, supervised or self-supervised [24,29] pre-training is performed on a large dataset
or a combination of several datasets [30]. In the second stage, the pre-trained weights
are used to fine-tune the model on smaller or medium-sized datasets for specific tasks
such as object detection, classification, and image restoration. This approach has been
demonstrated to be effective in previous research, where it was shown that the accuracy
of the Vision Transformer model decreased by 13% when trained only on the ImageNet
dataset and increased when trained on the JFT dataset containing 300 million images. This
highlights the importance of pre-training transformer models for vision and language on
large-scale datasets.

Obtaining labeled datasets for training AI models can be a significant challenge
due to the high cost and difficulties associated with the process. To address this, self-
supervised learning (SSL) has emerged as a promising alternative to traditional supervised
learning. SSL enables training models on a large number of parameters, up to a trillion, as
demonstrated in [31]. The basic principle of SSL is to train a model on unlabeled datasets
by applying various transformations to the images, such as slight adversarial changes or
replacing one object with another in the same scene, without altering the semantics of the
base class. This allows the model to learn from the data without needing manual labeling.
For more information and a comprehensive survey of SSL technology, readers can refer to
references [32,33].

3. Evaluation Metrics

This section introduces the most widely used image quality measurement methods
in image restoration. In addition, we present the most modern methods for measuring
image quality based on ViT. The quality of digital images can be defined based on the
measurement method. Measurement methods depend on viewers’ perceptions and visual
attributes. Image Quality Assessment (IQA) methods are classified into subjective and
objective methods [34]. Subjective methods rely on image quality evaluators, but these
methods take a lot of time, effort, and cost due to large datasets. Therefore, objective
methods are more appropriate in image restoration tasks, according to [35]. Objective
methods need the ground-truth image and the predicted image. PSNR is one of the most
widely used image quality measures. PSNR is maximum signal to maximum noise. In
image restoration, the PSNR results from divisibility between the maximum pixel value
and Mean Square Error (MSE) between the ground-truth image and the predicted image.
The PSNR is defined as:

PSNR
(
igt, ip

)
= 10 log10

(
max2

MSE

)
, (3)
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where max is the maximum pixel value, i.e., the max value of 255 for 8-bit color depth and
MSE is defined as:

MSE
(
igt, ip

)
=

1
t ∑t

k=1

(
igt(k)− ip(k)

)2, (4)

where igt is the ground truth image, and ip is the predicted image. The PSNR approach can
be misleading because the predicted image may not be perceptually similar to a ground
truth image [36,37]. However, the PSNR approach is still used in all image restoration
research, and research results are also compared using it. Human perception is the best
measure of image quality for its ability to extract structural information [38]. However,
ensuring human visual validation of the data remains very expensive, especially with large
datasets. An image quality metric that measures the structural similarity between ground
truth images and predicted images by comparing luminance, contrast, and structural
information is called SSIM [39].

SSIM
(
igt, ip

)
=

(
2µigt µip + c1

)(
2σigtip + c2

)
(

µ2
igt

+ µ2
ip
+ c1

)(
σ2

igt
+ σ2

ip
+ c2

) , (5)

where µigt is the average value for the ground truth image, µip is the average value of
the predicted image, σigt is the standard deviation for the ground truth image, σip is the
standard deviation of the predicted image, and σigtip = µigtip – µigt µip is the co-variation.

c2 is (k2L)2, and c1 is (k1L)2 are two variables to avoid division by zero, k2 = 0.03, and
k1 = 0.01.

In image restoration research, two of the most widely used image quality metrics
are SSIM and PSNR. SSIM, in particular, is based on the human perception of structural
information in images and is commonly used for generic images, as discussed in [40].
However, when applied to medical images, where brightness and contrast may not be
consistent, the SSIM metric can be unstable, as reported in [41]. To address this issue, the
authors in [42] proposed a model for measuring the perceptual quality of images. They
tested this model using the Restormer model [43] in various noise removal and adverse
weather conditions. They then applied an object detection model to the same images before
and after using the Restormer model. They found that while SSIM and PSNR results are
often unstable, the results from the object detection model were more consistent. This led
the authors to propose a Grad-CAM model to measure image quality, which bridges the
gap between human perception and machine evaluation [44].

Recently, Cheon et al. [45] proposed a new Image Quality Transformer (IQT) which uti-
lizes the transformer architecture. IQT extracts perceptual features from both ground-truth
and predicted images using a CNN backbone. These features are then fed to the transformer
encoder and decoder, which compares the ground-truth images and the predicted images.
The transformer’s output is then passed to a prediction head, which predicts the quality of
the images. In further research, Conde et al. [46] replaced the IQT encoder-decoder with the
Conformer architecture, which utilizes convolution layers from the Inception-ResNet-v2
model [47] along with attention operations to extract both global and local features.

4. Image Restoration Tasks

In this section, we will introduce all transformer-based image restoration tasks, in
addition to presenting a comparative study between all models of vision transformers in
each sub-task. Figure 4 presents a taxonomy of all vision tasks with the most common head
transformer models.
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4.1. Image Super-Resolution

Super-resolution is a technique for reconstructing high-resolution images from low-
resolution input images. SR has been widely applied in image restoration tasks due to its
value in various applications and its ability to overcome the limitations imposed by imaging
systems [48]. SR can be broadly classified into two categories: multi-image super-resolution
(MISR) and single-image super-resolution (SISR). MISR generates a single high-resolution
image from multiple low-resolution images, while SISR generates a high-resolution image
from a single low-resolution input. Vision transformer (VT)-based SR models, such as
HAT [49], SwinIR [50], and SwinFIR [51], have gained widespread adoption in image
restoration and are depicted in Figure 5 as a general block diagram.
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In most applications, obtaining multiple images of the same scene is often complex
and costly. Therefore, using only a single image in super-resolution technology is a suitable
and effective solution for many applications. In most research papers, low-resolution
images are typically obtained by applying a degradation model to high-resolution images,
which involves blurring followed by downsampling. Traditional methods use interpolation
and blur to enhance low-resolution images and rely on iterative optimization frameworks.
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Yang et al. [52] conducted an investigative comparison of ten high-resolution papers that
utilize iterative optimization techniques and sparse representation, including [53–55].

