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Abstract: Nowadays, the solution to many practical problems relies on machine learning tools. How-
ever, compiling the appropriate training data set for real-world classification problems is challenging
because collecting the right amount of data for each class is often difficult or even impossible. In
such cases, we can easily face the problem of imbalanced learning. There are many methods in the
literature for solving the imbalanced learning problem, so it has become a serious question how to
compare the performance of the imbalanced learning methods. Inadequate validation techniques
can provide misleading results (e.g., due to data shift), which leads to the development of methods
designed for imbalanced data sets, such as stratified cross-validation (SCV) and distribution optimally
balanced SCV (DOB-SCV). Previous studies have shown that higher classification performance scores
(AUC) can be achieved on imbalanced data sets using DOB-SCV instead of SCV. We investigated
the effect of the oversamplers on this difference. The study was conducted on 420 data sets, involv-
ing several sampling methods and the DTree, kNN, SVM, and MLP classifiers. We point out that
DOB-SCV often provides a little higher F1 and AUC values for classification combined with sampling.
However, the results also prove that the selection of the sampler–classifier pair is more important for
the classification performance than the choice between the DOB-SCV and the SCV techniques.

Keywords: imbalanced learning; cross validation; SCV; DOB-SCV

1. Introduction

One of the crucial challenges in machine learning and data mining is how to achieve
the desired classification accuracy when handling data with significantly skewed class
distributions. In such a case, the accuracy of the classification of the majority class elements
(samples) is better than the classification of the minority class samples in most cases. This
challenge eventually led to “learning from imbalanced data”, the birth of a new field of
statistical learning.

The importance of this research area is continuing to grow because the problem can
appear almost anywhere where the data belongs to more than one category. A popular
example from the financial field is bank card fraud detection [1,2], where there is a strong
imbalance to deal with since the number of frauds is negligible compared to regular
transactions. From the medical field, countless diagnostic tasks could be mentioned [3,4]
where the data sets often do not adequately represent reality. For example, due to data
collection costs or because healthy individuals cannot be included in the studies for ethical
reasons. Finally, from the industrial field, it is worth mentioning fault detection [5], and
from the area of human–machine interaction, we would highlight gesture, emotion [6]
recognition and the various areas of activity recognition [7–9], sports [10], gaming [11], and
fall detectors [12,13], which are primarily, but not exclusively, used in elderly monitoring
systems or medical applications.

There are roughly two main approaches for handling the imbalance problem at the
data level—undersampling and oversampling. Undersampling techniques are based
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on removing samples from the majority class, but it can lead to information loss. The
oversamplers augment the data sets with replicas of the minority samples or with similar
synthetic ones. Oversampling usually gives a better result than undersampling [14], but it
should be kept in mind that if the degree of overlap between the two classes increases during
the process, it can make the classification more difficult. For the sake of completeness, it is
worth mentioning that the two above-mentioned approaches can be combined (i.e., deleting
unnecessary elements from the majority set and generating new synthetic elements into
the minority set), which can be called a hybrid method [15].

In a real application, it is very important to know about the performance of the given
classifier. In order to validate the performance, the so-called k-fold cross-validation is one
of the most commonly used methods in the literature. The basic idea of this method is
to split the elements into k groups randomly. Nevertheless, the problem of data shift can
weaken the validation [16]. If we randomly sample from the majority and minority classes
according to the original distribution, we can achieve a more robust validation [17] since the
distributions of the partitions (folds) will be similar to the initial distribution. This method
is the so-called stratified cross-validation (SCV) [18]. However, the problem of covariate
shift still can appear. The interested reader can find more details about SCV and its limits
in Ref. [19].

A validation technique called “Distribution optimally Balanced SCV” (DOB-SCV) can
be used to avoid the covariate shift problem. The main idea of this validation is to select
the closest neighbors and put them in different folds to keep the distribution in the folds
close to the original distribution [20].

In this paper, we investigate the SCV and the DOB-SCV methods. The difference
between the two techniques is known from the literature [20], but there is a lack of extensive
studies on the performance of different sampler–classifier combinations when using DOB-
SCV instead of SCV for validation. To the best of our knowledge, the most exhaustive study
between DOB-SCV and SCV was carried out by Lopez et al., but only one oversampler, the
SMOTE, was used to balance the data sets [19].

To design a complex experiment, we selected the commonly used oversampling
methods (Section 2.3), classifiers (Section 2.2), and data sets (Section 2.4) from the literature,
and we also generated synthetic data sets to be able to observe the effect of clusters within
classes. However, we did not involve deep learning networks because our study primarily
focuses on small and medium-sized data sets, where the minority set contains few samples
not only in comparison to the majority set but also in absolute terms.

