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Abstract: This paper aims to address the obstacle avoidance problem of autonomous underwater
vehicles (AUVs) in complex environments by proposing a trajectory planning method based on the
Gauss pseudospectral method (GPM). According to the kinematics and dynamics constraints, and
the obstacle avoidance requirement in AUV navigation, a multi-constraint trajectory planning model
is established. The model takes energy consumption and sailing time as optimization objectives.
The optimal control problem is transformed into a nonlinear programming problem by the GPM.
The trajectory satisfying the optimization objective can be obtained by solving the problem with a
sequential quadratic programming (SQP) algorithm. For the optimization of calculation parameters,
the cubic spline interpolation method is proposed to generate initial value. Finally, through com-
parison with the linear fitting method, the rapidity of the solution of the cubic spline interpolation
method is verified. The simulation results show that the cubic spline interpolation method improves
the operation performance by 49.35% compared with the linear fitting method, which verifies the
effectiveness of the cubic spline interpolation method in solving the optimal control problem.

Keywords: autonomous underwater vehicle; trajectory planning; Gauss pseudospectral method;
obstacle avoidance; cubic spline interpolation

1. Introduction

With the increasing attention to marine resources, underwater exploration and devel-
opment technology have become hotspots in marine research in various countries. The
autonomous underwater vehicle (AUV) has become an important tool for marine resources
development due to its strong autonomy and controllability, low operational risk, economic
advantages and other performance characteristics [1]. In a complex and limited marine
environment, an AUV should avoid obstacles by moving forward and backward, travers-
ing, floating and sinking, while completing tasks such as maintenance [2], underwater
search [3] and detection [4]. As it is difficult for an AUV to supplement energy in the
process of performing tasks, it is of great practical significance to find an optimal trajectory
with low energy consumption and autonomous obstacle avoidance capability.

The trajectory planning problem is also called the trajectory optimization problem. It
is essentially a nonlinear optimal control problem, which satisfies state constraints, control
constraints and path constraints. According to the given starting point and destination, a
trajectory is planned that satisfies the task requirements in time and space [5]. At present,
most of the research results of motion trajectory planning theory originate from the fields of
aircraft [6], industrial robots [7], unmanned aerial vehicles [8] and autonomous vehicles [9],
while research on trajectory planning in the field of AUVs is still in the initial exploration
stage. Trajectory optimization is usually solved in two steps: trajectory optimization model
transformation and parameter optimization.

The main methods of trajectory optimization model transformation are the indirect
and the direct methods [10]. The indirect methods solve the optimal control problem
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using the maximum principle. Although their calculation accuracy is high, there are some
problems, such as the cumbersome derivation of the optimal solution and the difficult
estimation of the covariant initial values. The process of computing problems with complex
constraints is very difficult, and no relevant research has been found in the field of AUV
trajectory planning. The direct methods have received wide attention. Among these
methods, the pseudospectral method has been the hotspot of trajectory planning research
in recent years [11]. There are three main types of traditional pseudospectral methods: the
Legendre pseudospectral method (LPM), the Gauss pseudospectral method (GPM) and the
Radau pseudospectral method (RPM). The differences lie in the selection and configuration
of the collocation points, which affect the accuracy of the optimal solution, the convergence
speed and the calculation efficiency [12]. In [13], a solution strategy based on the GPM
was presented to optimize the fuel-efficient winglet retractable climb trajectory for near-
space variable-wing aircraft. In [14], a multi-objective excavation trajectory optimization
framework based on the RPM is proposed for the trajectory planning of the unmanned
electric shovel in autonomous mining scenarios. In [15], the trajectory optimization problem
is numerically solved via a hp-pseudospectral sequential convex programming method,
which iteratively solves a sequence of second-order cone programming subproblems until
convergence is attained. The hp-adaptive pseudospectral method combines the finite
element method with the traditional pseudospectral method. It can adjust the position and
the number of discrete points adaptively, and has a high solving accuracy and speed [16].
In [17], the hp-adaptive pseudospectral method was applied to the unmanned aerial vehicle
trajectory planning and the minimum fuel consumption and minimum climb time obtained
were optimized. However, in the field of trajectory planning of underwater vehicles, most
of the existing methods do not take into account the dynamic characteristics and constraints
of the controlled object in trajectory planning, which makes it difficult to track the planned
trajectory and to achieve real optimization.

