
Citation: Kalinagac, O.; Gür, G.;

Alagöz, F. Prioritization Based Task

Offloading in UAV-Assisted Edge

Networks. Sensors 2023, 23, 2375.

https://doi.org/10.3390/s23052375

Academic Editors: Simone Genovesi,

Manlio Bacco, Francesco Alessio

Dicandia and Nelson Fonseca

Received: 19 December 2022

Revised: 12 February 2023

Accepted: 13 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Prioritization Based Task Offloading in UAV-Assisted
Edge Networks †

Onur Kalinagac 1,2, Gürkan Gür 2,* and Fatih Alagöz 1

1 Department of Computer Engineering, Bogazici University, 34342 Istanbul, Turkey
2 Institute of Applied Information Technology (InIT), Zurich University of Applied Sciences (ZHAW),

8401 Winterthur, Switzerland
* Correspondence: gurkan.gur@zhaw.ch
† This paper is an extended version of our paper published in the Global Information Infrastructure and

Networking Symposium (GIIS) Argostoli, Greece, 26–28 September 2022,
doi:10.1109/GIIS56506.2022.9936953.

Abstract: Under demanding operational conditions such as traffic surges, coverage issues, and low
latency requirements, terrestrial networks may become inadequate to provide the expected service
levels to users and applications. Moreover, when natural disasters or physical calamities occur,
the existing network infrastructure may collapse, leading to formidable challenges for emergency
communications in the area served. In order to provide wireless connectivity as well as facilitate a
capacity boost under transient high service load situations, a substitute or auxiliary fast-deployable
network is needed. Unmanned Aerial Vehicle (UAV) networks are well suited for such needs thanks
to their high mobility and flexibility. In this work, we consider an edge network consisting of UAVs
equipped with wireless access points. These software-defined network nodes serve a latency-sensitive
workload of mobile users in an edge-to-cloud continuum setting. We investigate prioritization-based
task offloading to support prioritized services in this on-demand aerial network. To serve this end,
we construct an offloading management optimization model to minimize the overall penalty due to
priority-weighted delay against task deadlines. Since the defined assignment problem is NP-hard,
we also propose three heuristic algorithms as well as a branch and bound style quasi-optimal task
offloading algorithm and investigate how the system performs under different operating conditions
by conducting simulation-based experiments. Moreover, we made an open-source contribution to
Mininet-WiFi to have independent Wi-Fi mediums, which were compulsory for simultaneous packet
transfers on different Wi-Fi mediums.

Keywords: UAV networks; edge computing; task offloading; SDN; emergency computing; vehicular
communications

1. Introduction

Future network infrastructure such as 6G networks is expected to provide much
better QoS and user experience for a wide range of networked services anytime–anywhere
in an edge-to-cloud continuum [1]. To this end, Unmanned Aerial Vehicles (UAVs) are
instrumental to deploy a local network infrastructure dynamically or on an on-demand
basis. These circumstances can occur during short-term demand surges for capacity, post-
disaster communications, or dynamic data collection [2]. In that regard, UAV networks
have three salient characteristics [3]. The first one is related to their location: since they are
aerial systems, they enjoy a higher probability of line-of-sight (LoS) links for connecting
ground nodes and other UAVs in comparison to terrestrial systems. Secondly, UAVs can
be dynamically deployed in response to emerging capacity and connectivity requirements
unlike the stationary ground infrastructure. Finally, a swarm of UAVs can construct scalable
multi-UAV networks in a flexible configuration for pervasive and seamless services.

Sensors 2023, 23, 2375. https://doi.org/10.3390/s23052375 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052375
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3105-4904
doi:10.1109/GIIS56506.2022.9936953
https://doi.org/10.3390/s23052375
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052375?type=check_update&version=1

Sensors 2023, 23, 2375 2 of 26

On the ground level, novel intelligent mobility solutions such as self-driving cars are
already in operation, and vehicle communications are becoming more vital as user adoption
increases. Applicable use cases in 5G and future networks may also be mission-critical,
relying on connected services, such as emergency communications or cloud robotics for
search and rescue. For these applications, UAVs can assist user devices and vehicles by
providing cloud access, packet relaying or edge services for computation, storage and
networking. In this work, we consider such a UAV integrated edge network and focus on
the use case in which UAVs create an ad hoc network for connectivity including emergency
communications. The investigated edge network is software-defined as envisaged in
current 5G as well as future networks, which allows our system to cope with network
management issues such as mobility-based frequent topology change and dynamic system
states [4]. A post-disaster operations management scenario is designed in which the
network offers Vehicle-to-Vehicle (V2V) and Vehicle-to-Cloud (V2C) task offloading services
to users, e.g., search and rescue team vehicles or related IoT devices.

For such use cases where we have time-sensitive and mission critical services, it is
imperative to minimize delays via appropriate resource allocation while satisfying resource
constraints. In this paper, we work on this problem and develop a task offloading scheme
comprising different heuristics. We adopt a priority based approach for computation tasks
in our edge UAV network with limited connectivity and resource availability. We also
integrate a processing deadline into our scheme for each task as the key QoS criterion. More-
over, we investigate the performance of this system under different operating conditions
via simulation-based experiments.

The contributions made in this paper can be listed as follows:

• Offloading management optimization model: We proposed a mathematical model to make
centralized assignment/offloading decisions for the incoming task processing requests.
Our model considers centralized assignment decisions for task offloading requests
received from mobile ground user units. Offloading can be assigned to ground vehicles
or a cloud processor service. The model’s objective function is to minimize average
penalty scores caused by task completion time;

• Open-source contribution to Mininet-WiFi: The wmediumd application, a Wi-Fi delay and
loss simulator and used by a Mininet-WiFi emulator [5], did not support independent
mediums simultaneously, which meant that all packets experience scheduling collisions
with one another. It had prevented us from performing multiple data transfers at the
same time without suffering a significant loss in throughput. We have completed the
development of a source-code contribution for both Mininet-WiFi and wmediumd to
isolate networks automatically with a custom configuration option;

• Heuristics and quasi-optimal algorithm for task offloading: Three heuristic algorithms and a
branch and bound style quasi-optimal task offloading algorithm are implemented. The
latter works on the previously simulated data to obtain better insight for the evaluation
of our heuristic algorithms with respect to near-optimal operation.

The rest of the paper is organized as follows: In Section 2, we provide an overview of
related studies in UAV networks, task offloading, and SDN. In Section 3, we present the
system-related models. Next, we develop our problem formulation in Section 4. Then, we
explain proposed task offloading algorithms in Section 5. In Section 6, we describe our
simulation environment and its components. Later on, simulation results and performance
metrics are presented in Section 7. Finally, we conclude the paper in Section 8.

2. Related Work

The related work is divided into the three main categories. The first category includes
works on UAV applications in vehicular networks. The second category discusses task
offloading algorithms and edge-cloud continuum perspective based on UAVs. Finally, SDN
use cases for UAV and vehicular networks are reviewed in the final category.

Sensors 2023, 23, 2375 3 of 26

2.1. UAV-Aided Vehicular Networks

Vehicles communicate with each other and with public networks through various
communication systems, such as cellular networks and VANETs, to improve road efficiency
and safety and access connected services [6]. UAVs mounted with communication equip-
ment can improve the connectivity and efficiency of these networks in various ways [7].
UAVs can optimize the VANET routing process or they can be utilized as Store-Carry and
Forward nodes to help ground vehicular networks improve connection and reliability in
the presence of disconnected vehicles.

Similar to our study, Jia and Zhang [8] use UAVs as flying base stations to provide
communications to rescue vehicles in disaster-affected areas. They look into the relationship
between UAV altitude and vehicle connectivity for a single UAV scenario. In the case of
many UAVs, they investigate the smallest number of UAVs required to achieve a certain
level of vehicle communication. In [3], a case study on UAV-aided Vehicular Network (VN)
architecture is presented, in which vehicles drive along a bi-directional two-lane straight
highway while two mobile drones are flying over them to form a relay platform. They com-
pared UAV-aided VN’s throughput and latency performance to an 802.11p-based vehicular
network, demonstrating its effectiveness. These two studies focus on infrastructure level
rather than possible applications such as task offloading on the constructed network.

Pourbaba et al. [9] proposed a sub-optimal method to increase coverage of full-duplex
relay networks among ground vehicles by positioning UAVs. They have used a set of prede-
fined UAV locations and have an estimated Signal-to-Interference-plus-Noise Ratio (SINR)
between ground vehicles and UAVs. They have formulated an l0-norm non-combinatorial
and NP-hard minimization problem and used an l1-norm approximation for it. With
their approximation, a ten percent performance increase has been observed compared to a
baseline scenario where UAVs have fixed locations.

In [10], data dissemination in UAV-aided VANETs is investigated by formulating
a network throughput maximization problem to find delivery strategies and select the
optimal paths for data delivery while considering the transmission rate of links and the
delay constraint for data dissemination. In their analysis, the graph knapsack problem is
reduced to the throughput maximization problem, and a polynomial-time approximation
scheme is proposed to solve that graph knapsack problem. In another study on UAV-aided
data dissemination, Zhang et al. [11] propose a protocol to reduce delay and improve
system throughput by using UAVs as relayers with caching capabilities in VANETs. UAV
trajectories are planned based on vehicle distributions and topology, which directly im-
pacts the performance of UAV-assisted data dissemination. A centralized UAV trajectory
algorithm (CTS-DP) is developed based on dynamic programming. Their results imply
that CTS-DP outperforms the distributed trajectory scheduling algorithm (MHC) studied
in their previous work. In the prior algorithm MHC, each UAV schedules its trajectory by
maximizing vehicle coverage.