The rest of this paper is organized as follows. Section 2 describes the research method-
ology for this study. Section 3 presents the results of our complex experiments. Finally,
Section 4 presents the conclusions of this paper.

2. Materials and Methods

In this section, we summarize the basic concepts necessary to understand the results
of the experiments. Interested readers can read about the validation methods, the classifiers
and samplers involved in the study, and the data sets and measures used.

2.1. Validation Methods

The methods that are the subject of our study were developed from the k-fold cross-
validation. This method randomly shuffles the samples of the data set and divides them
into k parts (folds) of (nearly) equal size. Then, for each fold f, the other k − 1 folds are
used to train a classifier, and the fold f is used to validate the obtained model according
to a suitable measure (Section 2.5). The performance of the model is considered to be the
mean of the validation results across the iterations. As we mentioned in the Introduction,
one of the well-known disadvantages of this solution is that the proportion of samples
belonging to different classes can vary significantly for the entire data set and for the folds.
In addition, there is a risk—and this risk is high for severely imbalanced data sets—that
some of the folds do not contain elements from all classes. Therefore, it is recommended to
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repeat the procedure a few times and to average the results to get a more accurate estimate
of the model’s performance [21].

2.1.1. SCV

The stratified k-folds cross-validation splits the data set on k folds such that every
fold has (nearly) the same percentage of samples from minority and majority classes as the
complete set. One fold is selected for the test, and the rest is used for training (Algorithm 1).
The further steps of the procedure are the same as for cross-validation.

Algorithm 1 Fold generation of SCV (based on Ref. [20])
Require: k // number of folds
Require: C = {C1, C2, ..., Cn} // classes
Ensure: F1, F2, ..., Fk // generated folds

F1 ← ∅, F2 ← ∅, ..., Fk ← ∅
for i := 1 to n do

n← bcount(Ci)/kc
if i ≤ (count(Ci) mod k) then

n← n + 1
end if
for j := 1 to k do

S← randomly select n samples from Ci
Fj ← Fj ∪ S
Ci ← Ci \S

end for
end for

2.1.2. DOB-SCV

Zen and Marinez pointed out that the distribution of the folds (and thus the training
and test sets formed from them) can change strongly even if the proportions of samples
from different classes are preserved by the SCV, especially if the number of samples in one
or more classes is small. They suggested that nearby points belonging to the same class
should be placed in different folds [22], but the goal is better achieved by the DOB-SCV
proposed by Moreno-Torres et al. The DOB-SCV moves a randomly selected sample and
its k nearest neighbors into different folds and repeats this until the samples from the
original set run out (Algorithm 2). After partitioning the data set, the procedure continues
as specified for cross-validation.

Algorithm 2 Fold generation of DOB-SCV (based on Ref. [20])
Require: k // number of folds
Require: C = {C1, C2, ..., Cn} // classes
Ensure: F1, F2, ..., Fk // generated folds

F1 ← ∅, F2 ← ∅, ..., Fk ← ∅
for i := 1 to n do

while count(Ci) > 0 do
x1 ← randomly select sample from Ci
F1 ← F1 ∪ {x1}
Ci ← Ci \{x1}
for j := 2 to k do

x2 ← select the nearest neighbour of x1 from Ci
Fj ← Fj ∪ {x2}
Ci ← Ci \{x2}
if count(Ci) = 0 then

j← k // end for j
end if

end for
end while

end for
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2.2. Classifiers

In this section, we briefly introduce the classification procedures involved in the ex-
periment.

2.2.1. kNN

The k-nearest neighbor classifier (kNN) is a very simply supervised machine learning
method. The classification of each sample is based on the vote of its nearest neighbors. All
neighbors vote that the element belongs to their class. In the simplest case, the decision
is made by majority rule, but it is also customary to weight the votes by the reciprocal of
their distance from the sample to be classified. It is easy to see that this learning method
is sensitive to the training set and selection of metrics. More detailed information can be
found in Refs. [23,24].

2.2.2. SVM

The support vector machine (SVM) is a supervised machine learning method devel-
oped by V. Vapnik. The main idea of this classifier is to find the margins between two
classes based on the support vectors determined from the training set. In the linear case,
the separating hyperplane (whose task is to separate the samples of the different classes)
can be determined based on the support vectors by maximizing their distance from the
margins. More detailed information can be found in Refs. [24,25].

2.2.3. MLP

Multi-Layer Perceptron (MLP) is a neural network with hidden layers and backpropa-
gation training. One of the important advantages of this classifier is its ability to classify
non-convex sets. However, finding the global optimum is not guaranteed. More detailed
information can be found in Ref. [26].