Traditional methods for image restoration are often ineffective and time-consuming.
In contrast, deep neural networks can learn from large amounts of training data rather
than relying on complex statistical models. With the advancement of computing devices
and GPUs, neural networks have become more prevalent. In recent years, the vision
transformer has emerged as a strong contender in the field of computer vision, including in
the area of image SR. According to the results of many research papers, vision transformers
have shown high accuracy and efficiency in SR techniques. In this survey, we can classify
super-resolution transformer networks based on the input size, the type of images, and the
type of task. A low-resolution image X̂ can be expressed as

X̂ = D(X ⊗B) ↓ +N , (6)

where X is a high-resolution image, B is effect blur, and N is random noise. SR models
based on transformers can be divided based on the nature of the images. Using a generic
image to train super-resolution models is the most common and comprehensive method in
most super-resolution applications. One of the most famous models is SwinIR [50], which
is widely popular. SwinIR is an image restoration model that does more than one task
depending on the type of training. SwinIR is inspired by the swin v1 [56] transformer used
in image classification. SwinIR consists of a convolutional layer at the beginning called
shallow feature extraction. In the middle, SwinIR consists of 36 consecutive swin blocks
divided into six stages; each stage consists of 6 blocks and is called deep feature extraction.
Finally, the reconstruction layer, which contains more than one type, depending on the task,
in super-resolution, is an enlargement layer for the image dimensions. Because of the high
efficiency of the swin model in extracting global and local features, it has also been used in
many super-resolution models such as SWCGAN [57], SwinFIR [51] and 3DT-Net [58].

The HAT [49] model is a model that combines self-attention and channel attention, so it
has a high ability to aggregate features. HAT also proposed an overlapping cross-attention
module to collect information through cross-windows in a new and highly efficient way.
Based on the results shown in Tables 2–4, HAT is the highest model in PSNR and SSIM
scores across all scales. The SwinFIR model is a recent variation of the SwinIR model that
utilizes Fast Fourier Convolution (FFC) components to extract global information suitable
for the task of super-resolution. This is achieved by combining global and local features
extracted by the FFC and residual modules.

Table 2. Generic Image Super-Resolution-Based on ViT for scale ×2. Best records are emphasized in
bold font.

Method Training Dataset Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Manga109
PSNR/SSIM Parameters

HAT [49], 2022 DF2K 35.29/0.9293 32.74/0.9066 41.01/0.9831 20.8M
SwinFIR [51], 2022 DF2K 34.93/0.9276 32.64/0.9054 40.61/0.9816 13.99M
IPT [59], 2021 ImageNet 34.43 32.48 - 46.0M
SwinIR [50], 2021 DF2K 34.61/0.9260 32.55/0.9043 40.02/0.9800 11.8M
CrossSR [60], 2022 DIV2K 33.99/0.9218 32.27/0.9000 - 18.3M
SRT [61], 2022 DIV2K 33.95/0.9207 32.35/0.9018 - 11M
ELAN [62], 2022 DIV2K 33.94/0.9207 32.30/0.9012 39.11/0.9782 582K
HIPA [63], 2022 DIV2K 34.25/0.9235 32.48/0.9040 39.75/0.9794 19.2M
ACT [64], 2022 ImageNet 34.68/0.9260 32.60/0.9052 40.11/0.9807 46.0M
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Table 3. Generic Image Super-Resolution-Based on ViT for scale ×3. Best records are emphasized in
bold font.

Method Training Dataset Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Manga109
PSNR/SSIM Parameters

HAT [49], 2022 DF2K 31.47/0.8584 29.63/0.8191 36.02/0.9576 20.8M
SwinFIR [51], 2022 DF2K 31.24/0.8566 29.55/0.8169 35.77/0.9563 13.99M
IPT [59], 2021 ImageNet 30.85 29.38 - 46.0M
SwinIR [50], 2021 DF2K 31.00/0.8542 29.49/0.8150 35.28/0.9543 11.8M
CrossSR [60], 2022 DIV2K 30.43/0.8433 29.15/0.8063 33.95/0.9455 0.68M
SRT [61], 2022 DIV2K 30.53/0.8460 29.21/0.8082 - 18.3M
ELAN [62], 2022 DIV2K 30.55/0.8463 29.21/0.8081 34.00/0.9478 590K
HIPA [63], 2022 DIV2K 30.38/0.8417 29.13/0.8061 33.82/0.9460 365K
ACT [64], 2022 DIV2K 30.80/0.8504 29.45/0.8127 34.86/0.9521 19.2M
HAT [49], 2022 ImageNet 31.17/0.8549 29.55/0.8171 35.47/0.9548 46.0M

Table 4. Generic Image Super-Resolution-Based on ViT for scale ×4. Best records are emphasized in
bold font.

Method Training Dataset Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Manga109
PSNR/SSIM Parameters

HAT [49], 2022 DF2K 29.47/0.8015 28.09/0.7551 33.09/0.9335 20.8M
SwinFIR [51], 2022 DF2K 29.36/0.7993 28.03/0.7520 32.83/0.9314 13.99M
IPT [59], 2021 ImageNet 29.01 27.82 - 46.0M
SwinIR [50], 2021 DF2K 29.15/0.7958 27.95/0.7494 32.22/0.9273 11.8M
CrossSR [60], 2022 DIV2K 28.11/0.7842 27.54/0.7464 30.09/0.9077 -
SRT [61], 2022 DIV2K 28.69/0.7833 27.69/0.7379 30.75/0.9100 0.68M
ELAN [62], 2022 DIV2K 28.79/0.7856 27.70/0.7405 32.46/0.8975 18.3M
HIPA [63], 2022 DIV2K 28.87/0.7880 27.75/0.7429 - 18.3M
ACT [64], 2022 DIV2K 28.78/0.7858 27.69/0.7406 30.92/0.9150 601K
HAT [49], 2022 DIV2K 28.68/0.7832 27.62/0.7382 30.76/0.9111 365K
SwinFIR [51], 2022 DIV2K 29.02/0.7945 27.94/0.7463 31.77/0.9231 19.2M
IPT [59], 2021 ImageNet 29.27/0.7968 28.00/0.7516 32.44/0.9282 46.0M

Recently, authors in [65] proposed the first transformer-based light field super-resolution
(LFSR) processing model, called SA-LSA. The model divides each light field into a set of
image sequences and utilizes a combination of convolutional layers and a self-attention
network to reinforce non-local spatial angular dependencies in each sequence. Table 5
compares SA-LSA with other super-resolution models on light field images.