For parameter optimization problems, common methods include the sequential
quadratic programming (SQP) algorithm, the dynamic programming algorithm, Pon-
tragin’s method, etc. At present, the SQP algorithm is usually used to solve nonlinear
programming problems [18]. Pontryagin’s method allows for control based on the com-
parison of the current attitude to a time-varying desired attitude, allowing for much better
use of control effort and command over slew orientation [19]. In [20], where the simulation
was compiled using both sinusoidal and Pontryagin trajectories, Pontryagin’s method pro-
duced an autonomous trajectory that was more optimal than the sinusoidal autonomous
trajectory. The Gauss Pseudospectral Optimization Software (GPOPS), which is based on
the quadratic programming algorithm, is the most widely used toolbox for the optimization
of trajectory parameters [21]. In [22], the MATLAB software package Sparse Nonlinear
Optimizer (SNOPT) was used to solve the nonlinear programming problem. However, in
the process of parameter optimization, the existing research focuses more on the accuracy
of motion trajectory solutions. Because the position and constraint conditions of an AUV
are dynamic, it requires that the AUV trajectory planning must be a rolling optimization
method based on time windows, and its parameter optimization must have a rapid solution
speed.

With the aim of addressing the above problems, combined with the working character-
istics of AUVs, a multi-constraint trajectory optimization model is constructed and solved.
The main work of this paper is as follows:

(1) The motion model and the obstacle model are established, in which low energy
consumption and short time are considered as the joint optimization objectives. The
GPM and SQP are used to optimize the obstacle avoidance trajectory of AUVs, and
the trajectory satisfying the optimization objectives and constraints is obtained.

(2) Considering the dynamic characteristics of AUVs in the complex underwater en-
vironments, the mathematical model of AUV trajectory planning is improved by
introducing dynamic constraints. The navigation trajectory obtained by the solution
is more in line with the actual requirements and has better traceability.
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(3) When solving the trajectory planning problem based on the GPM, cubic spline interpo-
lation is used to generate the initial values of variables. The search cost is reduced, the
calculation speed is increased, the motion trajectory obtained by solving is smoother
and the fitting effect is better.

The main structure of this paper is as follows: In Section 2, the trajectory planning
problem of AUVs is introduced, and the motion model, the obstacle constraint model,
the energy consumption and sailing time optimization model of AUVs are established.
The trajectory optimization problem of AUVs is described by a mathematical model. In
Section 3, the principle and process of the GPM and the SQP algorithm used to solve the
trajectory planning problem are introduced. The initial value is generated by cubic spline
interpolation and the optimal solution of the trajectory planning problem is obtained by
iterative calculation. In Section 4, a motion trajectory satisfying the optimization objective
and multiple constraints is obtained through simulation. The effectiveness of the pro-
posed method for the trajectory planning is verified. Section 5 summarizes the research
conclusions of this paper.

2. Problem Description

The trajectory planning problem of autonomous underwater vehicles (AUVs) in this
paper can be described as follows: under the condition that the motion constraints and
obstacle avoidance constraints are satisfied, finding the appropriate control amount, so
that the AUV has the lowest energy consumption and the shortest sailing time when
it reaches the target point. In contrast with path planning, the mathematical model of
trajectory planning is generally expressed as a function related to time. Moreover, when
the Gauss pseudospectral method (GPM) is used to solve the optimal control problem, the
functions and equations describing the trajectory planning problem must be continuous and
differentiable. Therefore, the motion constraints and obstacle constraints in the trajectory
planning model need to meet the continuously differentiable conditions.

2.1. Motion Model of Underwater Robot

Under water, the motion of an AUV is generally 6 degrees of freedom, which can be
decoupled into horizontal and vertical plane motion. This paper only discusses the hori-
zontal motion of an AUV. An AUV’s mathematical model mainly includes the kinematics
model and the dynamics model. The kinematics model mainly describes the relationship
between the position, velocity, acceleration and time. The dynamic model mainly describes
the motion characteristics of an AUV according to its mass and force.

If the rolling and pitching motions of the AUV are ignored, the kinematic model of the
AUV in the horizontal motion plane can be expressed as follows:

.
x = u · cos ψ− v · sin ψ,
.
y = u · sin ψ + v · cos ψ,
.
ψ = r.

(1)

where x, y and ψ represent the position and the direction angle of an AUV in a fixed
coordinate system, and u, v and r represent the velocity and the angular velocity of an AUV
in a moving coordinate system.