2.2.4. DTree

The decision tree is one of the well-known classifiers that reduces complicated de-
cisions to a series of simple ones. The trained model can be considered a tree-shaped
flowchart of elementary decisions, where the vertices have an attribute, the edges be-
tween the vertices with the result of this test (with the corresponding value of the given
attribute) are labeled, while the leaf tips the decision itself (that is, the value of the attribute
representing the corresponding class) [24,27].

2.3. Oversamplers

The research was carried out using sampling methods that have proven their effective-
ness on a wide range of imbalanced data sets [28], and the SMOTE, which was included
in the test because it is widely used, despite its known drawbacks, and forms the basis of
many more effective methods. In this section, we present the chosen methods briefly.

The SMOTE (Synthetic Minority Over-sampling Technique) [29] generates new sam-
ples along the segments connecting a minority sample (seed) with its nearest minority
neighbors (co-seeds). Unfortunately, some synthetic samples may be more similar to the
majority samples than to the minority ones, which may harm the classification. The SMOTE-
TomekLink [30] handles this problem by a post-filtering step, which searches for pairs
of samples whose members belong to different classes but are closer to each other than
to any of the elements of their own class. The majority sample of such pairs is deleted.
The SMOTE-IPF [31] also applies post-filtering, deleting samples from the data set whose
classification is not clear based on the votes of the members of an ensemble classifier. While
according to Lee’s method, the samples generated in the wrong location should be rejected
immediately [32]. CCR [33] uses a less drastic solution, cleaning the environments of the
minority samples by pushing the nearby majority ones outside a circle with a certain radius.
The new synthetic samples are generated around the minority samples in these “clean”
environments. Other methods focus on the proper selection of seeds and co-seeds used
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to generate synthetic samples. The Assembled-SMOTE [34] connects minority samples
close to the decision boundary with minority samples further away from it, reducing the
chance of the new samples falling among the majority ones. The ProWSyn attempts to
generate the right amount of synthetic samples around the minority elements, considering
how far they are from the decision boundary [35]. The purpose of SMOBD [36] is simi-
lar, but it decides the number of samples to generate based on the estimated density of
the samples. LVQ-SMOTE [37] uses a special method because the synthetic samples are
derived from reference data sets. The selection of new samples is based on the similarity
of the codebooks of the reference data sets and the data set to be oversampled. For the
experiments, we decided to use a version that, instead of reference data sets (there are no
guidelines for choosing them), generates the codebooks based on the minor set of the data
set to be oversampled [38]. The G-SMOTE combines the two principles. It detects outliers
based on a Gaussian mixture model (GMM) to keep the number of samples generated
near them low, but it also uses GMM to reject synthetic samples that fit more into the
majority class than the minority class. The success of the polynomial fitting method lies in
the different sampling strategies. By choosing the star topology, new samples are created
between the original minor samples and the center of the minority class. In the case of
mesh and bus topology, new samples can be created between any two minority samples
and the neighboring minority samples, respectively, while the polynomial curve topology
generates the synthetic samples along a “trend curve”. (In the following, we will refer to
these methods as named samplers).

In addition, we also included automatically generated oversamplers in the study, some
of which do not use clustering, some of which use DBSCAN clustering [39], and some of
which categorize the samples into Border-Safe-Noise sets. The Border and Safe sets usually
include samples close to the decision border and far from it if they do not appear to be noise.
Different weighting strategies were used to select the seed and co-seed points. Details can
be found in Ref. [40]. With the help of the resulting significant number of samplers (460),
we intended to test whether the difference between the two validation methods can be
observed even in the case of different sampling strategies.

2.4. Data Sets

We examined the effect of the two validation techniques on data set collections of the
KEEL repository [41,42], which are specifically recommended for investigating imbalanced
classification problems. The collections contain diverse data sets taken from real life, from
the field of life science (e.g., Abalone [43], Ecoli [44], Dermatology [45]), decision-making
(e.g., Car Evaluation [46]), quality inspection (e.g., Wine Quality [47]), object-recognition
(e.g., Statlog [48]), etc. The category variables with two unique values were transformed by
label encoding, and the category variables with more than two values by one-hot coding.

To observe the effect of within-class clusters, we also generated synthetic data sets
using scikit-learn [49]. Each data set contains 600 samples with either 4 or 8 features. The
minority and the majority classes are composed of 1–4 clusters. The samples were randomly
drawn from a normal distribution around the vertices of a D-dimensional hypercube, where
D is the number of features. The length of the sides, which affects the separability of the
classes, was set to 1.4. The imbalance ratio (ratio of the number of majority and minority
samples) is around 8 and 16 (for simplicity, we will refer to these as IR8 and IR16 data sets.)
A total of 320 data sets were created.