Table 5. Light Field Super-Resolution (LFSR). The best records are in bold font.

Method Scale EPFL
PSNR/SSIM

HCInew
PSNR/SSIM

HCIold
PSNR/SSIM

INRIA
PSNR/SSIM Parameters

SA-LSA [65], 2022
×2

34.48/0.9759 37.35/0.9770 44.31/0.9943 36.40/0.9843 3.78M

LFT-transformer [66], 2022 34.80/0.978 37.84/0.979 44.52/0.995 36.59/0.986 1.16M

SA-LSA [65], 2022
×4

28.93/0.9167 31.19/0.9186 37.39/0.9720 30.96/0.9502 3.78M

LFT-transformer [66], 2022 29.25/0.921 31.46/0.922 37.63/0.974 31.20/0.952 1.16M

SWCGAN uses a swin-inspired switched window self-attention mechanism combined
with the GAN model to combine the advantages of swin switches with convolutional layers.
SWCGAN has been applied to remote-sensing images. Table 6 compares super-resolution
models on remote sensing images.
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Table 6. Image Super-Resolution based on ViT in the Remote Sensing field.

Method Scale Training Dataset AID
PSNR/SSIM

UCMerced
PSNR/ SSIM Parameters

TransENet [67], 2022
×2

UCMerced, AID

35.28/0.9374 34.03/0.9301 -

×4 29.38/0.7909 27.77/0.7630 -

SWCGAN [57], 2022 ×4 - 27.63 3.8M

Transformers have also been applied to the super-resolution of medical images, such
as in the case of the ASFT model [68]. ASFT consists of three branches, two of which
transmit similar features from MRI slices, and the third branch builds the super-resolution
slice. The performance of ASFT is compared with other super-resolution models on MIR
medical images in Table 7 of the corresponding paper.

Table 7. MRI Images Super-Resolution. The best records are in bold font.

Method Scale Training
Dataset

Kirby21
PSNR/SSIM

ANVIL-adult
PSNR/SSIM

MSSEG
PSNR/SSIM

BraTS2018
PSNR/SSIM Parameters

ASFT [68], 2022
×2

Kirby21

43.68 ± 2.08/
0.9965 ± 0.0014

40.96 ± 1.00/
0.9906 ± 0.0013

41.22 ± 1.37/
0.9978 ± 0.0004 - 1.85M

CFTN [69], 2022 39.70 0.9847 - - - 21.93M

ASFT [68], 2022
×3

40.19 ± 2.04/
0.9882 ± 0.0034

37.54 ± 1.10/
0.9703 ± 0.0041

36.82 ± 1.43/
0.9868 ± 0.0021 - 1.85M

CFTN [69], 2022 36.03 0.9612 - - - 21.93M

Cohf-T [70], 2022
×3

-
- - - 34.84/0.9507

152M
×4 - - - 33.26/0.9425

The 3DT-Net architecture is a transformer-based approach that leverages the spatial
information in the hyperspectral images. It utilizes multiple layers of the Swin Transformer
in place of 2D-CNN layers and employs 3D convolutional layers to take advantage of the
spatial spectrum of the data. This architecture has been applied to hyperspectral image
processing, which inherently possesses multi-dimensional characteristics. It is effective
in this task, and it is worth noting that the performance of 3DT-Net has been evaluated
and compared against other state-of-the-art models on hyperspectral images, as shown
in Table 8.

Table 8. Hyperspectral Image Super-resolution ×4. Best records are in bold font.

Method Training
Dataset

Harvard
PSNR/SSIM

CAVE
PSNR/SSIM

Houston
PSNR/SSIM

Pavia Centre
PSNR/SSIM Parameters

3DT-Net [58], 2021 Harvard, CAVE 50.93/0.996 48.05/0.991 - - 3.46M
Fusformer [71], 2022 Harvard, CAVE 48.56/0.995 44.42/0.984 - - 0.10M
Interactformer [72] 2022 - - - 29.74/0.9181 28.51/0.8897 4465 K

Table 9 presents a collection of various super-resolution models that do not belong to
a standardized dataset. The authors in [73] propose a transformer-based super-resolution
texture network, called TTSR. This model uses reference images to create a super-resolution
image from multiple low-resolution images and reference images. The VGG model [74]
extracts features from the reference images. Additionally, a self-attention-based transformer
model is proposed for extracting and transferring texture features from reference and low-
resolution images.
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Table 9. Different Models of Image Super-Resolution for Different Datasets.

Method Sub Task Dataset PSNR/SSIM Parameters

TTSR [73], 2020 Reference-based SR ×4

CUFED5 27.09/0.804

9.10M
Sun80 30.02/0.814

Urban100 25.87/0.784

Manga109 30.09/0.907

CTCNet [75], 2022 Face Image SR ×8
CelebA 28.37/0.8115

-
Helen 27.08/0.8077

BN-CSNT [76], 2022 Thermal Image SR
PBVS-2022 ×2 21.08/0.7803

-
PBVS-2022 ×4 33.64/0.9263

A transformer-based super-resolution architecture, called CTCNet, was proposed by
Gao et al. [75] for the task of face image super-resolution. CTCNet is composed of an
encoder-decoder architecture and a novel global-local feature extraction module that can
extract fine-grained facial details from low-resolution images. The proposed architecture
demonstrated promising results and potential for the task of face image super-resolution.
BN-CSNT [76] is a network that combines channel splitting and the Swin transformer to
extract context and spatial information. Additionally, it includes a feature fusion module
with an attention mechanism, and it has been applied to thermal images to address the
super-resolution problem. One of the main advantages of transformers in super-resolution
is their adaptability to different types of images, similar to CNNs.