An AUV is mainly subject to thrust, self-gravity and buoyancy when moving under-
water. The dynamic equations of an AUV in the horizontal motion plane are expressed as
follows [23]: 

mu ·
.
u = mv · v · r− du · u + Tu,

mu ·
.
v = −mu · u · r− dv · v + Tv,

mr ·
.
r = muv · u · v− dr · r + Tr.

(2)



Sensors 2023, 23, 2350 4 of 14


mu = m− X .

u, mv = m−Y .
v,

mr = Iz − N.
r, muv = mu −mv,

du = −Xu − X|u|·u · |u|,
dv = −Yv −Y|v|·v · |v|,
dr = −Nr − N|r|·r · |r|.

(3)

where m is the mass of the AUV; Iz is the moment of inertia; (u, v, r)T is the velocity vector;
X(·), Y(·) and N(·) are the hydrodynamic coefficients; and T = (Tu, Tv, Tr)

T is the system
input consisting of thrust and thrust torque.

2.2. Obstacle Constraint Model

Considering the complexity of entity modelling and the real-time computing ability of
a computer, the underwater dangerous area and obstacle models are abstracted into several
simple geometric figures in this study. As mentioned earlier, the function used to describe
obstacles in trajectory planning must be continuous. Therefore, the function of approximate
shape is used to define obstacles. At present, most of the mathematical models describing
obstacles use the P criterion method. This method can conveniently represent circles,
rectangles, squares, etc. [24]. Although p = 2 can be used to describe spherical or cylindrical
obstacles, a larger p value should be selected in practical application to make the obstacle
description more accurate. However, an excessive p value will increase computational cost,
and the solution of complex dynamic equations may be not convergent [25]. In this paper,
p = 2 is selected to represent the shape of obstacles with circular or elliptical envelopes.

The position relationship between the trajectory points of the AUV and the obstacle
can be expressed as follows:

hi =

(
x(t)− xi

a

)2
+

(
y(t)− yi

b

)2
− 1, i = 1, . . . , n (4)

where (x(t), y(t)) represent the trajectory coordinates of the AUV, and (xi, yi) represent the
center position of the i-th obstacle. The radius of the obstacle in both directions is defined
by a and b. Changing a and b can adjust the size of the obstacle.

Any point (x, y) that makes h = 0 is on the boundary of the obstacle. When planning
the obstacle avoidance trajectory of the AUV, the point (x, y) must be outside the obstacle
to ensure that h > 0.

2.3. Energy Consumption and Sailing Time Optimization Model

When performing tasks, an AUV carries limited energy. To ensure the safe recovery
of an AUV, energy consumption must be considered. The structural design, sailing time,
sailing distance and propeller affect energy consumption, and establishing an appropriate
energy consumption model is essential to achieve energy consumption optimization. The
working area of an AUV is continuously changing, and the sailing speed also changes with
time, so the model can be solved in the form of an integral. Another optimization objective
in the trajectory planning problem is the sailing time. In numerical analysis and calculation,
the position, attitude, velocity and acceleration of an AUV can be expressed as a function
or equation of sailing time.

The goal of trajectory planning in this paper is to realize the joint optimization of
energy consumption and sailing time, and to calculate the trajectory of an AUV reaching
the destination with the lowest energy consumption and the shortest sailing time. In
order to achieve the dynamic balance of the two types of objectives, weight coefficients ω1
and ω2 are introduced, and the weighted coefficient method is used to construct the joint
optimization objective function as follows:

J = ω1tf + ω2

∫ tf

0

(
Tu

2 + Tv
2 + Tr

2
)

dt (5)
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where ω1 + ω2 = 1 and tf represent the terminal time of navigation, and Tu, Tv, Tr represent
the thrust and torque generated by the propeller.

To meet the navigation planning of different requirements, the weight coefficients ω1
and ω2 of the energy consumption and navigation time should be adjusted according to
the actual situation. When ω1 = 1 or ω2 = 1, the trajectory planning achieves the single
objective of the shortest sailing time or the lowest energy consumption, respectively.

3. Motion Trajectory Planning

The Gauss pseudospectral method (GPM) studied in this paper is a kind of collocation
method, which uses a global interpolation polynomial to approximate the trajectory of
state variables and control variables on a series of Legendre-Gauss (LG) points. Compared
with the general collocation method, the GPM can obtain higher solution accuracy and
faster convergence speed with fewer nodes when solving optimal control problems [26].
Trajectory planning based on the GPM mainly includes two parts: optimal control problem
transformation and nonlinear programming problem solving.