2.2. Task Offloading in UAV Networks

UAVs face challenges acting as edge computing nodes because of their computing
power, weight, and battery limits. As a result, task offloading is one of the key approaches
to facilitate the limited resources in the overall system as much as possible and was recently
researched as part of the edge-cloud continuum paradigm.

Wang et al. [12] propose a post-disaster rescue computation task offloading scheme for
cooperative UAVs. UAV computation tasks are offloaded to Unmanned Ground Vehicles
(UGVs) that have idle computation resources. Both UAVs and UGVs seek their own maximum
profits in its setting. They propose a stable matching algorithm to transform the computation
task offloading problem into a two-sided matching problem, taking into account that the
algorithm iteratively solves the problem while maximizing the utility of UAVs.

In [13], a delay-optimal task offloading approach is proposed for a multi-tier edge-
cloud computing system in a multi-user environment. The main objective is the min-
imization of the total service time for UAVs applications. In this approach, UAV task

Sensors 2023, 23, 2375 4 of 26

execution is distributed across edge and cloud server computing nodes. Similarly, in [14], a
dynamic heuristic algorithm is proposed to offload periodic tasks with the objectives of
minimizing total time delay and energy consumption for the Software Defined Vehicular
Network-supported services in the UAV-enabled MEC system.

Huang et al. [15] work on delay-sensitive task offloading to fog networks. They
propose a heuristic particle swarm optimization algorithm based on a Lyapunov framework
to complete tasks on time with the lowest energy consumption. In their stated scenario,
computing units can be sped up to meet the time and stability constraints.

In a multi-UAV-assisted road traffic scenario, authors in [16] construct a three-player
sequential game-based computational offloading methodology for processing UAV data. The
computation delay, energy overhead, and communication and computation costs are all part
of the utility function being studied. Contrarily, task owners in our model are mobile ground
units and task offloading decisions are centralized while UAVs only provide the network.

In [17], an SDN-enabled UAV-assisted vehicular computation offloading cost op-
timization framework is defined. Vehicles can offload computationally intensive and
time-sensitive tasks to reduce execution time and overall energy usage. Each vehicle re-
ceives network traffic data from the SDN controller. Vehicles make decentralized offloading
decisions based on their own interests and global data. The stated problem is very similar
to the one we addressed in our work, but task offloading to other mobile ground vehicles
and UAV mesh networks is not possible in the given study contrary to ours.

As an example of multistage optimization works, a UAV-assisted mobile offloading
and the trajectory optimization problem is studied in [18]. The stated problem turns out to
be non-convex, and the minimum user utility is maximized under the partial offloading
schemes. Their three-stage optimization algorithm is based on successive convex approxi-
mation and nonlinear fractional programming. The power allocation, bandwidth allocation,
offloading decision, and UAV trajectory are jointly optimized for the solution.

In [19], Kang et al. propose a hierarchical aerial computing system that would allow
high altitude platforms (HAPs) and UAVs to work together to provide computing services
for ground devices (GDs) with a variety of QoS requirements. In a hierarchical aerial
computing system, they use the combined computing of UAVs and HAPs to meet the
QoS requirements of GDs. They develop a partially observable Markov decision method
to solve the very complex nonconvex optimization problem, which is constrained by
multi-dimension resource management, energy constraints, and collision avoidance.

In [20], Sacco et al. propose a self-learning strategy that assists a UAV with deciding
whether to delegate its tasks. The decisions are made based on the agent’s projected
behavior, which suggests whether or not edge cloud is advantageous to the incoming tasks.
To make a prediction about future device load, they either use a model from the time-series
class or a model from the class of ML regressors.

Zaman et al. [21] propose a task offloading framework with light user mobility pre-
diction utilizing machine learning techniques. Based on past data, they predict the user’s
future location and may decide on the task offloading at an edge server which is close to
the location instead of local task processing. They compare their task offloading algorithm
with two other mobility based algorithms from the literature.

2.3. Software-Defined UAV Networks

SDN allows for network programmability by separating the control layer from data-
forwarding network elements. SDN architecture can be used to reduce network configuration
time and cost, which is critical for rapidly changing UAV networks [22]. It can also handle
offloading requests and associated routing management based on network traffic [23].

Privacy and protection against external cyber threats are both possible by exploiting
the capabilities of SDN architecture. In that regard, important application domains are
analyzed from a security standpoint in [24]. The description and classification of perfor-
mance assessment metrics in drone design are discussed for test-bed based approaches,

Sensors 2023, 23, 2375 5 of 26

most widely used simulation platforms, and hybrid methods. In addition, potential vulner-
abilities for drone-enabled SDN-based societies are presented.

An SDN routing framework for UAV networks is developed in [25]. A monitoring
platform to obtain network statistics for SDN controllers and a load balancing algorithm
based on that platform’s analytical results are introduced. Routing decisions are controlled
by considering the power limit of UAVs and the priority of flows.

For UAV-assisted infrastructure-less vehicular networks, Alioua et al. [26] propose a
distributed SDN-based architecture. They also propose a road safety scenario as a use-case
for their design. UAVs are used in this case to help emergency rescue vehicles in exploring
and investigating inaccessible affected zones. Lastly, they formulate an offloading decision
problem based on a two-player sequential game and prove the existence of Nash equilibrium.

Zhu et al. [27] consider an SDN-based cellular network with a UAV and BSs. UAV
serves as a computational server in the system, calculating users’ tasks, or as a relay
node, forwarding users’ jobs to MEC-enabled BSs, where they can be calculated in MEC
servers. The objective function is formulated as minimization of the total weighted delay
and energy consumption of the UAV and all users. They propose a joint mode selection
and resource allocation optimization algorithm to solve this optimization problem. The
proposed algorithm decomposes the optimization problem into two subproblems: task
mode selection and resource allocation, which are performed in alternating iterations.

3. System Model

Our network model consists of NU UAVs (Ui) and one ground base station (BS). UAVs
are mounted with wireless Access Points (APs) having multiple Wi-Fi interfaces. One of
the interfaces for each AP provides Wi-Fi service to terrestrial vehicles while the rest form
mesh networks with nearby UAVs’ APs. One of the UAVs is connected to the BS which
has a backhaul link to the Internet and relevant cloud services. A computational unit that
houses an SDN controller and serves as the network controller is also mounted on one of
the UAVs. This controller is managed by a service provider remotely. UAVs are primarily
used for communication, which reduces energy consumption, rather than to offload tasks.
We do not take energy constraints into account for the sake of simplicity. The notations
used in system modeling are listed in Table 1. The network model is shown in Figure 1.

UAV Based APs

Backhaul Connection

Emergency Vehicle
(Task owner A)

Rescue Vehicle
(Task owner B)

Compute Station
(Fog processor A)

Compute Station
(Fog processor B)

Remote Server
(Cloud processor)

SDN Controller

Figure 1. Multi-UAV edge network model investigated in our work.

Sensors 2023, 23, 2375 6 of 26

Table 1. Notations in system modeling.

Symbol Definition

Ui The ith UAV

Vi The ith vehicle

Ki The ith task

Oi,Vj If Vj is the owner of Ki, 1; otherwise, 0

αi The priority of Ki

Di The penalty point of Ki

wi The weighted penalty point of Ki

Ci If Ki is completed, 1; otherwise, 0

pheavy The probability of the task offloaded to the cloud if the pool is heavily occupied

pmedium The probability of the task offloaded to the cloud if the pool is moderately occupied

plight The probability of the task offloaded to the cloud if the pool is lightly occupied

SKi The size of Ki

Pi The ith processor

βi The processing speed of Pi

βcloud The processing speed of cloud

SQi The queue size of Pi

Qi The queue of Pi

NU The number of UAVs

NK The number of tasks

NP The number of processors

z The extra penalty point if the task deadline is missed

All the task offloading decisions are centrally made by a controller application, namely
the offloading orchestrator. Two main types of terrestrial vehicles are present in the system.
The first type corresponds to rescue and emergency vehicles, which are task owners and
signal their task information including a deadline, priority factor, and size to the task
pool. This pool is located at the offloading orchestrator on the controller. The orchestrator
application assigns these tasks to the second type (compute station) of vehicles, also called
task processors, and informs both parties about this assignment. Only task identifier data
are essentially stored in the task pool, not the task data itself. Therefore, the data transfers
are carried out directly from the task owner to the processor units. In Figure 2, this basic
task assignment flow is given. The processor vehicles have their own limited-size queues
to store unprocessed tasks. A processor may simultaneously download the data of multiple
tasks if the policy of the active task offloading algorithm allows that. The processing speed
and queue size depend on the processor group (i.e., we assume class-based processor
capabilities). Similarly, the priority of a task is determined by the owner vehicle’s group
(i.e., class-based task priority). If a task is not completed by the deadline, the system
receives a penalty proportional to the amount of time that has passed between the deadline
and the task completion time. The mobility of vehicles is not linked to the task processing
operation, i.e., a vehicle may leave the area, regardless of its tasks still being processed.
The tasks are preserved for vehicle departures. In other words, a task is also sent back to
the pool if the assigned processor vehicle leaves during packet transmission for that task.
Depending on the deadline, two cases may occur for the situation in which a task owner
leaves the coverage area: The system receives an extra penalty score z if the deadline is
already missed; otherwise, it receives no penalty. To identify and monitor the network

Sensors 2023, 23, 2375 7 of 26

location of vehicles, the orchestrator application listens for ARP packets. Additionally,
access points notify the controller of vehicle departure or disconnection events at their
associated stations periodically.