4.2. Image Denoising

Noise reduction, or denoising, is crucial in image processing and restoration. Remov-
ing noise from images is often used as a preprocessing step for many computer vision
tasks, and it is also used to evaluate optimization methods and image prior models from a
Bayesian perspective [77]. There are various approaches to reducing noise, including tradi-
tional methods such as BM3D [78], which enhances image contrast by assembling blocks
of similar images from 3D images. There are also machine learning-based methods, and
in [79], there is a comprehensive study on the use of machine learning for noise reduction
in images. The wide range of noise reduction models is due to their widespread use in
signal processing. In recent years, deep learning methods have been dominant in terms
of perceptual efficiency and quality for noise reduction. For an overview of deep learning
models based on CNNs for noise reduction, see [80]. In this section, we will focus on vision
transformer-based noise reduction algorithms. Noisy images production can be expressed
mathematically as

y = x + n, (7)

where y is a noisy image, x is a clean image, and n is the random noise. Noise removal
algorithms based on deep learning are divided into two methods.

There are two main approaches for removing noise from images using ViT, as shown
in Figure 6. The first approach, known as “noise-to-noise,” involves using deep learning
networks to estimate the noise in an image and then subtracting the estimated noise from
the noisy image to generate a noise-free image. The second approach involves using deep
learning networks to estimate noise-free images from noisy images directly. For example,
Prayuda et al. [81] proposed a convolutional vision transformer (CVT) for noise removal
using the noise-to-noise approach, which employs residual learning to reduce noise from
the noisy image by estimating the relationship between the noisy image and its noise map.
Several previous research studies, including SwinIR, Uformer, Restormer, and IPT, have
used a single encoder for all image restoration tasks but have utilized multiple decoders or
reconstruction layers depending on the specific task.
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Figure 6. The main method for removing noise from images using transformer-based approaches.
The top image shows a traditional technique that focuses on restoring clear image details from a noisy
image. The bottom image depicts a more efficient method that estimates the random noise present in
the noisy image and then subtracts this estimated noise from the image to produce a noise-free result.

Liu et al. [82] have proposed a new network called DnT for unsupervised noise
removal from images. DnT combines a CNN and Transformer to estimate clean images
from noisy images, using a loss function that is measured by pairs of noisy independent
images generated from the input images. This method, known as R2R [83], effectively
removes noise from images. In addition, the authors of [84] propose an efficient model
called TECDNet, which utilizes a transformer for data encoding and a convolutional
network for the decoder. Additionally, a convolutional network is incorporated to reduce
computational complexity. Another transformer-based model for noise removal is TC-Net,
which was introduced by Xue et al. [85]. This network consists of extra skip-connections,
window multi-head self-attention, a convolution-based forward network, and a deep
residual shrinkage network. The components of TC-Net work together to integrate features
between layers, reduce computational complexity, and extract local features. The swin
transformer is also frequently used in various shapes and structures for noise removal
in image restoration tasks due to its ability to effectively extract important features from
input images and its adaptability to different structures. Table 10 presents a comparison of
various ViT models for the task of denoising in both generic and medical images. It can be
observed that when the level of noise is high, the performance of the models, as measured
by the SSIM/PSNR metrics, decreases.

Table 10. Image denoising.

Method Train Dataset Dataset Noise Factor (NF) PSNR/SSIM Parameters

CVT [81], 2021 DIV2K

SET 12

15 34.548

-

25 31.865

30 27.676

BSD68

15 33.790

25 30.828

30 26.688
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Table 10. Cont.

Method Train Dataset Dataset Noise Factor (NF) PSNR/SSIM Parameters

SwinIR [50], 2021 DIV2K

Kodak24

15 35.34

11.8M

25 32.89

50 29.79

McMaster

15 35.61

25 33.20

50 30.22

Urban100

15 35.13

25 32.90

50 29.82

CBSD68

15 34.42

25 31.78

50 28.56

IPT [59], 2021 ImageNet CBSD68
30 32.32

46.0M
50 29.88

Uformer [86], 2022 SIDD and DND
SIDD Real world Noise 39.89/0.960

50.88M
DND Real world Noise 40.04/0.956

Restormer [43], 2022 DIV2K and SIDD

CBSD68

15 34.40

25.31M

25 31.79

50 28.60

Urban100

15 35.13

25 32.96

50 30.02

SIDD Real world Noise 40.02/0.960

DnT [82], 2022 -

Set9

25 32.18

-

50 29.29/

75 27.62/

100 26.31/

CBSD68
25 28.78/8.16

50 25.72/7.02

TECDNet [85], 2022 -
SIDD Real world Noise 39.77/0.970

20.87M
DND Real world Noise 39.92/0.955

TC-Net [86], 2022 -
SIDD Real world Noise 39.69/0.970

-
DND Real world Noise 39.88/0.954

SUNet [87], 2022 DIV2K

CBSD68

10 35.94 0.958

99M

30 30.28 0.870

50 27.85 0.799

Kodak24

10 36.79 0.953

30 31.82 0.899

50 29.54 0.810
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Table 10. Cont.

Method Train Dataset Dataset Noise Factor (NF) PSNR/SSIM Parameters

Pocoformer [88], 2022
Real-world
polarized

color image

Real-world
polarized

color image
Real world Noise 39.33/0.966 26.26M

TransCT [89], 2021 Mayo Clinic
Low-Dose CT

Mayo Real world Noise 0.923 ± 0.024
-

Pig Real world Noise 0.87 ± 0.029

TED-Net [90], 2021 Mayo Clinic
Low-Dose CT Mayo Real world Noise /0.9144 18.88M

Eformer [91], 2021 Mayo Clinic
Low-Dose CT Mayo Real world Noise 43.487/0.9861 -

Fan et al. [87] have used a swin transformer as a basic block inside the layers of
the U-net model, and it is called SUNet. Li et al. [88] collected a real dataset of noisy
polarized color images to remove the disturbing noise and used a conventional camera to
take the same images and use these images as ground truth. Then they proposed a hybrid
transformer model based on the attention mechanism to remove the disturbing noise from
the polarized color images, called Pocoformer. The authors in [89] have proposed a model
to improve image quality and reduce noise in Low-Dose Computed Tomography (LDCT).
Their proposed model, called TransCT analyzes distorted images into High-Frequency
(HF) and Low-Frequency (LF) components. Several convolutional layers extract content
and texture features from LF and texture features from HF. The extracted features are
then fed into a modified transformer with three encoders and decoders blocks to obtain
well-polished features. Finally, the refined features are combined to restore high-quality
LDCT images. LDCT images are the most common in diagnosing diseases. However,
LDCT suffers from loud noises more than normal CT images. Therefore, the authors of [90]
have proposed a new convolution-free Token-to-Token (T2T) transformer model to remove
noise from LDCT images. Luthra et al. [91] have proposed a transformer that improves
edge-to-edge using a Sobel filter called Eformer. In addition, non-overlapping self-attention
based on a shifted window is used to reduce computational costs while using residual
learning to remove natural noise in LDCT images.