According to our experience, these values result in data sets that cannot be classified
too easily with the classification methods included in the study, which is important because
neither the effect of the oversamplers nor the effect of the validation methods could be
observed in easy problems.

2.5. Measures

There are several measures for evaluating the performance of classifiers [50], but many
of them are sensitive to the difference between the size of the classes, so the degree of
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imbalance must also be considered for their proper interpretation. For example, if the
imbalance ratio is high, accuracy (1) is determined almost exclusively by the success of the
classification of the majority class samples [15]. On the other hand, if the performance has
to be characterized by a single value, the use of F1-scores (3), the area under the ROC curve
AUCROC (it can be estimated easily by using the trapezoidal-rule), which is considered
robust even against imbalance [51] or perhaps G-mean scores (4), is typical for imbalanced
data sets.

Acc =
TN + TP

TN + TP + FN + FP
, (1)

AUC =
1 + TP

TP+PN −
FP

FP+TN
2

(2)

F1 =
2TP

2TP + FN + FP
, (3)

G =

√
TP

TP + FN
· TN

TN + FP
, (4)

The evaluation tool we used [38] defines the TP (true positive) and TN (true negative)
as the total number of correctly classified minority and majority samples, respectively, over
the validation folds. Similarly, the FN (false negative) and FP (false positive) are defined as
the total number of wrongly classified minority and majority samples. In this paper, we
primarily use F1 and AUC scores.

3. Experiments and Results

The experiment was conducted as follows. First, we created the training and test
sets required for the 5-fold, three-repeat SCV and DOB-SCV methods for each KEEL and
synthetic data set mentioned in Section 2.4, for which we used the scikit-learn package [49].
Next, we applied all the oversamplers to the training sets independently. The samplers
mentioned by their name in Section 2.3 were used with all the parameter combinations
specified in the smote-variants package [38]. The artificially generated samplers were run
with their default parameterization.

Then, we trained the different classifiers on the original training sets (for a baseline)
and the oversampled training sets and evaluated the obtained model on the corresponding
test sets according to the rules of repeated cross-validation. Among the classifiers, the kNN
was performed with k = 5 and 7, using both voting schemes mentioned in Section 2.2.1.
The SVM was used with linear kernels and with regularization parameters of 1 and 10.
The MLP network contained one hidden layer where the number of the folds was D, 0.5D,
and 0.1D for the different classifier instances, where D is the number of the features of
the samples. From the family of decision tree classifiers, the Classification and Regression
Trees [49] were used with Gini-impurity and entropy classification criteria, with no limit on
the height of the trees and also with a limit of 3 and 5. The best result (highest F1, AUC, G,
and Acc) among the different parameterizations of the classifiers was taken into account for
each oversampled data set.

The statistical analysis of the results was performed separately for the data sets be-
longing to KEEL and the synthetic data sets, and in some of the tests, we also treated the
samplers known from the literature and the generated samplers separately.

3.1. Analysis 1: Comparison of the Validation Methods

According to Moreno-Torres et al., DOB-SCV is slightly more effective than SCV [20].
The comparative study by Lopez et al. also indicated that higher AUC values can be
achieved with DOB-SCV than SCV because DOB produces more homogeneous folds. They
also showed that the differences become stronger as the level of imbalance increases [19].
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Our first experiment aimed to check whether differences between DOB and SCV
can be observed even with the use of different samplers, and, since randomness is an
essential element of the samplers, we also wanted to check whether the oversamplers
alone—using the same validation method—do not cause significant differences in the
estimated performance of the classification models. For this purpose, we experimented
with each sampler–classifier pair using the same DOB folds twice. The results of the two
runs are referred to as DOB and DOB2.

With a Friedman test, which we chose based on the work of Demšar [52], we examined
whether the result of the validation methods (the performance score of the models) can
be considered the same. Based on the test results, we also rejected the null hypotheses
about the same effect for the F1, AUC, G, and Acc measures. Next, we applied Nemenyi’s
post-hoc test [53], which showed no significant difference in the performance score of the
sampler–classifier pairs for DOB and DOB2. However, the results obtained for DOB and
SCV folds showed a statistically significant difference (α = 0.001). Thus, the findings of
Lopez et al. are also valid when different samplers are used and not only for the AUC.

Figure 1 shows the results obtained on the KEEL data sets with the named samplers,
but the statements are valid for both the KEEL and the synthetic data sets regardless of
whether we used the named samplers or the generated ones.

(a) DTree (b) kNN

(c) SVM (d) MLP

Figure 1. The result of the Nemenyi-test used to compare the classification performance scores
obtained with different validations on the KEEL data sets. The oversampling was done by the
named samplers.