3.1. Transformation of Optimal Control Problem

The direct method to solve the trajectory planning problem is to transform it into a
nonlinear programming (NLP) problem through discretization [27]. Because the collocation
points of the GPM are all distributed on the interval [−1,1], the time variable τ ∈[−1,1] is
introduced. The interval t ∈ [t0, tf] is discretized to [−1,1] and the transformation form is
represented as follows:

τ =
2t

tf − t0
− tf + t0

tf − t0
(6)

N LG points and the initial time τ0 = −1 are selected as the collocation points and the
state variables are approximated by N + 1 degree Lagrange interpolation polynomials.

x(τ) ≈ X(τ) =
N

∑
i=0

Li(τ)x(τi) (7)

where the interpolation basis function Li(τ)(i = 0, 1, 2, · · · , N) is defined as follows:

Li(τ) =
N

∏
j=0,j 6=i

τ − τj

τi − τj
(8)

The control variable is approximated by the N degree Lagrange interpolation polyno-
mial.

u(τ) ≈ U(τ) =
N

∑
i=1

L̃i(τ)U(τi) (9)

where the interpolation basis function Li(τ)(i = 1, 2, · · · , N) is defined as follows:

Li(τ) =
N

∏
j=1,j 6=i

τ − τj

τi − τj
(10)

Differentiating Equation (7),
.
x(τk) can be obtained as follows:

.
x(τk) ≈

.
X(τ) =

N

∑
i=0

.
Li(τk)X(τi) =

N

∑
i=0

DkiX(τi) (11)

The differential of the Lagrange polynomial at the LG points can be determined by
off-line calculation of the differential approximation matrix D ∈ RN×(N+1).

The state variables on each LG point are represented as X1N , X2N , X3N , X4N , X5N , X6N ∈
RN , where X1N, X2N, X3N represent the position (x, y) and heading angle ψ of AUV, respec-
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tively, and X4N, X5N, X6N represent velocity (u, v) and angular velocity r, respectively. The
control variables are represented as U1N, U2N and U3N. The dynamic constraints of the
optimal control problem are transformed into algebraic constraints through the differential
approximation matrix, and the integral form of the state equation is obtained as follows:

DX1N = t f−t0
2 (X4N cos X3N − X5N sin X3N)

DX2N = tf−t0
2 (X4N sin X3N + X5N cos X3N)

DX3N = tf−t0
2 X6N

DX4N = tf−t0
2 (mvX5N X6N − duX4N + U1N)/mu

DX5N = tf−t0
2 (−muX4N X6N − dvX5N + U2N)/mu

DX6N = tf−t0
2 (muvX4N X5N − drX6N + U3N)/mr

(12)

The terminal state Xf is approximated by the Gauss integral in discretization.

Xf = X0 +
tf − t0

2

N

∑
k=1

ωk f (X(τk), U(τk), τk, t0, tf) (13)

where τk(1, 2, · · · , N) is the LG point and ωk =
∫ 1
−1 Li(τ)dτ is the Gauss weight.

The obstacle constraint is expressed as follows:(
X1Ni − xi

a

)2
+

(
X2Ni − yi

b

)2
− 1 ≥ 0 (14)

The performance index function obtained by the Gauss integral approximation is
expressed as follows:

J = ω1tf +
tf − t0

2
·ω2 ·

N

∑
k=1

[
ωk ·

(
Tu

2 + Tv
2 + Tr

2
)]

(15)

So far, the GPM has transformed the optimal control problem into an algebraically
constrained nonlinear programming problem through discretization.

3.2. Rapid Solution Method of Trajectory

Based on the above numerical approximation method, the continuous optimal control
trajectory planning problem is discretized and transformed into a nonlinear programming
problem, whose solution is an approximate solution of the continuous Bolza problem. The
nonlinear programming problem can be solved by SQP, which essentially transforms the
nonlinear optimization problem into a series of quadratic programming sub-problems.

According to Equations (12)–(15), the transformed NLP constraint problem is described
as follows:

minJ = ω1tf +
tf−t0

2 ·ω2 ·
N
∑

k=1

[
ωk ·

(
Tu

2 + Tv
2 + Tr

2)]

s.t.