4.3. Image Deblurring

Blurry images can be caused by various factors, such as the random movement of
objects or the movement of the camera itself and physical limitations. This makes the
problem of blurry images challenging to describe and solve. Blurry images are common in
many image capture devices due to factors such as camera movement or scene changes [92].
It is not feasible to develop a mathematical formula that accurately captures the blur in an
image, as it depends on a range of variables. In the past, various approaches have been
proposed for deblurring images, including traditional methods. Wang et al. [93] made a
comprehensive review of the traditional methods that occurred in common imaging and
divided them into five frames according to the characteristics of each of them. Lay et al. [94]
evaluated 13 single-image deblurring algorithms. Zhang et al. [95] presented a recent study
on deep learning and CNN methods in terms of structure, loss function, and various
applications. This paper will focus on transformer-based deep learning models to treat
blurry images. Figure 7 presents some examples of blurry image processing. The leftmost
image is a full, blurry image, the middle image is a cropped version of the blurry image,
and the rightmost image is the reconstruction of the blurry image using the model.
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Figure 7. Some examples of blurry images processing.

Wang et al. [86] introduced a new transformer-based network called Uformer, consist-
ing of a hierarchical U-net architecture. Uformer is based on two main designs: The locally
enhanced window (LeWin) block significantly reduces computational cost when using it
with high-resolution feature maps rather than window-based self-attention. Secondly, they
designed a learnable multi-scale restoration modulator to adjust the spatial features at the
multi-layer level. Zamir et al. [43] introduced a novel transformer called Restormer Trans-
former (Restormer). Transformers are characterized by high image quality accuracy but
suffer from significant computational complexity. Restormer is a practical image restoration
transformer that models global features and can be applied to large images. Restormer
consists of a multi-Dconv head ‘transposed’ attention (MDTA) block. MDTA is distinct
from the vanilla multi-headed [25] in calculating the inter-channel covariance to obtain an
optimal attention map. An advantage of MDTA is that it uses global relationships of pixels
and optimizes the local context for feature mapping. Table 11 illustrates various image
deblurring models that are based on the ViT architecture. It is worth noting that all the
datasets used in this demonstration are real-world data and not synthetic.

Table 11. Image deblurring.

Method Dataset Training GoPro
PSNR/SSIM

HIDE
PSNR/SSIM

RealBlur-R
PSNR/SSIM Parameters

Uformer [86], 2022 GoPro 33.06/0.967 30.90/0.953 36.19/0.956 50.88M
Restormer [43], 2022 GoPro 32.92/0.961 31.22/0.942 36.19/0.957 25.31M
Multi-scale Cubic-Mixer [96], 2022 4KRD 33.79/0.962 - 39.66/0.969 40M
Stripformer [97], 2022 RealBlur 33.08/0.962 31.03/0.940 39.84/0.974 20M

In order to reduce the computational complexity of transformers, the authors of [96]
proposed a deep network called Multi-scale Cubic-Mixer. Besides, to reduce computational
costs, they did not use any self-attention mechanism. The proposed model uses the
fast Fourier transform to calculate the Fourier coefficients to use the real and imaginary
components and thus obtain the image without blurring. The proposed new network
extracts the long-range and local features from blurred images in the frequency domain.
The authors [97] have proposed a hybrid transformer called Stripformer, which relies
on the attention of inter-strip and intra-strip [98] and which estimates motion blur from
a blurred image by projecting motion blur in vertical and horizontal directions in the
Cartesian coordinate. In addition, the vertical and horizontal features extracted at each
pixel are stored to provide more information for subsequent layers in order to deduce the
blur pattern. This method enables the sequential extraction of multi-scale local features.
Therefore, the stripformer can remove long- and short-range blurred artifacts.
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4.4. Image Dehazing

Image dehazing involves the removal of non-linear noise produced by a turbid
medium, such as dust and fog, which impairs the visibility of images and objects. The
presence of hazing in images adds complex and difficult-to-predict noise, making it a
challenging problem in image restoration. In addition, hazing reduces the accuracy and
efficiency of computer vision algorithms. The generation of hazy images can be described
using the atmospheric scattering model:

y = x ∗ e−βd + a
(

1− e−βd
)

, (8)

where y is a hazy image, x is an image without hazing, a is global atmospheric light, β is
the scattering coefficient, and d is the distance between the camera and the object. Many
computer vision algorithms degrade in hazing scenes. Figure 8 describes an atmospheric
dispersion model describing the hazing formation.
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The RESIDE dataset is commonly used for training and testing models for dehaz-
ing images. It includes 13,990 images in the Indoor Training Set (ITS), 500 images in the
Synthetic Object Testing Set (SOTS), and 20 images in the Hybrid Subjective Testing Set
(HSTS). To address the inconsistency problem of various features from CNN and trans-
former models, the authors of [99] propose a feature modulation module for combining
hierarchical global features from transformers and hierarchical local features from CNN for
image dehazing. Furthermore, Gao et al. [100] proposed a model that combines residual
and parallel convolutional networks with a transformer-based channel attention module
for detailed feature extraction called TCAM. TCAM consists of a channel attention module
and a spatial attention module, and the channel attention module improves features along
the channel.