3.2. Correlation Analysis

We examined the correlation between some properties of the data sets and the results
(F1, AUC, G, Acc) achieved by the sampler–classifier pairs on the data sets. The distributions
cannot be considered normal, so we performed Spearman’s rank correlation analysis [54].
For the KEEL data sets, the selected properties were the number of minority (N_min)
and majority samples (N_maj), the imbalance ratio (IR), the number of features (D), and
two measures to characterize the level of overlap between classes in the data sets (R and
AUG_R). The R-value of a data set consisting of two classes is the proportion of elements
in the data set that have more than θ elements belonging to the other class among their
k nearest neighbors. The augmented R-value (AUG_R) is a version of the R-value that
considers the size of the classes. The analysis was performed with k = 5, θ = 2. The results
are shown in Figure 2.

One can observe in Figure 2 that there are monotonic relationships of similar strength
and direction between the characteristics of the data set and the results of the classification
obtained with DOB-SCV and SCV. Most of the database properties show a weak or moderate
correlation with the classification performance—the exceptions being the two measures



Sensors 2023, 23, 2333 8 of 27

used to describe the overlap of the classes. While R shows a strong inverse relationship
with Acc, the AUG_R value designed for imbalanced data sets shows a strong negative
correlation with the other scores. Knowing the weaknesses of the Acc, it is not surprising
that it correlates with the IR value more strongly than the other measures. It is more
remarkable that the F1 also has a moderate negative correlation with the IR for all classifiers,
although F1 is one of the most commonly used measures for imbalanced data sets [55].

(a) DTree (b) kNN

(c) SVM (d) MLP

Figure 2. Result of the Spearman’s rank correlation test between some properties of the KEEL data
set and the results of the classification combined with oversampling obtained on the data sets.

The results belonging to the synthetic data sets were analyzed similarly, but since the
number of clusters within the classes is also known for these data sets, two columns were
added to the correlation matrices. The results are shown in Figure 3. We note that the
number of samples was fixed during the experiments; the IR value determines the N_min
and N_maj values here, which is, of course, also reflected in the correlations. It is also
worth noting that the properties of the data set are less diverse than the KEEL’s collection
(Table 1).

Table 1. The range of properties of the database collections.

R AUG_R D IR N_min N_maj

KEEL 0.0000–0.2851 0.0000–0.9923 3–66 1.8157–129.4375 5–559 83–4913
Synthetic 0.0083–0.1083 0.1305–0.9403 4; 8 7.9552; 15.6667 36; 67 533; 564
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(a) DTree (b) kNN

(c) SVM (d) MLP

Figure 3. Result of the Spearman’s rank correlation test between some properties of the synthetic
data set and the results of the classification combined with oversampling obtained on the data sets.

By comparing the DOB and SCV rows of the correlation matrices, we can see that
the values are similar for the two validation methods, and this time again, the AUG_R
shows a strong negative relationship with the F1, AUC, and G scores regardless of the
classification method and there is a negative correlation between the number of clusters
appearing within the classes and the results achieved by the classifiers.

We focused on the differences between the validation methods during the subsequent
analysis. As mentioned earlier, according to Lopez et al.’s observation, the more imbalanced
the data set, the more significant the relative difference between the AUC obtained by the
DOB-SCV and SCV techniques [19].

To verify that this statement can be considered valid, even with the use of different
samplers, we performed a second test to examine the correlation between the properties of
the data sets and the relative differences of the validation methods for each measure. The
relative difference between the two validation techniques was determined for each data set
as specified based on the formula provided by the authors in Ref. [19],

diffV =
VDOB_SCV −VSCV

Vscv
, (5)

where VDOB_SCV and VSCV are the mean performance scores of a sampler–classifiers esti-
mated by the DOB-SCV and SCV methods, respectively (V ∈ {F1, AUC, G, Acc}).

In Figure 4, which shows the results for the KEEL data set, we can immediately
notice that there are no strong correlations between the data set properties and the relative
difference of the validation methods.
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(a) DTree (b) kNN

(c) SVM (d) MLP

Figure 4. Result of the Spearman’s rank correlation test between some features of the KEEL data set
and the difference of the DOB and SCV results of the classification combined with oversampling
obtained on the data sets.

In the case of the decision tree and the SVM, there is practically no correlation between
the IR and the diffAUC. In the case of kNN and MLP, a weak negative correlation can be
observed, as well as between the IR and the relative difference of the Acc values. However,
the relative differences show a moderately strong positive correlation with the R or AUG_R
values in the case of DTree, kNN, and MLP.

In the case of the synthetic data sets, the correlations between IR and the diffAUC can
be considered neutral rather than negative (Figure 5). However, note that the IR values in
the synthetic data set are not nearly as diverse as in the case of KEEL.