Offloading
orchestrator

Detect departure of

Decide which processor
 to assign by running

an offloading algorithm
(AGG-1/AGG-2/ADP)

 The processor, The vehicle,

send the task,
 information

send connection
information of

send task data
with size of

inform arrival of

send complete
information

Figure 2. Task offloading sequence diagram.

The tasks created by the vehicles have an exponentially distributed inter-arrival time
with rate λ. If the task pool is not empty when a new task arrives, it may be offload-
ed/migrated to the cloud processing server with a probability based on the task pool’s
current occupancy at that time. Essentially, we consider minimizing average prioritization-
based weighted penalty points for task offloading management as a QoS key performance
indicator and thus propose algorithms to achieve that objective.

3.1. Channel Models

Since there is no consensus on a proper path loss model for UAV-enabled networks [28],
we selected two popular path loss models [29,30] and applied them in our network sim-
ulations. In our simulation environment, the data rates of connections are probabilistic,
and the probability values are obtained from the Received Signal Strength Indicator (RSSI)
transmission mode matrix. The matrix values contain the probability of the Wi-Fi rate at
the given RSSI value, i.e., 6, 9, 12, 18, 24, 36, 48 and 54 Mbps for the IEEE 802.11g standard.
The RSSI values for each connection are estimated based on the utilized channel models.
The channel model equations used in our system are given in Appendix A.

3.2. Mobility Model

UAVs are deployed to particular locations to cover the area uniformly. They have
small-scale mobility where these aerial systems are assumed to hover around these points
in a limited space. Specifically, they are assumed to be forming a small-sized 8 shape by
moving around two fixed points at the same altitude as the mobility model in [31].

4. Problem Formulation

The problem that we address is the minimization of the average task penalty weighted
by task priority in a software-defined edge network with integrated UAVs. Due to depar-
tures, some tasks may not be fulfilled even in the optimal scenario which prevents us from
using a deadline as a constraint so we introduce a penalty scoring system in which an extra
penalty score is added for unfilled tasks in order to encourage the completion of all tasks.
The list of time-related notations that we utilize in the problem formulation is given in
Table 2. In addition, we utilize indicator function 1w that is assigned to one if w is true,
zero, otherwise.

Sensors 2023, 23, 2375 8 of 26

Table 2. Time-related notations in problem formulation.

Symbol Definition

T The number of time slots

ttotal,i The time elapsed to complete Ki

tpool,i The time elapsed to be assigned for Ki

ttx,i The time elapsed to transmit Ki

tqueue,i The time elapsed on processor queue for Ki

tprocess,i The time elapsed to process Ki

tdeadline,i The time budget for Ki to be processed without any QoS violation, i.e., penalty

aPi The arrival time slot of Pi

bPi The departure time slot of Pi

aKi The arrival time slot of Ki

cKi The completion time slot of Ki

A task’s lifetime in our edge network is composed of various components due to pool
wait, transmission time, processor queue wait and processing time. Ci variable represents
if ith task Ki is successfully processed. Parameter xij is equal to one if Ki is decided to
be offloaded to Pj and, similarly, yi is equal to one if Ki is decided to be offloaded to the
cloud. These decision variables are equal to zero otherwise. ttotal,i is the total time needed
to complete Ki and defined as follows if and only if (↔) the task is completed, which is the
case when Ci equals 1:

Ci =
NP

∑
j=1

xij + yi ∀i (1)

ttotal,i = tpool,i + ttx,i + tqueue,i + tprocess,i ↔ Ci = 1 (2)

tprocess,i = SKi /(
NP

∑
j=1

βixij + βcloudyi) ↔ Ci = 1 (3)

ttx,i = SKi /(
NP

∑
j=1

LKi ,Pj(t)xij + LKi ,cloud(t)yi) ↔ Ci = 1 (4)

Equation (1) ensures that, in the best scenario, a task is processed only by a single processor.
In Equation (2), the required time to complete Ki is calculated by summing all the related
time components. The related components, processing time tprocess,i and data transmission
time ttx,i, are calculated in Equations (3) and (4).

Di is the penalty for Ki and calculated as:

Di =

max(ttotal,i − tdeadline,i, 0) if Ci = 1

0 if (Ci = 0) ∧ (Oi,Vj = 1) ∧ (bVj < aKi + tdeadline,i)

bVj − aKi − tdeadline,i + z
if (Ci = 0) ∧ (Oi,Vj = 1) ∧ (bVj > aKi + tdeadline,i)

(5)

The weighted penalty point of Ki is calculated as:

wi =αi · Di ∀i (6)

where αi is the task priority.
Now, let us present the optimization problem, which will be solved by the orchestrator

application to decide on the task offloading at each time slot as follows:

Sensors 2023, 23, 2375 9 of 26

min
x,y

D(λ, R) =
NK

∑
i=1

wi/NK (7)

subject to:
NP

∑
j=1

xij + yi ≤ 1 ∀i (8)

xij · cKi ≤ bPj ∀i (9)

xij ∈ {0, 1} ∀i, ∀j (10)

yi ∈ {0, 1} ∀i (11)

In Equation (7), we minimize the summation of the weighted penalty points of all tasks.
Equation (8) ensures that only one vehicle processor or cloud is assigned to a task. There is
inequality because some tasks may not be completed due to the randomness of processor
availability and task owner departure times. The task completion time slot, cKi on the
left-hand side of Equation (9) is the sum of the task arrival time, aKi and ttotal,i. Equation (9)
guarantees that the task should be completed before the processor departs. Because the
departure times are not known during the run-time, only our quasi-optimal algorithm
can use this constraint to guide decisions. For heuristics, a task is sent back to the pool if
the constraint happens to fail. Equations (10) and (11) represent the possible values of the
decision variables.

Task offloading decisions significantly affect multiple delay results, especially when
related vehicles share the same APs or links for connectivity since available data rates for those
vehicles drop. Thus, each possible decision combination should be evaluated. This multi-user,
multi-task problem is proved to be NP-hard [32], while the penalty scoring in our system
model increases the complexity due to its nonlinear behavior upon task owner departures.

5. Task Offloading Algorithms in Our Model

In our algorithm design, the system time is discretized into steps to perform offloading
decisions on the generated time steps. Obviously, the exact time a vehicle will arrive/depart
or a task arrives is unknown during the run-time. Performance comparisons are made
using four different algorithms. The first three algorithms are greedy heuristics and are
used during the simulation experiments. They make decisions according to the available
data at each step, i.e., run in an online mode. They are namely Aggressive-Wait, Aggressive
Tx-Order, and Adaptive offloading algorithms. The available data include vehicle-UAV
associations, existing links with their bandwidths, and rough vehicle departure times.
The final algorithm is named the Quasi-Optimal offloading algorithm and an oracle-type
decision-maker since it operates by extracting better solutions from recorded past data for
benchmarking. Since this algorithm cannot process all the possible solutions from all the
data recorded due to combinatorial explosion, it is quasi-optimal by processing events in
time windows. The notations used in these algorithms are listed in Table 3.

Table 3. Notations in algorithms.

Symbol Definition

wi,Pj wi if Ki is assigned to Pj

Θdecision The maximum number of candidate solutions that the algorithm will attempt to solve within a time-window

ER Event for system event received

TP Controller task pool

TA Task to be assigned

ListD Penalty point list

Sensors 2023, 23, 2375 10 of 26

5.1. Aggressive Wait Offloading Algorithm (AGG-1)

The orchestrator application with the first greedy algorithm AGG-1 tries to offload
tasks until all the queues on the available processors are full. New assignments to the same
processor can be made before the current assigned task’s data transfer is completed. If the
next assigned task is downloaded before the first one, the second task will be processed
after the first is completed. The rationale is to complete the previously assigned task,
probably being the one closer to its deadline, earlier. The AGG-1 algorithm is described in
Algorithm 1, and it is run until the simulation time is up.

Algorithm 1: Aggressive-Wait Offloading Algorithm (AGG-1)

Wait for a system event ER;
if ER is Event.TaskComplete then

Mark the completed Ki as completed and remove it from Qj where xij = 1;
Increase Pj’s available SQj by SKi ;
if There is a task in Qj and Km, the one on the first line of the queue is already
downloaded then

Start to process Km;
Add Event.TaskComplete to global event registry for tprocess,m later.

else if ER is Event.TxComplete then
Mark the transmitted Ki as waiting on Qj;
if Ki is the one on the first line of Qj where xij = 1 then

Start to process Ki and mark it as processing;
Add Event.TaskComplete to global event registry for tprocess,i later.

else if ER is Event.NewProcessor for Pj then
Add Pj to the available processors;

else if ER is Event.ProcessorDeparture for Pj then
Remove Pj from available processors;
From the tasks assigned to Pj, add the ones which are in the transmission
phase to TP;

else if ER is Event.TaskOwnerDeparture then
foreach Ki belongs to the departed Vm do

if Ki in TP then
Remove Ki from TP and mark Ki as failed;

else if Ki in transmission phase then
Remove Ki from the assigned Qj and mark Ki as failed;
Increase available SQj by SKi ;

else if ER is Event.NewTask then
Offload to cloud with a probability depending on the current TP size;
if It is not assigned to cloud then

Add it to TP;

while true do
Calculate wi,Pj for each Ki from TP and the available Pj with remaining queue
size ≥ SKi ;

if There is no task–processor pair used for the calculation then
break;

Xij = The task–processor pair with the lowest wi,Pj ;
Assign Ki to Pj and mark Ki as being transmitted;
Remove Ki from TP;
Decrease available SQj by SKi ;

Go back to the first step.

