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Abstract: The Internet-of-Things (IoT) massive access is a significant scenario for sixth-generation
(6G) communications. However, low-power IoT devices easily suffer from remote interference caused
by the atmospheric duct under the 6G time-division duplex (TDD) mode. It causes distant downlink
wireless signals to propagate beyond the designed protection distance and interfere with local uplink
signals, leading to a large outage probability. In this paper, a remote interference discrimination
testbed is originally proposed to detect interference, which supports the comparison of different types
of algorithms on the testbed. Specifically, 5,520,000 TDD network-side data collected by real sensors
are used to validate the interference discrimination capabilities of nine promising AI algorithms.
Moreover, a consistent comparison of the testbed shows that the ensemble algorithm achieves an
average accuracy of 12% higher than the single model algorithm.

Keywords: remote interference; interference discrimination testbed; ensemble algorithms; Bagging

1. Introduction

Massive access is defined as a typical scenario of sixth-generation (6G) communica-
tions by IMT-2030 Promotion Group. Numerous Internet of Things (IoT) devices will be
connected to the communication network [1]. However, the remote interference caused
by the atmospheric duct brings about the interference signal exceeding the guard period
(GP), which interferes with the co-frequency uplink signal reception of low-power IoT de-
vices in 6G time-division duplex (TDD) networks and increases the risk of communication
interruption for mobile users.

The TDD mode, which prominently suffers from the interference of the atmospheric
duct, refers to the uplink and downlink utilizing the same frequency band to transmit
information at different times [2]. The GP, as shown in Figure 1, is applied to protect the
uplink signal from the interference of the downlink signal [3]. The interference signal
can be filtered by the sensor within the GP protection range. However, the distance of
remote interference will far exceed this range. The atmospheric duct, which results from
non-standard meteorological conditions, captures the electromagnetic wave and induces
the signal to propagate in the ducting layer [4]. The atmospheric duct captures the signal
and allows the signal to propagate beyond the GP maximum protection distance with low
path loss [5]. Thus, the captured signal maintains a high signal strength and interferes with
the uplink signal reception of remote IoT devices [6].

According to statistics, China, Japan, Netherlands, and the United States have suffered
from the interference of the atmospheric duct for a long time [7–10]. In the process of 5G
research, remote interference has attracted the attention of researchers. 3GPP promoted a
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remote interference project in the standardization research of 5G-Beyond to analyze the
adverse impact of the remote interference on communication systems [11]. Moreover, ITU
recommended that the atmospheric duct should be considered in channel modeling [12].
Ericsson and other telecom companies began monitoring and analyzing the effects of
remote interference on communication systems [13]. Clearly, the negative effects of the
atmospheric duct have attracted the attention of many researchers. In the future research
of 6G communications, remote interference will also be an unavoidable problem.

Currently, there are two main methods used to detect and estimate the atmospheric
duct: (1) using meteorological factors to calculate the atmospheric refractive index [14];
(2) using radar to measure the atmospheric duct [15]. Nonetheless, Method (1) usually
utilizes PETOOL platform to generate simulation data [16]. It contains several assumptions
to generate simulation data, which hardly reflect reality. Method (2) is suitable for ocean
scenarios and is expensive. In addition, remote interference typically occurs on land where
water vapor evaporation is large. Considering complex scenarios and large amounts of
data, traditional modeling methods do not work.

Figure 1. Remote interference in TDD system, in which GP is the guard period and PTS is the pilot
time slot.

Motivated by the above challenges, a remote interference discrimination testbed
employing AI ensemble algorithms for 6G wireless communications is proposed. The
contributions of this paper are summarized as follows:

• A remote interference discrimination testbed is originally proposed, which adopts
5,520,000 TDD network-side interfered data to discriminate the remote interference.
A large number of measurement data could effectively appraise the interference
discrimination ability of different AI algorithms;

• The testbed verifies the interference discrimination ability of two types of a total of
nine AI algorithms, which lays the foundation for the application of the testbed in
different hardware environments;

• According to the consistent comparison, numerical results illustrate that the ensemble
algorithm achieves an average accuracy of 12% higher than the single model algorithm.
The work fills the gap of remote interference in the 6G communication scenario and
helps mobile operators improve network optimization capabilities under remote
interference.