Table 12 presents a comparison of different ViT models for the task of image dehazing.
It can be observed that many of these models utilize the RESIDE dataset, which consists of
both indoor and outdoor real-world images, for their evaluation. Li et al. [101] proposed
a new two-phase de-hazing network. The first phase is based on the swin transformer
and extracts key features from blurred images. In addition, the swin architecture has
been improved by adding an Inter-block Supervision Mechanism (ISM). In the second
phase, convolutional layers are used to extract local features and are also merged. The
authors [102] have proposed a dual-stream network consisting of a CNN and transformers
to extract global and local features. In addition, they proposed an atmospheric light
estimation model based on atmospheric veils and partial derivatives. Song et al. [103]
introduced a DehazeFormer model for removing hazing from generic images. Besides, they
use multi-head self-attention (MHSA) that is dynamically trainable to adapt to different
generics of images. Additionally, they suggest a soft reconstruction module based on
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SoftReLU. The contributions of Song et al. are to propose a modified normalization layer,
spatial feature aggregation system, and soft activation function. Zhao et al. [104] suggest an
improved framework for complementary features that relies on forcing the model to learn
weak complementary features rather than iteratively learning ineffective features of the
model. In addition, they proposed the Complementary Feature Selection Module (CFSM)
to identify the most valuable features in learning.

Table 12. Image Dehazing.

Method Dataset Training SOTS-Indoor
PSNR/SSIM

SOTS-Outdoor
PSNR/SSIM

HSTS
PSNR/SSIM

O-Hazy
PSNR/SSIM Parameters

DeHamer [99], 2022 RESIDE 36.63/0.9881 35.18/0.9860 - - -
TCAM [100], 2022 RESIDE 21.44/0.8851 - 23.83/0.9022 - -
ISM [101], 2022 RESIDE 36.34/0.9836 30.85/0.9628 30.40/0.9696 - -
Jiao et al. [102], 2022 O-hazy and I-hazy - - - 15.89/0.56 -
Song et al. [103], 2022 RESIDE 38.46/0.994 34.29/0.983 - - 4.634M
Zhao et al. [104], 2021 RESIDE 32.17/0.970 - - 29.87/0.758 -

4.5. Image JPEG Compression Artifact Reduction

With the significant development in cameras, most devices have become highly de-
pendent on images, including airplanes, cars, and smartphones. Images and videos require
huge storage space and high internet speed. This leads to the need for image compression
and storage systems in all applications. However, most compression methods result in
compression noises, such as compression artifacts [105]. JPEG is the most popular image
compression technology on the Internet. JPEG compression technology consists of four
stages: discrete cosine transformation (DCT), entropy coding, block division, and quan-
tization. JPEG suffers from image dropouts at spatial boundaries because JPEG ignores
the spatial connections between image blocks. Therefore, there are approaches based on
filters [106–108] to improve the quality of images after compression, but they suffer from
image blur. Deep learning techniques have emerged in the past few years to solve the
JPEG compression artifact problem by mapping compressed images to ground-truth im-
ages [109–111]. In Table 13, a comparison of transformer-based models for removing JPEG
compression artifacts is presented. The evaluation is done in terms of quality, the number
of parameters, and the datasets used for a single image and the pairs of stereo images.

Table 13. JPEG compression artifact reduction.

Method Type Dataset Quality Factor PSNR/SSIM Parameters

SwinIR [50], 2021 Single Image

Classic5

10 30.27/0.8249

11.8M

20 32.52/0.8748

30 33.73/0.8961

40 34.52/0.9082

LIVE1

10 29.86/0.8287

20 32.25/0.8909

30 33.69/0.9174

40 34.67/0.9317
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Table 13. Cont.

Method Type Dataset Quality Factor PSNR/SSIM Parameters

PTNet [112], 2022 Pair Stereo images

Flickr1024

10 28.05/0.8403

0.91 M

20 30.39/0.9017

30 31.83/0.9264

KITTI2012

10 31.43/0.8786

20 33.85/0.9231

30 35.18/0.9404

KITTI2015

10 31.42/0.8730

20 34.07/0.9245

30 35.57/0.9449

Middlebury

10 32.05/0.8676

20 34.51/0.9200

30 35.85/0.9400

Modern techniques are divided into two parts in JPEG compression artifact reduction;
the first is using one image to solve the problem, and the second is using two or more
images. Each method has advantages and disadvantages. In this work, we present the latest
JPEG compression artifact reduction techniques based on transformers. The most famous
transformer-based model is SwinIR [50] which was mentioned before. Transformers are
distinguished in capturing global and local features from CNN, which only extracts local
features. SwinIR is a model that addresses more than one problem in image restoration, and
the last layers of it are changed to suit the solution of each problem. A single convolution
layer is used in the last block of the SwinIR model to remove the JPEG compression artifact.
In addition, Charbonnier loss [113] was used in training the SwinIR model. The second
type of JPEG artifact removal is the use of stereo image pairs.

4.6. Removing Adverse Weather Conditions

Many computer vision algorithms, including those used for detection, depth estima-
tion, and segmentation [114–116], are sensitive to the surrounding conditions and can be
affected by factors such as adverse weather. These algorithms have important applications
in various systems that are integral to our daily lives, such as navigation and surveillance
systems and Unmanned Aerial Vehicles (UAVs) [117–119]. As a result, it is necessary to
address hostile weather conditions such as fog, rain, and snow that can negatively im-
pact the reliability of vision systems. Traditional methods for removing adverse weather
are often based on empirical observations [120–122]. However, these methods must be
tailored to each weather condition, as an all-weather method is generally ineffective. Ad-
ditionally, there are algorithms based on CNNs that have been developed for removing
adverse weather, including deraining [123–126], desnowing [127–129], and raindrop re-
moval [130,131]. In Figure 9, it can be observed that there are several transformer-based
approaches for removing adverse weather conditions, which can be broadly categorized
into two groups: methods that focus on removing a specific type of adverse weather and
methods that are capable of removing a variety of adverse weather conditions.
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Figure 9. Illustration of the two common types of adverse weather removal algorithms. The top
image shows a technique that removes a single type of adverse weather, such as rain or snow. The
bottom image depicts a more efficient approach that is capable of removing multiple types of adverse
weather at the same time.