Sensors 2023, 23, 2375 11 of 26

5.2. Aggressive Tx-Order Offloading Algorithm (AGG-2)

The second greedy algorithm is similar to the first one, AGG-1. The only difference is
that the task transmission completion order (Tx-Order), rather than the task assignment
order as it was in AGG-1, determines the order in which tasks are processed; the one
downloaded earlier is processed first. This difference corresponds to the handling of
Event.TaskComplete and Event.TxComplete events in Table 1, and the related processor
does not check whether the downloaded task was the first one assigned before processing,
contrary to AGG-1.

5.3. Adaptive Offloading Algorithm (ADP)

In ADP, during an offloading decision, the processors with the tasks being transmitted
are skipped, avoiding multiple transfers for the same processor. It aims to decrease the
pressure on the limited network resources and to improve prioritization since it leads to
more tasks in the controller task pool TP and more processor-task combinations upon
arrival of new processor nodes. Algorithm 2 shows the details of the algorithm.

Algorithm 2: Adaptive Offloading Algorithm (ADP)

Wait for a system event ER;
The event handling part is identical to AGG-1.
while true do

Calculate wi,Pj for each Ki from TP and the available Pj which is not assigned
to any tasks that are marked as being transmitted;

if There is no task–processor pair used for the calculation then
break;

Xij = The task–processor pair with the lowest wi,Pj ;
Assign Ki to Pj and mark Ki as being transmitted;
Remove Ki from TP;
Decrease available SQj by SKi ;

Go back to the first step.

5.4. Quasi-Optimal Offloading Algorithm (Q-OPT)

The last approach is a branch and bound based algorithm that processes the whole
simulation data to produce a sub-optimal yet close to optimal objective value for bench-
marking our heuristic algorithms. It analyzes the data from past simulations and functions
as an oracle-type decision-maker. This processed data includes task details (e.g., arrival
time, size, deadline), vehicle positions, vehicle associated AP and RSSI values, and task
processor details.

For each task, possible processor assignments are determined as lists. In order to
narrow down the candidate solutions, arrival and departure times of vehicles and their
connection status per step are considered to filter out the unfitting processors on each
list. Two more decisions, skipping (meaning failing on purpose) and offloading to the
cloud, are also added to these lists. Even the most underloaded setup with meaningful
results generates a huge candidate pool from the Cartesian product of decision possibilities,
which cannot be handled due to combinatorial explosion. Thus, we have developed a time-
windowed quasi-optimal processing approach. The solver processes and makes decisions
on the tasks in the given time interval. The algorithm starts with the time window to check
if the candidate solution pool can be processed. As illustrated in Figure 3, it shrinks the
window end time (window length) until the number of decision combinations is less than a
predefined threshold, Θdecision. The solver skips some of the combinations by bounding.
After finding the optimal value for this interval, it saves the decision of the first task in this
window and moves to the second time window, which is between the arrival time of the

Sensors 2023, 23, 2375 12 of 26

next task and the end of the simulation. It applies the same principle until all tasks are
decided one by one.

(a) Time window size detection

(b) Algorithm progress

Figure 3. Q-OPT algorithm-time window size detection on each step.

6. System Implementation

For our tests, we use an Ubuntu 21.04 operating system on a mobile workstation with
an Intel Core i7-10875H (2.30 GHz × 8), 16 GB RAM, and 256 GB SSD storage. The docker
version of ONOS [33] v2.8 is utilized as an SDN controller. Mininet-WiFi [5] is used to
create host devices, virtual stations, and APs. On Mininet-WiFi and its wireless medium
simulation tool dependency wmediumd, some crucial improvements had to be made in order
to support independent and simultaneous Wi-Fi packet transfers. They are merged into
the main branch (https://github.com/intrig-unicamp/mininet-wifi/pull/419, accessed
on 19 December 2022, https://github.com/ramonfontes/wmediumd/pull/9, accessed
on 19 December 2022). Open vSwitchv2.15 [34] is used for virtual switch emulation. For
traffic generation from vehicles in our experiments, iPerf v3.10 [35] is used. Eclipse SUMO
v1.11.0 [36] is used for vehicle mobility simulation. We implemented our main simulation
driver application in Python 3.9 and the offloading orchestrator in Java 11. The baseline
simulation parameters are listed in Table 4.

Table 4. Baseline simulation parameters.

Symbol Value Definition

λ 0.1 s−1 Exponentially distributed task generation rate

NU 9 Number of UAVs

Task size 30–40 MB Randomly distributed

V 20 km/h Average Vehicle Speed

βcloud 3 MB/s The processing speed of cloud

tdeadline,i 50–120 s The time budget for Ki to be processed without any
QoS violation (randomly distributed)

pheavy 0.9 The probability of the task offloaded to the cloud if
the pool is heavily occupied

https://github.com/intrig-unicamp/mininet-wifi/pull/419
https://github.com/ramonfontes/wmediumd/pull/9

Sensors 2023, 23, 2375 13 of 26

Table 4. Cont.

Symbol Value Definition

pmedium 0.7 The probability of the task offloaded to the cloud if
the pool is moderately occupied

plight 0.3 The probability of the task offloaded to the cloud if
the pool is lightly occupied

Θheavy 10 The threshold value to classify the controller pool as
heavily occupied

Θmedium 7 The threshold value to classify the controller pool as
moderately occupied

Θlight 3 The threshold value to classify the controller pool as
lightly occupied

Θdecision 10 M The maximum number of candidate solutions that
the algorithm will attempt to solve within a time-
window

Ptx,Ui , Ptx,Vi 23 dBm Transmission power of Ui, Vi

Gtx,Ui , Gtx,Vi ,
Grx,Uj , Grx,Vj

3 dBm Antenna gains

σ2 −91 dBm Variance of White Gaussian Noise

f 2.4 GHz The system carrier frequency

ρ 2 Air-to-air path loss exponent

ηLoS, ηNLoS 1 dBm, 20 dBm The additional LoS,NLoS attenuation factors due to
the LoS,NLoS connections

z 60 The extra penalty point if the task deadline is missed

6.1. System Components

There are four main application modules for implementing and running simulations
for our task offloading system in a UAV-assisted software-defined edge network environ-
ment. These are Vehicle Mobility Generation, Network Infrastructure, Offloading Orchestrator,
and Main Simulation Driver. The overall system is depicted in Figure 4.

6.1.1. Vehicle Mobility Generation

We chose a one-square-kilometer area from Istanbul’s Besiktas District (Figure 5) to
reflect an urban traffic and road infrastructure in our system. The data from the selected
region is imported by using the OSM Web Wizard, a utility application bundled with SUMO.
On each run, we retrieved location data from the SUMO Traffic Control Interface (TraCI)
iteratively while tracking the progress on the GUI interface. To visualize the topology
better, UAVs and the BS are inserted as point-of-interest objects on the GUI interface and
updated at each step. Additionally, circles are used to highlight APs’ terrestrial ranges on
the interface. In our simulations, we used five different vehicle classes: two of them with
the task owner role, two of them with the task processor role, and one with no network role.
The last one represents private vehicles that our network does not serve. Vehicle related
simulation settings are listed in Table 5.

Sensors 2023, 23, 2375 14 of 26

UAV Based Switch

SDN Controller

Backhaul Connection

Emergency Vehicle
(Task owner A)

Rescue Vehicle
(Task owner B)

Compute Station
(Fog processor A)

Compute Station
(Fog processor B)

Remote Server
(Cloud processor)

Mininet-WiFi
wmediumd: Simulate delay&loss

mac80211_hwsim:
Virtualize Wi-Fi
network cards

Stations

APs

Hosts

Main Simulation
Driver

ONOS:
SDN Controller

SUMO:
Simulation of Urban MObility

Traffic Control Interface (TraCI)

Offloading
Orchestrator

REST API

OpenFlow
Commands

Figure 4. System components.

Figure 5. The visualization of topology elements in Besiktas network. The terrestrial coverage ranges
of UAVs are indicated by the yellow circles around them.

Sensors 2023, 23, 2375 15 of 26

Table 5. Vehicle parameters.

Role Class Proportion Shape Color Priority βi SQi

Owner A 0.1 Emergency White 0.7 - -

Owner B 0.2 Fire brigade Red 0.3 - -

Processor A 0.06 Trailer Purple - 2 MBps 100 MB

Processor B 0.1 Trailer Cyan - 1.5 MBps 70 MB

- - 0.54 Passenger Pink - - -

6.1.2. Network Infrastructure

The mac80211_hwsim software is a Linux kernel module, and it can virtualize Wi-Fi
network cards. Mininet-WiFi, a fork of Mininet [37], initially loads this module with
the desired number of virtual wireless interfaces necessary for our system. These inter-
faces can be configured just like the real ones, and Mininet-WiFi automates this process.
mac80211_hwsim tracks the current channel of each card’s radio and copies all transmitted
frames to all the operating radio within the same channel. Mininet-WiFi also benefits
from wmediumd, an application which allows simulating frame loss and delay by managing
mac80211_hwsim from its netlink API. It has an event mechanism and adds artificial delays
and failures to packet forwarding operations depending on the given channel model and
radio locations. Dynamic configuration on these parameters can be performed via its
socket API.

All Wi-Fi networks are contention-based and time-division duplexing systems [38].
In wmediumd, a queue mechanism is introduced to order packets to reflect delay caused by
this concept. However, when multi-data transfers are performed simultaneously, it causes
undesired low throughput levels even for the networks that are separated by distance or
channel. There is a study on this issue that suggests a multi-threaded architecture from
scratch [39]. To enable our experiments, we have developed a multi-medium mechanism on
top of the existing repositories, making it possible to isolate queues of the nodes in different
mediums. The new version of the application detects which nodes are talking to each other
by sniffing AP-Station packet transmissions and grouping them. The code improvement
also gives manual configuration ability to Mininet-WiFi end users to setup the system for
advanced topologies. In our infrastructure, the average CPU usage by wmediumd during
simulation was no more than 25% both before and after the multi-medium development,
which indicates that our extension did not cause additional overhead and there was no
CPU bottleneck in both cases.