(a) DTree (b) kNN

(c) SVM (d) MLP

Figure 5. Result of the Spearman’s rank correlation test between some features of the synthetic data
set and the relative differences between the DOB-SCV and SCV results of the classification combined
with oversampling obtained on the data sets.
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Additionally, we can see again that the relative differences show a positive correlation
with the degree of overlap between the classes to a greater or lesser degree, and also with
the number of clusters within the classes.

Although the observation of Lopez’s et al. on the relationship between IR and diffAUC
could not be confirmed in our experiments, we have found other database properties worth
paying attention to when choosing between DOB and DOB-SCV validation.

3.3. Graphical Analysis per Data Set

To see behind the numbers, we visualized the relationship between the validation
methods and the performance scores of the sampler–classifier pairs on violin plots. The
shape of the “violin body” is determined by the distribution of the results obtained for
a particular data set by a certain classifier combined with different oversamplers. The
measure was also fixed. The red and the black lines in the diagrams show the mean
performance of the classifier without sampling (ws) and with sampling, respectively.

Based on the literature, the nature of the data determines which classifier can be
used more successfully without applying any oversampling [56,57]. It also affects the
selection of the appropriate oversampler [40]. The violin plots also show the importance of
choosing the right classifier and sampler. (Figures A1–A4). We can observe several data sets
where applying the appropriate oversampler before classification significantly improves,
while a poorly selected sampler worsens the results. On the other hand, some data sets
can be classified well without oversampling. For example, the winequality-white-3-9_vs_5
(Figure A1).

The difference in the effect of validation is less striking; however, there is a slight
but relatively stable difference between them (Appendix A). Stable, in the sense that not
only the mean performance scores of the classifiers are similar, but also the distribution of
the results achieved with different oversamplers in most cases. Regardless of whether we
divided the data set according to the DOB or SCV partitioning, the classification improved
with a similar number of oversamplers.

However, let us see some examples where differences arose. Figure 6 shows a few
selected KEEL data sets where the mean of the AUC values achieved by variously named
samplers and DTree classifier differ the most using the two validation methods.

Figure 6. AUC values achieved by the named samplers and DTree classifiers on KEEL data sets where
the largest relative differences were measured.

Note that the R_AUG values are quite high for most of these data sets, and there
are a few cases where the number of minority samples is extremely small. When these
two things happen simultaneously, it is difficult to predict the outcome. For example,
on the lymphography-normal-fibrosis data set, the SCV partitioning provides such folds
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that oversampling could only worsen the initial result. On the other hand, we can see
the poker-9_vs_7 data sets where the classification performance improved in more cases
when we sampled the folds generated by SCV than by DOB. In our opinion, the location
of the samples plays a crucial role, which is not described by many measures. Further-
more, selecting the most representative samples from the clusters has a significant role in
overlapping classes.

For each classifier, we can find examples where there are larger differences between
the two types of validation, but these differences of a few percent are, in many cases,
insignificant compared to the effect of the oversampling.

Tables A1 and A2 show how much the validation meant for each sampler on average
for the KEEL and for the synthetic data set for each sampler.

3.4. Graphical Analysis for Clusters

Earlier, we saw that the number of clusters within the classes shows a negative corre-
lation with the classification result and a positive correlation with the relative differences of
the validation methods (diffV). This section aims to investigate the visualized connections
between the number of clusters in the majority or minority classes and several metrics.

We again used violin-plots to represent the results of our experiments, but the data
has now been plotted in a grouped form. The values on synthetic data sets with the same
number of minority and majority clusters were placed on the sample plot. The plots belong
to different classifiers, and different metrics were placed in different figures (Figures 7–10).

We can see the results obtained with the generated samplers from the synthetic data
sets. It can be noticed that even despite the large number of oversampling methods, the
distribution of the performance scores estimated by DOB and SCV is very similar.

Figure 7. F1 values concerning the number of clusters in the minority and majority classes in the case
of the DTree classifier. (IR8).

Figure 8. F1 values concerning the number of clusters in the minority and majority classes in the case
of the kNN classifier. (IR8).
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Figure 9. F1 values concerning the number of clusters in the minority and majority classes in the case
of the MLP classifier. (IR8).

Figure 10. F1 values concerning the number of clusters in the minority and majority classes in the
case of the SVM classifier. (IR8).

Compared to the classification without oversampling, the classification combined
with oversampling is significantly better when the number of clusters of the minority
class increases. On the other hand, the change in the number of clusters of the majority
class has less influence on the efficiency in terms of F1 of the classifications combined
with oversampling.