DX1N − t f−t0
2 (X4N cos X3N − X5N sin X3N) = 0

DX2N − tf−t0
2 (X4N sin X3N + X5N cos X3N) = 0

DX3N − tf−t0
2 X6N = 0

DX4N − tf−t0
2 (mvX5N X6N − duX4N + U1N)/mu = 0

DX5N − tf−t0
2 (−muX4N X6N − dvX5N + U2N)/mu = 0

DX6N − tf−t0
2 (muvX4N X5N − drX6N + U3N)/mr = 0

Xf − X0 +
tf−t0

2

N
∑

k=1
ωk f (X(τk), U(τk), τk, t0, tf) = 0(X1Ni

−xi
a

)2
+
(X2Ni

−yi
b

)2
− 1 ≥ 0

(16)
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Taylor expansion is used to simplify the nonlinear constraint problem into a linear
function, and the following quadratic programming problem is obtained as follows:

min 1
2 dT

k Bkdk + (∇J)Tdk

s.t.

{
(∇Ce(x))Tdk + Ce(x) = 0
(∇Ci(x))Tdk + Ci(x) = 0

(17)

where Ce, Ci represent the equality constraints and inequality constraints in Equation (16),
respectively.

The search direction is obtained by solving Equation (17), and the iterative equation is
calculated step by step to obtain the optimal solution to the original problem.

When solving based on the GPM, the selection of the initial value is very important for
the real-time or fast calculation of optimization problems. A prerequisite for real-time or
fast optimization is an efficient initial value generation algorithm. Random initial values or
initial values without any processing will increase the computational cost. If the calculation
is performed with poor quality initial values, then the optimization problem may not
converge to a feasible solution.

For discrete points between the start and target points, a simple way to obtain values
is linear fitting. A straight line connects the discrete points, and the initial value is obtained
by taking values with equal intervals in the interval. Because the linear fitting function
is not smooth enough, the solution calculation speed is slow when the initial value is
substituted into the trajectory planning problem, and the resulting navigation trajectory
is more complicated. Therefore, the cubic spline interpolation method is considered to
calculate the initial value of variables. The variable value [X0, Xf] from the initial state to
the terminal state is divided into n intervals [(x0, x1), (x1, x2), . . . , (xn−1, xn)], with a total of
n + 1 points, where x0 = X0, xn = Xf. In the interval, the constructed cubic spline function
is defined as follows:

Si(x) = ai + bix + cix2 + dix3i = 0, . . . , n (18)

It can be seen from Equation (18) that each interval has four unknowns, and the cubic
spline equation of each interval satisfies the following conditions:

S(xi) = yi
Si(xi+1) = yi+1
Si+1(xi+1) = yi+1
S′i(xi+1) = S′i+1(xi+1)
S′′i (xi+1) = S′′i+1(xi+1)

S′′ (x0) = S′′ (xn) = 0

(19)

The spline coefficients ai, bi, ci, di are solved by Equation (19), and the cubic spline
function in each interval is obtained after substituting ai, bi, ci, di into Si(x). The values at
the LG points are taken as the initial values for solving the trajectory planning problem. By
introducing the cubic spline interpolation method, the fitted curve trajectory is smoother
and more realistic, and the initial value of the interpolation calculation can improve the
solution speed of the optimization problem.

4. Simulation Analysis

In order to verify the effectiveness of the above trajectory planning algorithm, this pa-
per conducts an optimization simulation for the joint objective of low energy consumption
and short sailing time. The starting state of the autonomous underwater vehicle (AUV)
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is set to X0 = (0, 0, π/3, 0, 0, 0) and the target state is set to Xf = (25, 25, π/6, 0, 0, 0). The
constraints of state variables and control variables during sailing are expressed as follows:

0 m ≤ x(t) ≤ 30 m
0 m ≤ y(t) ≤ 30 m
−π ≤ ψ(t) ≤ π
−1 m/s ≤ u(t) ≤ 1 m/s
−1 m/s ≤ v(t) ≤ 1 m/s
−π/6 rad/s ≤ r(t) ≤ π/6 rad/s

(20)


−53 N ·m ≤ τu ≤ 74 N ·m
−53 N ·m ≤ τv ≤ 74 N ·m
−53 N ·m ≤ τr ≤ 74 N ·m

(21)

The relevant parameters in the kinetic constraints are shown in Table 1.

Table 1. Parameters related to dynamic constraints.