A LoS probability-based channel model is also implemented on both Mininet-WiFi
and wmediumd for AP-Station interfaces while keeping the existing log distance model for
mesh interfaces. Thus, the applications are run in dual channel model mode. Unfortunately,
a public contribution has not yet been made because it is currently a work in progress.

Nine APs representing UAVs and one AP representing the BS have been added to the
network. UAVs are placed in a grid formation, and one of them is randomly selected for BS
connection. A maximum of three separated mesh links per AP are allowed, and the links
are selected by our routing algorithm, which tries to maximize bandwidth from BS to the
rest of the APs after creating a minimum spanning tree with the highest link capacities.
For AP-BS and AP-AP connections, Wi-Fi 802.11s mesh protocol is used. Different AP and
mesh channels are assigned to the neighbor device interfaces. For the cloud server role, a
Mininet host is linked to the BS AP. For the controller host role, another host is connected
to the centrally positioned AP. A localhost machine is also linked to the system by using
the Network Address Translation (NAT) feature of Mininet for debugging purposes. The
iperf3.10 tool is used for its fresh ’zero copy’ feature to lower the CPU burden caused by
the app. For each data transmission, server and client apps are run on the related station
and host interfaces.

Sensors 2023, 23, 2375 16 of 26

6.1.3. Offloading Orchestrator

Two ONOS controller applications are developed, one for traffic monitoring and one
for packet routing. The first one is used for testing purposes, which collects traffic data
on device interfaces. On the other hand, the second one is one of the core developments
required to facilitate the network. It works as an in-built reactive forwarding app, but there
are crucial differences: When a new ARP packet is received, the in-built app floods the
packet while our app installs all the flow rules required for end-to-end communication. Our
application also installs ARP flow rules to lead ARP packets through the desired connection
path, allowing mesh nodes to store host data. There are multiple separated mesh networks
within the system. Mesh connections of APs do not pass data packets if they have not
discovered the host beforehand in the current mesh protocol, IEEE 802.11s [40]. If a network
location change is detected, the application invalidates all the previously installed flows
related to that vehicle. A running sample of our topology is shown in Figure 6.

Figure 6. A sample network topology in the simulations.

6.1.4. Main Simulation Driver

A modular Python application handles the majority of the simulation logic. The
simulation app performs its routines each second and then sleeps. Upon receiving vehicle
locations from SUMO TraCI, it updates the location of the stations on Mininet-WiFi. It can
send direct commands to a station and host to trigger task generation signaling events and
V2V task data transfers. The controller is assumed to be mounted on the central UAV, so
the application triggers Netcat client command from the station associated with the task
owner vehicle.

7. Performance Evaluation

For the evaluation of the proposed system and the efficiency of our heuristic algo-
rithms, we have selected two main scenarios and three different cases for each. As a
baseline algorithm, we included the Only-Cloud option in which all tasks are offloaded to
the cloud. Each simulation run lasts for 15 min, including pre-population and cool-down
periods, and emulates the same amount of time. All the cases are run ten times for each
case and algorithm combination. The results are presented in the following section.

Sensors 2023, 23, 2375 17 of 26

7.1. Scenario 1—Task Inter-Arrival Time (1/λ)

The expected time value between two tasks is exponentially distributed and equals
1/λ. This scenario shows how the system responds to different loads (varying task request
intervals). The different values for the interval 1/λ are:

• Case 1.1: 1/λ = 5 s;
• Case 1.2: 1/λ = 10 s;
• Case 1.3: 1/λ = 15 s.

7.2. Scenario 2—Average Vehicle Speed V

Starting from the average walking speed of 5 km/h, we analyze the default case of
20 km/h and the relatively high-speed case. As the speed increases, vehicles become more
likely to depart from the network coverage. Additionally, fast movement means more
handover, resulting in more overhead:

• Case 2.1: V = 5 km/h;
• Case 2.2: V = 20 km/h;
• Case 2.3: V = 40 km/h.

7.3. Experimental Results

In this part, we give the numerical findings from our experiments and use them to
analyze the performance under two different scenarios. First, we compare each algorithm’s
objective function D, which represents the average of penalty points weighted by task
priorities. Second, we determine their task processing characteristics by analyzing the
task failure and cloud offloading ratios along with controller pool time (tpool). Lastly,
we analyze their temporal results for task completion by considering the averages of the
task completion (ttotal), transmission (ttx), processor queue (tqueue), and processing (tprocess)
time values.

7.3.1. Impact of Task Inter-Arrival Time

In Scenario 1, we applied three different task request inter-arrival times while main-
taining the same expected number of vehicles. The APs deployed on the environment use
802.11 g mode, which has theoretical throughput of up to 54 Mbps but actually achieves
much less due to overhead and path loss, so there was network congestion even at the
Case 1.3, which has the highest task inter-arrival time. The maximum throughput in our
simulation environment was 36 Mbps, which was achievable for a vehicle-to-UAV link
under 150 m in length. Since many of the vehicles utilize the same interfaces, their share of
the bandwidth becomes much less.

i Impact of Task Inter-Arrival Time on Penalty Results

Our first and main evaluation criterion is the performance analysis of the algorithms
in terms of the main objective function D, which aims to minimize the weighted average
of the prioritization-based penalty points. In Figure 7, the impact of varying task request
intervals on D for each algorithm can be seen. A cloud connection is more stable than
a connection between two moving vehicles because the cloud side is stationary. Cloud
offloading also has the advantage of faster processing and no queue waiting time. As a
result, the Only-Cloud option performs better compared to other heuristics under light
load. On the other hand, as request interval decreases, all algorithms exhibit an exponential
increase in D. Among them, the Only-Cloud option is the most impacted one because
the backhaul link to the cloud becomes a bottleneck, resulting in slower packet transfers,
whereas our heuristics can distribute load to different processors.

The main logic of AGG-1 for preserving download starting order for task processing
is to wait for tasks that are older or chosen earlier due to their priority-deadline values.
It does not seem to be making a meaningful difference in terms of D compared to the

Sensors 2023, 23, 2375 18 of 26

non-preserving version, AGG-2. Having oracle-type decisions and being theoretical output,
Q-OPT seems to give superior results compared to the rest, especially as the load increases
since it can make better decisions in advance while the rest make decisions with much less
limited data. Among the online decision-makers, ADP outperforms the competition by a
significant margin in all three cases.

0 20 40 60 80 100
 (s)

5

10

15

Re
qu

es
t I

nt
er

va
l (

s)

36.6

6.7

6.1

59.2

28.9

11.2

66.4

29.7

16.1

67.3

30.8

15.4

86

20.4

9.4

Q-OPT
ADP
AGG-2
AGG-1
Only-Cloud

Figure 7. Impact of task inter-arrival time on the objective function D.

Along with D, we can see the service delivery skills of the algorithms in Table 6.
For Case 1.1, in which the system is in its most loaded state, users face a high ratio of
task offloading failures, which is due to task owners leaving the area before their task
is successfully transmitted at a high percentage. In addition, an increase in the cloud
ratio means the number of tasks in the controller pools has been increased. ADP has the
highest cloud offloading ratio, which is expected since the processors do not download
multiple tasks simultaneously, leading the pool to be more crowded. Still, ADP has the best
service scores compared to AGG-1 and AGG-2, considering D and task failure ratios. After
analyzing the experimental data records, we have discovered two main reasons. Firstly, the
task download ratio per processor is always less than 1, which is not the case for the other
two heuristic algorithms. Thus, it leads to a less congested network and current offloading
tasks’ transmission times to be shortened. Secondly, since the task pool gets filled more
easily, utilization of the cloud commences earlier, while AGG algorithms start to offload to
the cloud after all their queues are full.

Table 6. Impact of task inter-arrival time on QoS and processing characteristics.

Case ID 1/λ V D Task Failure Ratio Cloud Ratio tpool
Only-Cloud 1.1 5 20 85.96 0.524 1 0
Only-Cloud 1.2 10 20 20.36 0.144 1 0
Only-Cloud 1.3 15 20 9.36 0.083 1 0

AGG-1 1.1 5 20 67.29 0.396 0.384 24.89
AGG-1 1.2 10 20 30.84 0.193 0.024 11.29
AGG-1 1.3 15 20 15.41 0.088 0.012 5.71
AGG-2 1.1 5 20 66.43 0.405 0.377 22.13
AGG-2 1.2 10 20 29.67 0.201 0.029 11.6
AGG-2 1.3 15 20 16.12 0.095 0.021 8.22
ADP 1.1 5 20 59.22 0.339 0.517 28.14
ADP 1.2 10 20 28.9 0.19 0.123 19.57
ADP 1.3 15 20 11.23 0.074 0.033 10.67

Q-OPT 1.1 5 20 36.56 0.237 0.227 45.46
Q-OPT 1.2 10 20 6.71 0.096 0.218 17.65
Q-OPT 1.3 15 20 6.1 0.093 0.388 10.72

Sensors 2023, 23, 2375 19 of 26

ii Impact of Task Inter-Arrival Time on Task Processing Characteristics

From Table 6, we observe that AGGs achieve lower average pool time tpool resulting
from their aggressiveness to fill processor queues. However, ADP and Q-OPT achieve
better performance results in terms of the objective function since they complete tasks one
by one without getting the infrastructure congested. Another reason is that Q-OPT and
ADP allow for easier management of network load by delaying decisions in order to obtain
better assignment options from vehicles that are arriving in the area or from vehicles that
were not previously available.

iii Impact of Task Inter-Arrival Time on Temporal Results for Task Completion

In Figure 8, the component-based average packet delays are presented in a stacked
form. The labels on the top of the bars indicate the task inter-arrival time used for the
given test group. Numerical values are also represented in Table 7. By observing the
task life cycle, we can obtain more insights about the system operation and the potential
improvements. The first thing to notice is that transmission delays account for the majority
of system delays. Increasing available bandwidth while improving network congestion
management and routing protocols could be highly helpful for the performance of such a
network. The processing time has little effect with the current parameters. Only on AGG-1
is a 5–10% delay increase observed due to the queue wait procedure.