The remainder of the paper is organized as follows. In the next section, the recent
studies of atmospheric duct and the framework of the proposed testbed are introduced.
Section 3 shows the employed ensemble discriminant algorithms. Extensive experiments
are presented in Section 4. Finally, the conclusions are summarized in Section 5.
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2. Related Work and Testbed Design
2.1. Related Work

While most of the existing research literature on the atmospheric duct has focused on
calculating the height of the ducting layer, there has been little analysis of the interference
discrimination in communication systems. Currently, there are two main approaches to
detect and estimate the atmospheric duct, including theoretical calculations and practical
measurements.

Ray-optics (RO) method and parabolic equation (PE) method are developed to calcu-
late the trajectory of the ducting layer. For example, a RO method was applied to calculate
ray trajectories with atmospheric ducts in Ref. [17]. The authors analyzed delay spreads to
determine the fading behavior of the channel, which compensated for a realistic analysis
for the delay spread of ducting channels. A PE-based tool (PETOOL) was developed in
Ref. [18], who analyzed the ideal ducting effect from 800 MHz to 20 GHz.

Considering the interference of the duct on the electromagnetic wave signal, some
studies utilized radar and other equipment for measurement. In Ref. [19], a comprehensive
observation experiment was carried out in the Guangdong Province of China. A shore-
based navigation radar was used for over-the-horizon detection and radiosondes were
used to measure the atmospheric profile. A method of detecting atmospheric ducts using a
wind profiler radar and a radio acoustic sounding system was proposed in Ref. [20]. The
measurements were carried out in the Liaoning Province of China. These activities all take
place at sea, and the expensive cost and restrictions hinder land measurement.

2.2. Testbed Design

The proposed remote interference discrimination testbed is shown in Figure 2. It
consists of four modules, including meteorology and signal module, data processing
module, AI-based learning module, and validation module.

First of all, the meteorology and signal module adopts sensors to collect meteorological
and network-side data. Secondly, in the data processing module, the collected data is
cleaned and divided into two parts: meteorological factors and network factors. Then, the
factors are input into AI-based learning module to acquire data characteristics. Finally, the
validation module uses the measurement data to verify the interference discrimination
ability of the model. Our previous work has completed the meteorology and signal module,
and validation module [21]. In the following, we focus on introducing the data processing
module and AI-based learning module.

Figure 2. The framework of the testbed.

Without loss of generality, a channel with atmospheric duct interference is considered.
In data processing, interference discrimination requires elucidating which factors are
relevant for the wireless channel under ducting interference. The contributory factors are
deduced in the following, which consists of meteorological factors and network factors.
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2.2.1. Meteorological Factors

Atmospheric refraction is the bending of electromagnetic waves propagating in the
atmospheric media. The degree of refraction could be described by the refractive index,
which is expressed as [17]

n =
c
v

, (1)

where c represents the light speed, and v refers to the velocity of the electromagnetic wave
in the medium. The atmospheric refractivity is employed to replace the refractive index
due to the minuscule value of n being ignored when calculated for most cases [22]. The
refractivity can be described as [12]

N = (n− 1)× 106 =
77.6

T
× (p +

4810e
T

), (2)

where T denotes the temperature, p represents the atmospheric pressure, and e indicates
the vapor pressure.

Notably, the curvature of the earth needs to be considered since the signal captured
by the atmospheric duct is capable of traveling long distances. As a result, the modified
refractivity, which considers the curvature of the earth, can be expressed as [12]

M = N +
h
re
× 106, (3)

where h denotes the height above ground, and re is the earth radius. The atmospheric duct
occurs when dM

dh < 0. The appearance of the atmospheric duct is related to meteorological
parameters, whose changes are inseparable from time.