Name Value Name Value

X
.
u −30 kg N

.
r −30 kg·m2

Xu −70 kg/s Nr −50 kg·m/s
X|u| · u −100 kg/m N|r| · r −100 kg/m

Y
.
v −80 kg Iz 50 kg·m2

Yv −100 kg/s m 185 kg
Y|v| · v −200 kg/m

The obstacle parameters in the navigation environment are shown in Table 2, and
there are four obstacles in total.

Table 2. Obstacle parameters.

Obstacle Area Center Coordinates Radius

1 (10 m, 10 m) 2
2 (12 m, 15 m) 1
3 (17 m, 14 m) 1
4 (20 m, 20 m) 2

In the above simulation environment, 50 LG points are selected to discretize the model
and then an SQP algorithm is used to solve the problem.

Scenario 1: The shortest sailing time is set as the objective function. The cubic spline
interpolation method is used to calculate the initial value for the solution. After the
simulation calculation, the navigation trajectory of the AUV and the change trend of
the control variables and state variables are obtained as shown in Figure 1. The whole
simulation calculation takes 16.581 seconds.

In Figure 1a, the planned trajectory can complete the navigation from the starting
point to the destination and avoid collision with obstacles. Due to the requirement of
the objective function of the shortest sailing time, the AUV’s navigation path tends to be
smooth. The sailing time is 73.002 seconds. In Figure 1b, under the condition of meeting
the requirements of the AUV’s own thrust and torque, the thrust Tu in the control variable
is always in the upper limit during the whole navigation process. In Figure 1c, within the
limit of speed, the power generated by thrust and torque forces the AUV to sail at the upper
limit of speed. Thus, the AUV can reach the destination with the shortest sailing time.
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Figure 1. Result of each state in scenario 1: (a) Trajectory planning of the AUV; (b) Variation diagram
of thrust; (c) Diagram of velocity change in x and y directions.

Scenario 2: Similarly to scenario 1, the shortest sailing time is still set as the objective
function. However, the difference is that the initial value is generated by linear fitting that
takes values at equal intervals between the start point and the end point. After substituting
the initial value for calculation, the convergence solution of the optimal control problem can
be obtained. The obtained trajectory is shown in Figure 2. The whole simulation calculation
takes 24.763 seconds.
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Figure 2a shows that the AUV can achieve obstacle avoidance navigation. The whole
navigation path is generally smooth, but after bypassing the last obstacle, the AUV’s course
deviates. The sailing time is 70.713 seconds. In Figure 2b, the change trend of Tu in the
control variables is generally smooth. Within the limits of thrust, the AUV is driven to
sail with the upper limit of thrust. The values of control variables Tv and Tr have obvious
fluctuations, which affected the speed change of the AUV. During the whole voyage, the
speed fluctuates frequently, as shown in Figure 2c.

By comparing the simulation results of scenario 1 and scenario 2, it can be concluded
that the initial values generated by the cubic spline interpolation method and the linear
fitting method, respectively, can be used to find the convergent solution. The trajectory
planned from the starting point to the target point can avoid collision with obstacles, and
the control variables can be optimized within the range of variable constraints. However,
the average values of control variables and the average values of the speed of the two
methods are significantly different, as shown in Figure 3.
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In Figure 3a, the thrust Tu in the linear fitting method is 21.769 N higher than that in
the cubic spline interpolation method. In Figure 3b, the change of thrust makes the speed
Vy in the linear fitting method 0.147 m/s higher than that in the cubic spline interpolation
method. In the case of similar sailing time, the thrust and speed calculated by the cubic
spline interpolation method can reduce energy consumption and optimize the control
variable value.

Under the same simulation environment, the calculation time of the initial value
obtained by the cubic spline interpolation method is shorter than that of the initial value
obtained by taking the values at equal intervals. The solution time of the optimal control
problem is reduced from 24.763 s to 16.581 s, and the calculation speed is increased by
49.35%. The calculation results meet certain accuracy requirements, which can verify the
validity and applicability of the GPM in trajectory planning applications, with the initial
value obtained by the cubic spline interpolation method.