Table 7. Impact of task inter-arrival time on temporal results for task completion.

Case ID 1/λ ttotal ttx tqueue tprocess
Only-Cloud 2.1 5 47.31 0.199 1 0
Only-Cloud 2.2 20 63.66 0.282 1 0
Only-Cloud 2.3 40 71.04 0.358 1 0

AGG-1 2.1 5 209.27 153.71 13 17.46
AGG-1 2.2 10 138.02 94.43 12 20.8
AGG-1 2.3 15 107.07 73.59 7 20.76
AGG-2 2.1 5 200.54 160.24 1 17.45
AGG-2 2.2 10 131.07 97.19 2 20.77
AGG-2 2.3 15 106.64 75.82 2 20.56
ADP 2.1 5 194.17 149.76 0 16.27
ADP 2.2 10 128.57 88.57 0 20.4
ADP 2.3 15 91.34 59.75 0 20.87

Q-OPT 2.1 5 94.96 33.96 0 20.73
Q-OPT 2.2 10 73.05 35.7 0 20.35
Q-OPT 2.3 15 70.44 39.34 0 19.06

The vehicles stay in the area for an average of 320 s with the current settings. By
combining this data with the average system delay and task failure ratios, we can state that
it is still possible to have a lower task inter-arrival time than 5 s, which would increase ttotal
to over 300 s, without fully congesting the network.

As a final analysis of this scenario, the system delay and task deadline of the tasks
from simulations using the ADP algorithm are shown in a scatter graph in Figure 9a for
Case 1.1, in Figure 9b for Case 1.2, and lastly in Figure 9c for Case 1.3. For each case, data
from ten runs are reflected in the figures. It gives a good illustration of the strong effect of
task generation rate on the system delay. In Case 1.1, high deviation around the average
implies the system service instability at this level of load. Contrarily, in Case 1.3, our system
runs at a steady state.

Sensors 2023, 23, 2375 20 of 26

Only-Cloud AGG-1 AGG-2 ADP Q-OPT0

50

100

150

200

250

Av
er

ag
e

De
la

y
(s

)

5

20
40

5

20

40

5

20
40

5

20

40

5

2040

ttx

tprocess

tpool

tqueue

Figure 8. Impact of task inter-arrival time on task delay composition.

(a) ADP—Case 1

(b) ADP—Case 2

(c) ADP—Case 3

Figure 9. System delay and deadline distribution for ADP.

Sensors 2023, 23, 2375 21 of 26

7.3.2. Impact of Average Vehicle Speed (V)

Vehicle mobility inherently has a significant effect on our framework since it changes
the network topology. During handover, our offloading orchestrator reconfigures all user-
related flows, but Wi-Fi reconnection and flow installation cause observable disruptions
in data transfer. In the baseline case from the previous scenario, vehicles were moving
at 20 km/h so, for comparison, we had chosen human walking speed as 5 km/h for low
mobility and 40 km/h for the double speed comparison. In order to deal with a moderately
loaded network, we set the inter-arrival task interval (1/λ) to 8 in this scenario.

i Impact of Average Vehicle Speed on Penalty Results

From Figure 10, we can see that mobility had a negative impact on performance.
There are several main reasons according to the experiment data analysis. The first is
that there has been more handover inference to data transfers, and the second is that
offloading decision validities has lasted less; for example, task-assigned processors with
good network connectivity have stayed in this mode for a much shorter duration. Only-
Cloud baseline performance is the least affected by the vehicle speed changes due to its
single-side stationarity. ADP seems to be the most efficient compared to the other heuristics
and the Only-Cloud option.

0 20 40 60 80 100
 (s)

5

20

40

Av
er

ag
e

Ve
hi

cle
 S

pe
ed

 (k
m

/h
)

5.5

10.1

30.7

28.7

41.4

66.2

33.2

47

73.1

36.6

49.4

72.3

47.3

63.7

71.0

Q-OPT
ADP
AGG-2
AGG-1
Only-Cloud

Figure 10. Impact of average vehicle speed on the objective function D.

ii Impact of Average Vehicle Speed on Task Processing Characteristics

In Table 8, we can see the service-related details. The task failure ratio for the Case 2.3
is high in general. Remembering that the task inter-arrival time is constant throughout the
scenario, an increase in tpool and cloud ratio indicates that the offloading orchestrator has
issues serving incoming requests.

iii Impact of Average Vehicle Speed on Temporal Results for Task Completion

The delay distributions are illustrated in Figure 11. As the vehicles become faster,
handover overhead occurs due to the disconnections during network changes, increasing
the transmission times. For all methods, the existing increase in failure ratio indicates that
the offloading orchestrator has issues serving incoming requests as the speed increases.

Sensors 2023, 23, 2375 22 of 26

Table 8. Impact of average vehicle speed on QoS and processing characteristics.

Case # 1/λ V D Task Failure Ratio Cloud Ratio tpool
Only-Cloud 2.1 8 5 47.31 0.199 1 0
Only-Cloud 2.2 8 20 63.66 0.282 1 0
Only-Cloud 2.3 8 40 71.04 0.358 1 0

AGG-1 2.1 8 5 36.63 0.153 0.042 11.54
AGG-1 2.2 8 20 49.35 0.211 0.01 12.45
AGG-1 2.3 8 40 72.29 0.42 0.117 21.02
AGG-2 2.1 8 5 33.22 0.146 0.03 13.11
AGG-2 2.2 8 20 47.03 0.212 0.015 11.54
AGG-2 2.3 8 40 73.14 0.478 0.121 17.67
ADP 2.1 8 5 28.71 0.137 0.107 17.31
ADP 2.2 8 20 41.35 0.197 0.086 17.64
ADP 2.3 8 40 66.15 0.399 0.256 29.53

Q-OPT 2.1 8 5 5.51 0.055 0.146 26.27
Q-OPT 2.2 8 20 10.08 0.033 0.133 24.11
Q-OPT 2.3 8 40 30.69 0.143 0.188 35.27

Only-Cloud AGG-1 AGG-2 ADP Q-OPT0

50

100

150

200

250

Av
er

ag
e

De
la

y
(s

) 5
km/h

20
km/h

40
km/h

5
km/h

20
km/h

40
km/h

5
km/h

20
km/h

40
km/h

5
km/h

20
km/h

40
km/h

5
km/h

20
km/h

40
km/h

ttx

tprocess

tpool

tqueue

Figure 11. Impact of average vehicle speed on task delay distribution.

7.4. Algorithm Analysis

Our algorithms compare all possible task–processor pairings, which makes them
exponential. Heuristic ones consider only the currently available processors, so the solution
pool is small and the problem can be solved in real-time. In Q-OPT, we limit the size of the
solution pool by adjusting the considered time interval on each step in order to solve it in a
feasible amount of time.

7.5. Discussion

To summarize, we were able to describe the core fundamentals of our proposed
UAV-assisted Software-Defined Edge Network and task offloading heuristics through a
step-by-step examination of the test scenarios. These scenarios focused on two main aspects:
task request inter-arrival time and the average speed of the vehicles.

The first scenario helped us to investigate the capacity of the designed network
under three different traffic requirements. Unfortunately, many of the vehicles share the
same interfaces, which impacts their available transmission bit rates and leads to low
capacity levels. From the second scenario, we observed that vehicle mobility has a big
impact on our system since it dynamically modifies the network topology. During the
handover, all user-related flows should be modified. Our offloading orchestrator handles

Sensors 2023, 23, 2375 23 of 26

this job, but reconnection and topology discovery-related delay overheads occur during
topology changes.

The Only-Cloud is sufficient when the request rate is low. However, we clearly observe
that MEC-based solutions are necessary in high-load cases due to the bottleneck on the
back-haul connection. After investigating the performance of our algorithms, it can be
said that ADP outperformed the other heuristic algorithms. This result is related to the
network’s core problem: it requires effective congestion control methods to handle high
levels of traffic load. If we compare AGG-1 and AGG-2 with each other, they have similar
objective function results, but the average delay is lower in the more aggressive case,
AGG-2, due to the extra queue time in AGG-1.

Q-OPT appears to outperform the others, especially as the service request rate increases
because it can make better decisions in advance while the others make decisions with much
fewer data in real-time. Q-OPT highly utilizes cloud server processing from the beginning
and thus slows down when the network is congested. In addition, it fails to complete the
processing of some tasks on purpose. It does not serve the task owners with their departure
time earlier than their task’s deadline even when the system is idle and the task can be
handled. In the high-load cases, the algorithm also skips some tasks for the sake of a better
overall score.

8. Conclusions

From the development side, several paper related artifacts have been developed in
this work. Firstly, a core application orchestrating all the components of emulation has
been created. An orchestrator application for ONOS has been developed for the reactive
management of flows and hosts. Open-source contributions to Mininet-WiFi and wmediumd
have been made on a crucial feature that allows users to operate in isolated Wi-Fi mediums.
Three heuristic algorithms and a branch-and-bound style quasi-optimal task offloading
algorithm were developed, and their performance analysis along with the Only-cloud
baseline case has been conducted in terms of request rate and mobility.