It is interesting to note that the performance of the SVM and the MLP concerning F1
decreased radically, regardless of the validation method when the number of the minority
clusters was increased and smaller clusters were formed. The large IR alone does not cause
problems in classification, but difficulties can arise if classes overlap. It is worth noting
that we found a stronger relationship between the R values and the F1 values—for both
validations—than between the number of clusters and the F1 value.

Based on our experiments, we cannot confirm the statement [19] that the difference
between the two verification techniques involved in our tests (SCV, DOB-SCV) increases as
the imbalance ratio of the data sets increases. Figures A9–A12 are the same figures with a
higher imbalance ratio (IR16 instead of IR8). Our measurements only show that the SVM
and the MLP without oversampling perform better when the imbalance ratio is low, which
is most likely explained by the fact that more elements can be found in each cluster of the
minority class than when the imbalance rate is high.

The classification combined with oversampling is significantly better when the number
of clusters of the minor class increases. See Figures A9–A12.
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4. Conclusions

We have published the result of our extensive study involving 420 data sets about
the SCV and the DOB-SCV methods when oversampling is used before classification. We
have verified the differences between DOB-SCV and SCV with a suitable statistical test,
examined the correlation between some properties of the data sets and the values F1, AUC,
G, Acc achieved by the sampler–classifier pairs on the data sets, and conducted visual
data analysis.

We would like to summarize the most important results below:

• In general, slightly higher F1, AUC G, Acc values can be achieved with DOB-SCV than
SCV in combination oversamplers and classifiers;

• Based on our experiments, we can not confirm the statement [19] that the difference be-
tween the two verification techniques involved in our tests (SCV, DOB-SCV) increases
when the imbalance ratio of the data sets increases;

• We can state that there is a difference between SCV and DOB-SCV in favor of DOB-
SCV when the number of clusters within the classes or the volume of overlapping
between the clusters increases;

• The selection of the sampler–classifier pair is much more critical for the classification
performance than the choice between these two validation techniques.

Our results could help researchers to focus on the part of the training process that can
significantly impact classification performance and to choose the right validation method
for the given situation.
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Appendix A

The results of the experiments performed on the data sets of the KEEL in relation to F1
presented per classifier.

Figure A1. F1 values resulted by DTree classifier and named oversamplers per data set of KEEL.
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Figure A2. F1 values resulted by the kNN classifier and the named oversamplers per data set of KEEL.
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Figure A3. F1 values resulted by the MLP classifier and the named oversamplers per data set of KEEL.
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Figure A4. F1 values resulted by the SVM classifier and the named oversamplers per data set of KEEL.

Appendix B

The results of the experiments performed on the data sets of the KEEL in relation to
AUC presented per classifier.
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Figure A5. AUC values resulted by the DTree classifier and the named oversamplers per data set
of KEEL.



Sensors 2023, 23, 2333 20 of 27

Figure A6. AUC values resulted by the kNN classifier and the named oversamplers per data set
of KEEL.



Sensors 2023, 23, 2333 21 of 27

Figure A7. AUC values resulted by the MLP classifier and the named oversamplers per data set
of KEEL.
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Figure A8. AUC values resulted by the SVM classifier and the named oversamplers per data set
of KEEL.

Appendix C

F1 values concerning the number of clusters in the minority and majority classes per
classifier. The imbalance rate of the used data sets is 16.
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Figure A9. F1 values concerning the number of clusters in the minority and majority classes in the
case of the DTree classifier. (IR16).

Figure A10. F1 values concerning the number of clusters in the minority and majority classes in the
case of the kNN classifier. (IR16).

Figure A11. F1 values concerning the number of clusters in the minority and majority classes in the
case of the MLP classifier. (IR16).
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Figure A12. F1 values concerning the number of clusters in the minority and majority classes in the
case of the SVM classifier. (IR16).

Appendix D

This section contains tables showing the relative difference of the validation methods
in aggregate per sampler. The results for the 460 generated samplers are summarized under
the name ModularOverSampler.

Table A1. Mean of the relative differences of the DOB-SCV and SCV per oversampler on the KEEL
data sets.