Qin et al. [132] proposed ETDNet, which utilizes transformers to extract features
from individual images to remove rain streaks. ETDNet employs expansion filters at
different rates to estimate the appropriate kernel for rainy images, thereby allowing for
the extraction of features in an approximate to exact manner. The authors of [133] utilized
a Swin-transformer [56] for rain removal from single images, utilizing a Swin block in
three parallel branches referred to as Mswt. Deep and shallow features are extracted
through the use of four consecutive Mswt and skip-connections between Mswt. The
authors [134] proposed a two-stage training and fine-tuning approach called Task-Agnostic
Pre-Embedding (TAPE). TAPE is trained on natural images, and then the knowledge is
used to help remove rain, snow, and noise from images in a single model. The authors [135]
proposed a model that eliminates adverse weather conditions at once called TransWeather,
which consists of a single decoder. The weather-type queries are identified by a multi-
headed attention mechanism and matched with the values and keys taken from the features
extracted from the transformer encoder. To reconstruct the images after identifying the
type of deterioration, hierarchical features from the encoder and features from the decoder
are combined and then projected by a convolutional block on the image space. Therefore,
TransWeather consists of one encoder and one decoder to eliminate adverse weather and
generate a pure image. Transformers can extract important global features compared
to CNN. However, when patches are large, transformers fail to pay attention to small
information and detail.

Table 14 presents a comparison of transformer-based models for removing adverse
weather conditions. The models can be divided into two categories: those that remove a
specific type of adverse weather and those that are capable of removing multiple types of
adverse weather. It is important to note that it is generally preferable to use models that
can handle multiple types of adverse weather conditions in real-world applications. For
example, Liu et al. [136] designed an image restoration model called SiamTrans, inspired by
Siamese transformers. SiamTrans is trained on an extensive dataset in a noise reduction task.
Then knowledge transfer is used to train SiamTrans on many low-level image restoration
tasks, including demoireing, deraining, and desnowing. In addition, the SamTrans consists
of the encoder, decoder, self-attention units, and temporal-attention units. Two Uformer
and Restormer models were previously introduced in detail in the image deblurring section.
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Table 14. Removing Adverse Weather Conditions.

Method Dataset Training Rain100L
PSNR/SSIM

Rain100H
PSNR/SSIM

SPAD
PSNR/SSIM

Raindrop800
PSNR/SSIM

Snow100K
PSNR/SSIM Parameters

ETDNet [132], 2021 Rain100L and
Rain100H 41.09/0.986 32.35/0.9299 - - - 32.97M

SDNet [133], 2021 Rain100L and
Rain100H 37.92/0.9843 28.26/0.8957 - - - 2.14M

IPT [59], 2021 ImageNet - 41.62/0.9880 - - - 46.0M

Uformer [86], 2022 SPAD - - 47.84/0.9925 - - 50.88M

Restormer [43], 2022 Rain100L and
Rain100H 38.99/0.978 31.46/0.904 - - - 25.31M

TAPE [134], 2022
Rain200H,

Raindrop800 and
Snow100K

33.17 - - 27.69 26.33 1.07M

TransWeather [135], 2022 Raindrop800 and
Snow100K - - - 34.55/0.9502 33.78/0.9287 31 M

SiamTrans [136], 2022 NTURain 27.02/0.9024 - - - 26.05/0.8605 -

4.7. General Image Enhancement

Image restoration is a technique used to restore missing information in images and has
been applied to various tasks such as super-resolution, denoising, deblurring, dehazing,
JPEG compression artifact reduction, and the removal of adverse weather conditions.
However, some research involving image datasets may not fit neatly into any specific image
restoration task. These datasets may take the form of images captured of different qualities
or images that have undergone significant degradation due to natural or artificial factors,
as shown in Figure 10. The datasets that need improvement have two forms. The first form
is images taken twice, once with high quality and once with low quality. The second form
is images suffering from a lot of image degradation, including noise, downsample, blur,
hazing, and adverse weather conditions.
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Snow100K - - - 34.55/0.9502 33.78/0.9287 31 M 

SiamTrans 
[136], 2022 

NTURain 27.02/0.9024 - - - 26.05/0.8605 - 
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Deng et al. [137] have created a clinical dataset (real fundus). This dataset consists
of 120 real pairs of low-resolution and high-resolution images. They also proposed a
new transformer-based GAN called RFormer. RFormer is a true degradation restoration
model for fundus images. RFormer consists of a generator and a discriminator. The
generator is based on the U-Net architecture and is mainly based on the Window-based
Self-Attention Block (WSAB) but has been replaced by the Multilayer Perceptual (MLP)
with the Feed-Forward Network (FFN). The WSAB generates more realistic images that
capture long-range dependencies and non-local self-similarities. The discriminator model
relies on a transformer to distinguish between real and fake images to monitor the quality
of the generator. The discriminator is based on PatchGAN [138], which has a final layer as
N × N × 1.

Boudiaf et al. [139] have employed an Image Processing Transformer (IPT) model [59]
to address the problem of noise and distortion in underwater images. The IPT model was
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trained on a large number of images for tasks such as super-resolution and noise removal,
and it has shown promising results in this context. In a separate study, the authors in [140]
focused on restoring and improving degraded facial images, due to their significance in
various applications. They proposed the FRGAN model, which can restore facial features
and enhance accuracy. The FRGAN comprises three stages: a head position estimation
network, a Postural Transformer Network, and a Face Generative Adversarial Network.
Additionally, a new loss function called Swish-X was also proposed for use in the FRGAN
model. Souibgui et al. [141] presented a flexible document image enhancement model
called DocEnTr, based on transformers. DocEnTr is the first encoder-decoder-based image
document restoration model that uses transformers without any CNNs. The encoder
extracts the most salient features from the positional pixels and converts them into encoded
patches, without the use of convolution layers, while the decoder reconstructs the images
from the encoded patches. Table 15 presents the results of various ViT models in enhancing
the quality of images. It is important to note the diversity of the datasets used in these
evaluations, which include scenarios that do not require mathematical degradation models.

Table 15. Image Restoration and Enhancement.