When the demand in the system is low, the Only-Cloud approach is generally adequate.
On the other hand, we note that MEC-based solutions are especially required in high-
load scenarios because of typical back-haul connection bottleneck and latency increase.
Since it can make better decisions in advance while the others must make decisions with
considerably less information in real-time, Q-OPT outperforms the others in terms of the
objective function, particularly as the number of service requests rises. Among the heuristic
algorithms, ADP achieves better performance results since the processors in ADP handle
tasks one at a time without overloading the infrastructure.

The first direction for future work is to expand our framework for smart routing.
The most serious issue we have encountered in our system tests is the limited capacity of
wireless links. Smarter network congestion management and routing algorithms can help
us to improve the capacity of the system and mitigate this issue. It could also be worth
developing smarter heuristic approaches for task offloading. Lastly, better management of
UAV mobility could be used to handle area-based congestion. We have observed that some
of the APs are more likely to be active during our simulations. According to our analysis,
this is because of the traffic model which leads vehicles, especially to the central areas in
the simulated geographical area.

Author Contributions: Conceptualization, O.K., G.G. and F.A.; Methodology, O.K., G.G. and F.A.;
Software, O.K.; Writing—original draft, O.K.; Writing—review & editing, G.G. and F.A.; Visualization,
O.K., G.G.; Supervision, G.G. and F.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: https://github.com/onurklngc/drone-network-onos-and-mininet/
tree/master.

https://github.com/onurklngc/drone-network-onos-and-mininet/tree/master
https://github.com/onurklngc/drone-network-onos-and-mininet/tree/master

Sensors 2023, 23, 2375 24 of 26

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Channel Models

The notations used in channel modeling are listed in Table A1.

Table A1. Notations used in Channel Modeling.

Symbol Definition

ηLoS The additional LoS attenuation factors due to the LoS connections
ηNLoS The additional NLoS attenuation factors due to the NLoS connections
c The speed of light traveling through a vacuum
f The system carrier frequency
dUi ,Uj (t) The distance between Ui and Uj at t
dUi ,Vj (t) The distance between Ui and Vj at t
m, n A2G channel parameters
pLoS,Ui ,Vj (t) The probability of LoS connection between Ui and Vi at t
pNLoS,Ui ,Vj (t) The probability of NLoS connection between Ui and Vi at t
Gtx,Ui The transmission gain of Ui
Grx,Uj The receiver gain of Uj
Grx,Vj The receiver gain of Vj
PUi ,Uj (t) The average received power of Uj from Ui at t
PUi ,Vj (t) The average received power of Vj from Ui at t
LKi ,Pj (t) The link capacity between the owner of Ki and Pj at t
LKi ,cloud(t) The link capacity between the owner of Ki and the cloud server at t
LA,Uj (t) The link capacity between A ∈ {Ui, Vi} and Uj at time slot t
θi(t) The elevation angle at t
ρ A2A path loss exponent

Appendix A.1. Air-to-Ground (A2G) Communication Channel Model

The utilized air-to-ground propagation model is based on the probability of line of
sight and is used for UAV-to-terrestrial-vehicle communication.

In time slot t, the path losses for LoS and NLoS from ith UAV Ui to jth vehicle Vj are
given by:

PLLoS,Ui ,Vj(t) = PLFS,Ui ,Vj(t) + ηLoS (A1)

PLNLoS,Ui ,Vj(t) = PLFS,Ui ,Vj(t) + ηNLoS (A2)

where PLFS,Ui ,Vj(t) is free space path loss, which is calculated as:

PLFS,Ui ,Vj(t) = 20log(4πdUi ,Vj(t) f /c) (A3)

In time slot t, a connection between ith UAV Ui and jth vehicle is LoS with a probability,
pLoS,Ui ,Vj(t) or NLos with a probability, pNLoS,Ui ,Vj(t). They are calculated as:

pLoS,Ui ,Vj(t) =
1

1 + m× exp(−n(θi(t)−m))
(A4)

pNLoS,Ui ,Vj(t) = 1− pLoS,Ui ,Vj(t) (A5)

Then, the average received power of Ui from Vj is

PUi ,Vj(t) = Ptx,Ui + Gtx,Ui + Grx,Vj − P̄LUi ,Vj(t) (A6)

Sensors 2023, 23, 2375 25 of 26

where the average path loss is

P̄LUi ,Vj(t) = pLoS,Ui ,Vj(t)PLLoS,Ui ,Vj(t) + pNLoS,Ui ,Vj(t)PLNLoS,Ui ,Vj(t) (A7)

Appendix A.2. Air-to-Air (A2A) Communication Channel Model

The free-space channel model is used for UAV-to-UAV communication. When Ui
transmits signals to Uj, the received power at Uj is expressed as

PUi ,Uj(t) = Ptx,Ui + Gtx,Ui + Grx,Uj − PLFS,UiUj(t) (A8)

where

PLFS,UiUj(t) = 10log(4πdUi ,Uj(t) f /c)ρ (A9)

References
1. Porambage, P.; Gür, G.; Osorio, D.P.M.; Liyanage, M.; Gurtov, A.; Ylianttila, M. The Roadmap to 6G Security and Privacy. IEEE

Open J. Commun. Soc. 2021, 2, 1094–1122. [CrossRef]
2. Kalinagac, O.; Kafiloglu, S.S.; Alagoz, F.; Gur, G. Caching and D2D Sharing for Content Delivery in Software-Defined UAV

Networks. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25
September 2019; pp. 1–5. [CrossRef]

3. Shi, W.; Zhou, H.; Li, J.; Xu, W.; Zhang, N.; Shen, X. Drone Assisted Vehicular Networks: Architecture, Challenges and
Opportunities. IEEE Netw. 2018, 32, 130–137. [CrossRef]

4. Selvi, H.; Gür, G.; Alagöz, F. Cooperative load balancing for hierarchical SDN controllers. In Proceedings of the 2016 IEEE 17th
International Conference on High Performance Switching and Routing (HPSR), Yokohama, Japan, 14–17 June 2016; pp. 100–105.
[CrossRef]

5. Fontes, R.R.; Afzal, S.; Brito, S.H.B.; Santos, M.A.S.; Rothenberg, C.E. Mininet-WiFi: Emulating software-defined wireless
networks. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM), Barcelona,
Spain, 9–13 November 2015; pp. 384–389. [CrossRef]

6. Zheng, K.; Zheng, Q.; Chatzimisios, P.; Xiang, W.; Zhou, Y. Heterogeneous Vehicular Networking: A Survey on Architecture,
Challenges, and Solutions. IEEE Commun. Surv. Tutor. 2015, 17, 2377–2396. [CrossRef]

7. Alzahrani, B.; Oubbati, O.S.; Barnawi, A.; Atiquzzaman, M.; Alghazzawi, D. UAV assistance paradigm: State-of-the-art in
applications and challenges. J. Netw. Comput. Appl. 2020, 166, 102706. [CrossRef]

8. Jia, S.; Zhang, L. Modelling unmanned aerial vehicles base station in ground-to-air cooperative networks. IET Commun. 2017,
11, 1187–1194. [CrossRef]

9. Pourbaba, P.; Manosha, K.B.; Ali, S.; Rajatheva, N. Full-duplex UAV relay positioning for vehicular communications with
underlay v2v links. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur,
Malaysia, 28 April–1 May 2019. [CrossRef]

10. Fan, X.; Huang, C.; Fu, B.; Wen, S.; Chen, X. UAV-Assisted Data Dissemination in Delay-Constrained VANETs. Mob. Inf. Syst.
2018, 2018, 8548301. [CrossRef]

11. Zhang, R.; Zeng, F.; Cheng, X.; Yang, L. UAV-Aided Data Dissemination Protocol with Dynamic Trajectory Scheduling in VANETs.
In Proceedings of the 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6.
[CrossRef]

12. Wang, Y.; Chen, W.; Luan, T.H.; Su, Z.; Xu, Q.; Li, R.; Chen, N. Task Offloading for Post-Disaster Rescue in Unmanned Aerial
Vehicles Networks. IEEE/ACM Trans. Netw. 2022, 30, 1525–1539. [CrossRef]

13. Almutairi, J.; Aldossary, M.; Alharbi, H.A.; Yosuf, B.A.; Elmirghani, J.M.H. Delay-Optimal Task Offloading for UAV-Enabled
Edge-Cloud Computing Systems. IEEE Access 2022, 10, 51575–51586. [CrossRef]

14. Wang, J.; Feng, D.; Zhu, J.; Huang, H. Vehicular Computation Offloading in UAV-enabled MEC Systems. In Proceedings of the
2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Hangzhou, China, 4–6
May 2022; pp. 1071–1076. [CrossRef]

15. Huang, C.; Wang, H.; Zeng, L.; Li, T. Resource Scheduling and Energy Consumption Optimization Based on Lyapunov
Optimization in Fog Computing. Sensors 2022, 22, 3527. [CrossRef]

16. Alioua, A.; Djeghri, H.; Cherif, M.E.T.; Senouci, S.M.; Sedjelmaci, H. UAVs for traffic monitoring: A sequential game-based
computation offloading/sharing approach. Comput. Netw. 2020, 177, 107273. [CrossRef]

17. Zhao, L.; Yang, K.; Tan, Z.; Li, X.; Sharma, S.; Liu, Z. A Novel Cost Optimization Strategy for SDN-Enabled UAV-Assisted
Vehicular Computation Offloading. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3664–3674. [CrossRef]