DTree kNN

Sampler % diffAUC % diffAcc % diffF1 % diffG % diffAUC % diffAcc % diffF1 % diffG

Assembled-SMOTE 0.79 0.21 1.16 0.65 0.89 0.36 1.65 0.97
CCR 0.70 0.14 1.36 0.96 1.02 0.29 1.93 1.21
G-SMOTE 1.05 0.26 1.91 1.10 0.89 0.34 1.83 1.09
LVQ-SMOTE 0.57 0.27 1.49 0.58 0.89 0.39 2.27 1.32
Lee 0.98 0.26 1.71 0.87 0.87 0.38 1.61 0.97
ModularOverSampler 0.71 0.26 1.49 0.92 0.96 0.39 2.06 1.37
ProWSyn 0.93 0.23 1.27 0.95 0.86 0.43 1.73 1.00
Polynomial fitting SMOTE 0.80 0.14 1.47 1.11 0.95 0.31 2.09 1.31
SMOBD 0.86 0.23 1.44 0.82 0.85 0.35 1.47 0.89
SMOTE 0.96 0.28 1.69 0.79 0.86 0.34 1.57 0.96
SMOTE-IPF 0.92 0.24 1.21 0.86 0.85 0.37 1.54 0.90
SMOTE-TomekLinks 0.91 0.19 1.21 0.94 0.90 0.35 1.61 0.99

SVM MLP

Assembled-SMOTE 0.48 0.29 1.70 0.54 0.52 0.18 1.16 0.53
CCR 0.64 0.26 1.19 0.56 0.65 0.18 1.00 0.64
G-SMOTE 0.48 0.24 1.73 0.73 0.51 0.18 1.15 0.68
LVQ-SMOTE 0.46 0.12 1.04 0.48 0.50 0.21 1.00 0.56
Lee 0.46 0.18 1.61 0.65 0.51 0.19 1.19 0.55
ModularOverSampler 0.41 0.25 1.70 0.63 0.59 0.27 1.42 0.69
ProWSyn 0.45 0.24 1.49 0.54 0.55 0.25 1.36 0.68
Polynomial fitting SMOTE 0.45 0.14 1.44 0.50 0.58 0.27 1.46 0.64
SMOBD 0.43 0.11 1.49 0.48 0.49 0.23 1.34 0.68
SMOTE 0.38 0.28 1.54 0.49 0.83 0.37 1.54 0.78
SMOTE-IPF 0.44 0.32 1.50 0.42 0.61 0.29 1.24 0.57
SMOTE-TomekLinks 0.45 −0.06 1.69 0.53 0.59 0.23 1.23 0.79
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Table A2. Mean of the relative differences of the DOB-SCV and SCV per oversampler on the synthetic
data sets.

DTree kNN

Sampler % diffAUC % diffAcc % diffF1 % diffG % diffAUC % diffAcc % diffF1 % diffG

Assembled-SMOTE 1.77 0.61 4.49 1.73 1.43 0.81 4.62 1.85
CCR 1.58 0.55 4.09 1.52 1.58 0.78 4.93 2.01
G-SMOTE 1.86 0.54 4.68 1.86 1.53 0.70 4.61 1.98
LVQ-SMOTE 1.48 0.64 4.02 1.49 1.46 0.74 4.35 1.77
Lee 1.80 0.61 4.49 1.77 1.44 0.79 4.53 1.86
ModularOverSampler 1.80 0.59 4.59 1.97 1.65 0.82 4.97 2.24
ProWSyn 1.80 0.71 4.19 1.77 1.45 0.98 4.57 1.79
Polynomial Fitting SMOTE 1.49 0.41 4.33 1.97 1.54 0.56 4.70 2.33
SMOBD 1.79 0.61 4.46 1.74 1.44 0.80 4.52 1.83
SMOTE 1.86 0.63 4.68 1.77 1.42 0.77 4.49 1.86
SMOTE-IPF 1.79 0.65 4.74 1.74 1.46 0.80 4.55 1.87
SMOTE-TomekLinks 1.77 0.62 4.65 1.83 1.48 0.81 4.60 1.86

SVM MLP

Assembled-SMOTE 1.55 0.47 2.44 1.42 1.45 0.56 3.13 1.62
CCR 1.43 0.41 2.11 1.16 1.25 0.49 2.58 1.36
G-SMOTE 1.50 0.43 2.41 1.35 1.40 0.41 3.05 1.52
LVQ-SMOTE 1.32 0.47 2.10 1.14 1.26 0.45 2.69 1.28
Lee 1.55 0.47 2.46 1.46 1.43 0.44 2.95 1.60
ModularOverSampler 1.61 0.44 2.53 1.47 1.56 0.49 3.34 1.70
ProWSyn 1.48 0.41 2.27 1.29 1.36 0.52 2.88 1.46
Polynomial Fitting SMOTE 1.42 0.24 2.38 1.35 1.43 0.39 2.95 1.36
SMOBD 1.51 0.40 2.32 1.36 1.41 0.48 2.97 1.58
SMOTE 1.56 0.50 2.41 1.45 1.48 0.53 2.93 1.55
SMOTE-IPF 1.58 0.45 2.39 1.43 1.40 0.47 3.06 1.67
SMOTE-TomekLinks 1.54 0.34 2.31 1.38 1.55 0.69 3.11 1.57
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