Method Type Training Dataset PSNR/SSIM Parameters

RFormer [137], 2022 Medical Real Fundus
restoration 120 pair Real Fundus 28.38/0.863 21.11M

UIE-IPT [139], 2022 Underwater Images UFO-120 23.14/0.90 46.0M

FRGAN [140], 2021 Face Restoration VGGFace2 and CASIA-WebFace 23.54/0.8199 -

DocEnTr [141], 2022
Enhance Handwritten

Document Images
DIBCO -/20.81

-
H-DIBCO -/22.29

STUNet [142], 2022 Blind Face Restoration
EDFace-Celeb-1M (BFR128) 24.5500/0.6978

-
EDFace-Celeb-150K (BFR512) 27.1833/0.7346

DuDoTrans [143], 2021 Medical CT
Reconstruction

NIH-AAPM 32.68/0.9047
-

COVID-19 37.83/0.9727

U2-Former [144], 2021

Image Reflection
Removal PLNet

Real20 23.67/0.835

-

Nature 24.75/0.848

Solid 25.27/0.907

Wild 25.68/0.905

Postcard 22.43/0.889

Image Rain Removal
Rain100L 39.31/0.982

-
Rain100H 30.87/0.899

Image Hazing Removal RESIDE
Indoor 36.42/0.988

-
Outdoor 31.10/0.976

SMIR [145], 2021

MRI image
reconstruction

different sampling ratios
HCP

10% -/0.72

11M

20% -/0.86

30% -/0.87

40% -/0.89

50% -/0.91

Wang et al. [146], 2021 Image Reconstruction ImageNet 20k

Set5 -/32.61

-
Set14 -/28.92

B100 -/27.78

Urban100 -/26.82

Puyang et al. [142] have created two datasets for blind face restoration, known as
BFR128 and BFR512. They also present a comprehensive model for facial image degradation,
which includes noise, down-sampling, blur, and JPEG compression artifacts, and combine
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them in a complete degradation scenario. In addition, they propose the U-net model and
replace the down-sampling and up-sampling layers with swin-transformer blocks. In [143],
they propose the Sinogram Restoration Transformer (SRT) model, which is inspired by the
swin transformer and long-range dependency modeling. They also introduce the Residual
Image Reconstruction Module (RIRM) for restoring X-ray sinograms and a differentiable
DuDo Consistency Layer to preserve consistency in the sinograms, leading to the creation
of high-quality Computed Tomography (CT) images. In [144], the authors propose the
U2-Former transformer based on a nested U-shaped architecture to facilitate feature transfer
between different layers. The model utilizes two overlapping or nested structures: an inner
U-shape built on the self-attention block and an external U-shape to create a deep encoding
and decoding space. This model is complex, but its strength lies in its large transformer
depth, leading to high efficiency in image restoration tasks such as reflection removal, rain
streak removal, and dehazing.

Yan et al. [145] propose a medical MRI model called SMIR, which combines the
advantages of residual contact with those of the transformer. SMIR consists of a feature
extraction unit and a reconstruction unit, with the Swin transformer used as the feature
extractor. The proposed model is applied to different ratio radial filling trajectory samples.
The authors in [146] proposed a U-net-based transformer to combine the advantages of
convolutional layers and transformers. They used several convolution layers in the encoder,
the encoder vector, the transformer encoder block, and the same structure in the decoder.
In addition, they used self-learning and contrastive loss.

5. Discussion and Future Work

In this section, we present the advantages and limitations of ViT in image restoration
as well as the new possible research directions arising from these limitations. The current
study has analyzed the use of transformer models, specifically the ViT, in the field of
image restoration. Our review of the literature found that ViT has been widely applied to
various tasks within image restoration, including Super-Resolution, Denoising, General
Image Enhancement, JPEG Compression Artifact Reduction, Image Deblurring, Removing
Adverse Weather Conditions and Image Dehazing. It has generally achieved strong results
compared to traditional methods and other deep learning models such as CNNs and GANs.

One of the key advantages of using ViT in image restoration is its ability to extract
global features and its stability during training. This allows ViT to effectively model
complex relationships within the data and generalize well to new examples. In addition,
ViT has been shown to be flexible and perform well on various types of data, including
generic images, medical images, and remote sensing data. However, there are also some
limitations to using ViT in image restoration. One major issue is the high computational cost
of training ViT models, which can make them impractical for some applications. However,
ViT performs better than CNN models when trained on large datasets. The performance
of different versions of ViTs in the task of image classification shows that its performance
increases while increasing the number of training images compared to the CNN-based
ResNet (BiT) model [15]. In contrast, ViT suffers from slow training (large training time)
due to the self-attention process, which requires higher computational costs than CNN
models [15]. In addition, ViT is less effective at extracting local features and may struggle
to capture close-range dependencies within the data. This can be a drawback in tasks
requiring detailed, fine-grained image analysis. Figure 11 summarizes the advantages and
drawbacks of ViT in image restoration.
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Despite these limitations, our review suggests that ViT has strong potential for use in
image restoration and has already demonstrated impressive results in a variety of tasks.
However, further research is needed to address the challenges of using ViT in image
restoration, such as reducing the computational cost and improving its ability to extract
local features. This could involve developing more efficient self-attention mechanisms,
adapting the model to the specific characteristics of image restoration tasks, or exploring
hybrid approaches that combine both ViT and other deep learning models.

Several directions for future research could help to further advance the use of ViT in
image restoration. One potential avenue is to explore ways to reduce the computational
cost of training ViT models, such as using more efficient self-attention mechanisms or
adapting the model to the specific characteristics of image restoration tasks. Another
area for investigation is the development of more interpretable ViT models, which could
help better understand and explain the model’s decisions during the restoration process.
This could involve incorporating additional interpretability mechanisms into the model
architecture or designing more transparent loss functions. In addition, further research
could focus on developing hybrid approaches that combine the strengths of ViT with
other deep learning models, such as CNNs. This could allow for the use of the best
features of both models in a single image restoration pipeline, potentially resulting in
improved performance.

6. Conclusions

In conclusion, ViT models have gained widespread attention in computer vision. They
have demonstrated superior performance to traditional models such as CNNs in various
tasks, including image classification, object detection, action recognition, segmentation, and
image restoration. This survey has explicitly focused on the use of ViT models, in the field of
image restoration. We have reviewed a range of approaches based on vision transformers,
including image super-resolution, denoising, enhancement, JPEG compression artifact
reduction, deblurring, removal of adverse weather conditions, and dehazing. We have also
presented a comparative study of the state-of-the-art vision transformer models in each
of these tasks and have discussed the main strengths and drawbacks of their adoption in
image restoration. Overall, our review suggests that vision transformers offer a promising
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approach to addressing the challenges of image restoration and have demonstrated strong
performance in many tasks. However, there are also limitations to their use, including a high
computational cost and difficulty in extracting local features. To further advance the use of
vision transformers in image restoration, it will be important for future research to address
these limitations and explore ways to improve the model’s performance and efficiency.
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