18. Feng, G.; Wang, C.; Li, B.; Lv, H.; Zhuang, X.; Lv, H.; Wang, H.; Hu, X. UAV-assisted wireless relay networks for mobile offloading
and trajectory optimization. Peer -Peer Netw. Appl. 2019, 12, 1820–1834. [CrossRef]

http://doi.org/10.1109/OJCOMS.2021.3078081
http://dx.doi.org/10.1109/VTCFall.2019.8891497
http://dx.doi.org/10.1109/MNET.2017.1700206
http://dx.doi.org/10.1109/HPSR.2016.7525646
http://dx.doi.org/10.1109/CNSM.2015.7367387
http://dx.doi.org/10.1109/COMST.2015.2440103
http://dx.doi.org/10.1016/j.jnca.2020.102706
http://dx.doi.org/10.1049/iet-com.2016.0808
http://dx.doi.org/10.1109/VTCSpring.2019.8746630
http://dx.doi.org/10.1155/2018/8548301
http://dx.doi.org/10.1109/ICC.2019.8761170
http://dx.doi.org/10.1109/TNET.2022.3140796
http://dx.doi.org/10.1109/ACCESS.2022.3174127
http://dx.doi.org/10.1109/CSCWD54268.2022.9776115
http://dx.doi.org/10.3390/s22093527
http://dx.doi.org/10.1016/j.comnet.2020.107273
http://dx.doi.org/10.1109/TITS.2020.3024186
http://dx.doi.org/10.1007/s12083-019-00793-5

Sensors 2023, 23, 2375 26 of 26

19. Kang, H.; Chang, X.; Mišić, J.; Mišić, V.B.; Fan, J.; Liu, Y. Cooperative UAV Resource Allocation and Task Offloading in Hierarchical
Aerial Computing Systems: A MAPPO Based Approach. IEEE Internet Things J. 2023, 1. [CrossRef]

20. Sacco, A.; Esposito, F.; Marchetto, G.; Montuschi, P. A Self-Learning Strategy for Task Offloading in UAV Networks. IEEE Trans.
Veh. Technol. 2022, 71, 4301–4311. [CrossRef]

21. Zaman, S.K.; Jehangiri, A.; Maqsood, T.; Shuja, J.; Ahmad, Z.; Umar, A. LiMPO: Lightweight mobility prediction and offloading
framework using machine learning for mobile edge computing. Clust. Comput. 2022. [CrossRef]

22. Secinti, G.; Darian, P.B.; Canberk, B.; Chowdhury, K.R. SDNs in the Sky: Robust End-to-End Connectivity for Aerial Vehicular
Networks. IEEE Commun. Mag. 2018, 56, 16–21. [CrossRef]

23. Misra, S.; Saha, N. Detour: Dynamic Task Offloading in Software-Defined Fog for IoT Applications. IEEE J. Sel. Areas Commun.
2019, 37, 1159–1166. [CrossRef]

24. Al-Turjman, F.; Abujubbeh, M.; Malekloo, A.; Mostarda, L. UAVs assessment in software-defined IoT networks: An overview.
Comput. Commun. 2020, 150, 519–536. [CrossRef]

25. Zhang, X.; Wang, H.; Zhao, H. An SDN framework for UAV backbone network towards knowledge centric networking. In
Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Honolulu, HI, USA, 15–19 April 2018; pp. 456–461. [CrossRef]

26. Alioua, A.; Senouci, S.M.; Moussaoui, S.; Sedjelmaci, H.; Messous, M.A. Efficient Data Processing in Software-Defined UAV-
Assisted Vehicular Networks: A Sequential Game Approach. Wirel. Pers. Commun. 2018, 101, 2255–2286. [CrossRef]

27. Zhu, Y.; Wang, S.; Liu, X.; Tong, H.; Yin, C. Joint Task and Resource Allocation in SDN-based UAV-assisted Cellular Networks. In
Proceedings of the 2020 IEEE/CIC International Conference on Communications in China, ICCC 2020, Chongqing, China, 9–11
August 2020; pp. 430–435. [CrossRef]

28. Liu, C.; Ding, M.; Ma, C.; Li, Q.; Lin, Z.; Liang, Y.C. Performance Analysis for Practical Unmanned Aerial Vehicle Networks
with LoS/NLoS Transmissions. In Proceedings of the 2018 IEEE International Conference on Communications Workshops, ICC
Workshops 2018—Proceedings, Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [CrossRef]

29. Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP Altitude for Maximum Coverage. IEEE Wirel. Commun. Lett. 2014,
3, 569–572. [CrossRef]

30. Zhang, S.; Zhang, H.; Di, B.; Song, L. Cellular UAV-To-X Communications: Design and Optimization for Multi-UAV Networks.
IEEE Trans. Wirel. Commun. 2019, 18, 1346–1359. [CrossRef]

31. Bouachir, O.; Abrassart, A.; Garcia, F.; Larrieu, N. A Mobility Model For UAV Ad hoc Network. In Proceedings of the ICUAS
2014, International Conference on Unmanned Aircraft Systems, Orlando, FL, USA, 27–30 May 2014; pp. 383–388.

32. Chen, W.; Wang, D.; Li, K. Multi-User Multi-Task Computation Offloading in Green Mobile Edge Cloud Computing. IEEE Trans.
Serv. Comput. 2019, 12, 726–738. [CrossRef]

33. Berde, P.; Gerola, M.; Hart, J.; Higuchi, Y.; Kobayashi, M.; Koide, T.; Lantz, B.; O’Connor, B.; Radoslavov, P.; Snow, W.; et al. ONOS:
Towards an Open, Distributed SDN OS. In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking,
Chicago, IL, USA, 22 August 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 1–6. [CrossRef]

34. Pfaff, B.; Pettit, J.; Koponen, T.; Jackson, E.J.; Zhou, A.; Rajahalme, J.; Gross, J.; Wang, A.; Stringer, J.; Shelar, P.; et al. The Design
and Implementation of Open vSwitch. In Proceedings of the NSDI, Oakland, CA, USA, 4–6 May 2015.

35. NLANR (National Laboratory for Applied Network Research)/DAST. iPerf Tool. 2019. Available online: https://iperf.fr/
(accessed on 19 December 2022).

36. Lopez, P.A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flötteröd, Y.P.; Hilbrich, R.; Lücken, L.; Rummel, J.; Wagner, P.; Wießner,
E. Microscopic Traffic Simulation using SUMO. In Proceedings of the 21st IEEE International Conference on Intelligent
Transportation Systems, Maui, HI, USA, 4–7 November 2018.

37. Lantz, B.; Heller, B.; McKeown, N. A Network in a Laptop: Rapid Prototyping for Software-Defined Networks. In Proceedings
of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Monterey, CA, USA, 20–21 October 2010; Association for
Computing Machinery: New York, NY, USA, 2010. [CrossRef]

38. Consortium, I.E. Broadband Wireless and WiMAX; Comprehensive Report; International Engineering Consortium: Chicago, IL,
USA, 2005.

39. Moreira, M.J.M. Yawmd: Multiple Medium Support and Performance Improvements for Wmediumd. Master’s Thesis, University
of Porto, Porto, Portugal, 2020.

40. Carrano, R.C.; Magalhães, C.S.; Saade, D.C.M.; Albuquerque, C.V.N. IEEE 802.11s Multihop MAC: A Tutorial. IEEE Commun.
Surv. Tutor. 2011, 13, 52–67. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2023.3240173
http://dx.doi.org/10.1109/TVT.2022.3144654
http://dx.doi.org/10.1007/s10586-021-03518-7
http://dx.doi.org/10.1109/MCOM.2017.1700456
http://dx.doi.org/10.1109/JSAC.2019.2906793
http://dx.doi.org/10.1016/j.comcom.2019.12.004
http://dx.doi.org/10.1109/INFCOMW.2018.8406959
http://dx.doi.org/10.1007/s11277-018-5815-1
http://dx.doi.org/10.1109/ICCC49849.2020.9238969
http://dx.doi.org/10.1109/ICCW.2018.8403635
http://dx.doi.org/10.1109/LWC.2014.2342736
http://dx.doi.org/10.1109/TWC.2019.2892131
http://dx.doi.org/10.1109/TSC.2018.2826544
http://dx.doi.org/10.1145/2620728.2620744
https://iperf.fr/
http://dx.doi.org/10.1145/1868447.1868466
http://dx.doi.org/10.1109/SURV.2011.040210.00037

	Introduction
	Related Work
	UAV-Aided Vehicular Networks
	Task Offloading in UAV Networks
	Software-Defined UAV Networks

	System Model
	Channel Models
	Mobility Model

	Problem Formulation
	Task Offloading Algorithms in Our Model
	Aggressive Wait Offloading Algorithm (AGG-1)
	Aggressive Tx-Order Offloading Algorithm (AGG-2)
	Adaptive Offloading Algorithm (ADP)
	Quasi-Optimal Offloading Algorithm (Q-OPT)

	System Implementation
	System Components
	Vehicle Mobility Generation
	Network Infrastructure
	Offloading Orchestrator
	Main Simulation Driver

	Performance Evaluation
	Scenario 1—Task Inter-Arrival Time (1/)
	Scenario 2—Average Vehicle Speed V
	Experimental Results
	Impact of Task Inter-Arrival Time
	Impact of Average Vehicle Speed (V)

	Algorithm Analysis
	Discussion

	Conclusions
	Channel Models
	Air-to-Ground (A2G) Communication Channel Model
	Air-to-Air (A2A) Communication Channel Model

	References