2.2.2. Network Factors

The PE method, utilizing paraxial approximation of the Helmholtz equation, could
model the changes of refractivity in the atmosphere and simulate complex boundary
conditions. As such, the PE-based path loss model, which integrates diverse conditions
well, can be represented as [23]

Lp(z, h) = −20lg|u(z, h)|+ 20lg(4ß) + 10lg(z)− 30lg(λ), (4)

where Lp denotes the path loss of the signal, z represents the horizontal distance of signal
propagation, λ is the carrier wavelength, and u refers to the field strength, which can be
written as [23]

u =
√

2π
∫ +∞

−∞
B(θ)e2inpbhdpb, (5)

sin(θ) = λpb, (6)

where B refers to the beam function, θ denotes the down tilt angle, and pb indicates the
beam. When the antenna is modeled as a Gaussian function, B can be formulated as [23]

B(θ) = Ae
(−2lg2 θ2

β2 ), (7)

where A denotes the normalization constant, and β refers to the half-power beamwidth.
Under these circumstances, the initial field strength can be written as [23]

u(0, h) = A
kβ

2
√

2πlg2
e−ikθhe−

β2
8lg2 k2(h−ha)2

, (8)

where k indicates the incident wave beam, and ha represents the antenna height.
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The solution of the field strength can be described as [23]

∂u
∂h

(z, h) = ik(

√
1
k2

∂2

∂h2 + n2(1 +
h
re
)2 − 1)u(z, h). (9)

Equation (9) needs to be solved by the Fourier transform and inverse transform. The
relationship between field strengths can be expressed as [23]

U(z, pb) =
∫ +∞

−∞
u(z, h)e−2iπpbhdh, (10)

u(z, h) =
∫ +∞

−∞
U(z, pb)e2iπpbhdpb. (11)

After finishing the Fourier transform, the increment can be calculated as [23]

u(z + ∆z, h) = eik∆z(

√
1
k2

∂2

∂h2 + n2(1 +
h
re
)2 − 1)u(z, h). (12)

As can be seen from the above analysis, the PE method adopts the split-step Fourier
transform to solve the equation due to the complex nonlinear relationship between the
path loss of the signal and contributory factors. In summary, the contributory factors of
the atmospheric duct include temperature, atmospheric pressure, relative humidity, time,
longitude, latitude, antenna height, and down tilt angle. These factors mentioned above
affect the path loss of the signal.

Considering the contributory factors, the corresponding data is selected from the
dataset. Traditional modeling methods struggle to effectively learn and represent data
features in the presence of huge amounts of data, so AI-based learning methods have
emerged as a promising solution.

3. AI-Based Discriminant Algorithms

The processed data is input to the AI-based learning module to generate the feature
model. The model can be adopted to discriminate the remote interference and warn the
operator to operate to avoid remote interference. Obviously, an accurate model is crucial for
the interference discrimination framework. The discriminant algorithm is mainly separated
into two parts, including the single model algorithms, and the ensemble algorithms [24].
The details of the discriminant algorithms are as follows.

3.1. Single Model Algorithms

The single model algorithms have been applied in many fields. Some investigations
have verified that some single model algorithms have pleasant performance in remote
interference discrimination, which is the focus of the subsection.

Most single model algorithms adopt mathematical expressions to judge categories.
For example, nearest distance matching, distribution model matching, and so on. Single
model algorithms often achieve satisfactory performance in communication problems such
as low interference channel estimation [25]. The channel contributory factors of interference
discrimination exist as complex nonlinear relationships, and require a high demand for
single model algorithms. The single model algorithms, which have been employed for
interference discrimination, will be introduced as follows [26].