Scenario 3: Short time taken and low energy consumption are considered as the joint
optimization objectives, and the cubic spline interpolation method is used to generate the
initial value. The motion trajectory obtained after solving is shown in Figure 4. The whole
simulation calculation takes 16.427 s.
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The navigation trajectory in Figure 4a shows that the solved motion trajectory is
smoother with the joint objectives of short time taken and low energy consumption than
that in scenario 1 and scenario 2. The whole sailing distance is shorter. After bypassing
the obstacles, the AUV sailed almost in a straight line. In Figure 4b, the control variable
Tu is stable at about 15 N. The sailing time is 199.305 s. It can be seen that the reduction in
energy consumption is at the expense of increased sailing time.
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By comparing scenario 1 and scenario 3, it can be seen that the calculation results of
the optimal control quantity are different with different set objective functions, as shown in
Figure 5. When the AUV is required to reduce energy consumption, the average value of
the control variable Tu is only 14.291 N from the starting point to the destination, and the
total distance is the shortest in these three cases. The calculation times of scenario 1 and
scenario 3 are similar, which also proves that the initial value generated by the cubic spline
interpolation method can improve the speed of solving the optimal control problem.
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Figure 5. Comparison diagram of control variables in scenario 1 and scenario 3.

From the above simulation results, it can be concluded that these two methods of
generating initial values can quickly calculate the motion trajectory and the values of
the optimal control variables. Under different objective function scenarios, the obtained
trajectories can meet the requirements of obstacle avoidance. In the same simulation
environment, the solution speed of the cubic spline interpolation method is faster than that
of the linear fitting method. When the objective function is changed and the cubic spline
interpolation method is used simultaneously, the thrust distribution results are significantly
different. When only focusing on the goal of sailing time, the propeller drives the AUV to
sail with the upper limit of thrust to ensure that it reaches the destination in the shortest
time.

5. Conclusions

In this paper, the problem of autonomous underwater vehicles (AUVs) motion trajec-
tory planning based on the GPM is studied, and low energy consumption and short sailing
time are considered as joint optimization objectives. At the same time, dynamic constraints
are added to the model to make the planned trajectory more reasonable and more trackable.
The optimal solution of the control variables can be obtained after solving the trajectory
optimization problem. The planned trajectory of the AUV can meet the requirements of
obstacle avoidance. The model can be solved according to different objective functions, and
the value of control variables can be adjusted to meet the actual requirements of underwater
navigation.

In the process of parameter optimization, the selection of the initial value affects the
speed of solving the optimal control problem. The linear fitting method and the cubic spline
interpolation method are proposed to calculate the initial value. The simulation results
show that the calculation time of the cubic spline interpolation method is less than that of
the linear fitting method under the same simulation environment. Compared with the linear
fitting method, the cubic spline interpolation method reduces the global calculation amount
of the trajectory optimization problem and improves the computational performance by
49.35%. Moreover, the trajectory calculated by the cubic spline interpolation method is
smoother and the control variable value is more stable.

As a rapid solution for the optimal control problem, the simulation results verify the
effectiveness of the initial value generated by the cubic spline interpolation method, which
provides a useful reference for the real-time planning of a trajectory. In future work, in
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accordance with the rapidity of the solution of this model, we will embed this model into
the AUV control system to verify the effectiveness of real-time planning and realize online
planning.
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Abbreviations

The following abbreviations are used in this manuscript:
AUV Autonomous Underwater Vehicle
GPM Gauss Pseudospectral Method
SQP Sequential Quadratic Programming
LPM Legendre Pseudospectral Method
RPM Radau Pseudospectral Method
GPOPS Gauss Pseudospectral Optimization Software
SNOPT Sparse Nonlinear Optimizer
LG points Legendre-Gauss points
NLP Nonlinear Programming

Nomenclatures

The following nomenclatures are used in this manuscript:
x Coordinate position in x direction
y Coordinate position in y direction
ψ Direction angle of the AUV
u Velocity in x direction
v Velocity in y direction
r Angular velocity of the AUV
m Mass of the AUV
Iz Moment of inertia
X(·) Hydrodynamic coefficient
Y(·) Hydrodynamic coefficient
N(·) Hydrodynamic coefficient
Tu Thrust generated by the propeller
Tv Thrust generated by the propeller
Tr Thrust torque generated by the propeller
tf Terminal time of navigation
hi Obstacle function
a Radius of the obstacle
b Radius of the obstacle
J Objective function
ω1 Weight coefficient
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ω2 Weight coefficient
τ Time variable
Li(τ) Interpolation basis function
D Differential approximation matrix
x(τ) State variable function
u(τ) Control variable function
Xf Terminal state
τk LG points
ωk Gauss weight
Ce Equality constraints
Ci Inequality constraints
ai Spline coefficient
bi Spline coefficient
ci Spline coefficient
di Spline coefficient
Si(x) Cubic spline function
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