3.1.1. kNN

The k-Nearest Neighbors (kNN) algorithm is an earlier supervised machine learning
algorithm. The keystone of kNN is using k adjacent values to represent sample points [27].
The category of sample points is determined by the k nearest neighbors, which is the same
as the majority of the neighbors. Many ways can be applied to express the distance between
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points, including the Euclidean distance, Manhattan distance, cosine distance, Chebyshev
distance, and so forth [28].

The Euclidean distance is often selected as the calculation index, which can be ex-
pressed as [28]

deuc =

√
m

∑
i=1

(xi − yi)2, (13)

where m indicates the data dimension. With the increase of variables, the distinguishing
ability of Euclidean distance becomes worse.

The Manhattan distance is written as [28]

dman =
m

∑
i=1

(|x1i − y1i|+ |x2i − y2i|). (14)

The Manhattan distance has a fast calculation speed, but when the differences of variables
are large, some features will be ignored.

The cosine distance is represented as [28]

dcos =
m

∑
i=1

(
x1iy1i + x2iy2i√

x2
1i + x2

2i ×
√

y2
1i + y2

2i

). (15)

The cosine distance is suitable for many variables and solving the problems of outliers and
sparse data, whereas it discards the useful information contained in the vector length.

The Chebyshev distance is executed as [28]

dche = max(|xi − yi|). (16)

The Chebyshev distance is generally utilized to calculate the sum of distances, such as the
logistic store.

3.1.2. SVM

The support vector machine (SVM) is a supervised learning algorithm, which es-
pecially supports the binary classification. SVM maps samples into space and finds a
hyperplane to maximize the interval between samples. The classification of training sam-
ples is divided into two parts, including linear and nonlinear. The linear data could be
divided into positive and negative samples [29]. SVM uses a hyperplane to divide the
positive and negative samples. The selection of the hyperplane is shown in Figure 3, which
can be described as [30]

ωxi + b = 0, (17)

where ω denotes the normal vector, and b indicates the distance between the plane and
coordinate origin.

Figure 3. SVM hyperplane for discrimination.

Building an optimized hyperplane in a complex nonlinearly separable problem is
done using kernels. The kernel functions are of many types such as Gaussian, polynomial,
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sigmoid, Cauchy, and so on [31]. Kernel functions map linearly inseparable data to high-
dimensional space.

The Gaussian kernel function is performed as [32]

kgau(x, y) = e−
||x−y||2

2σ2 , (18)

where σ represents the standard deviation. The Gaussian kernel function is commonly used
in SVM, and the essence of Gaussian is to map each sample point to an infinite-dimensional
feature space, which means the deformation of samples is extremely complex, but the
characteristics of each sample are clear.

The polynomial function is denoted by [32]

kpol(x, y) = (x · y + 1)D, (19)

where D denotes the degree of the polynomial. The function indicates the similarity of
vectors in the training set. The polynomial function is relatively stable, but it involves many
parameters.

The sigmoid function is defined as [32]

ksig(x, y) = tanh(x · y + 1). (20)

Sigmoid is an S-shaped function, which is often employed as the activation function
of the neural network to map variables between 0 and 1.

The Cauchy function is written as [32]

kcau(x, y) =
1

||x−y||2
σ + 1

. (21)

The Cauchy function is mainly applied to deal with high-dimensional data.

3.1.3. NB

Naive Bayes (NB) is a discriminant method based on Bayesian theorem and feature
condition independence hypothesis [33]. The advantage of NB is that it combines the
prior probability and the posterior probability, that is, it avoids the subjective bias of using
only the prior probability and the over fitting phenomenon of using sample information
alone [34]. However, NB requires few estimated parameters, it is not sensitive to missing
data, and the assumption is relatively simple, so the accuracy of the algorithm is affected.
According to different assumptions, NB includes Gaussian NB (GNB), Multinomial NB
(MNB), Complement NB (CNB), Bernoulli NB (BNB), Categorical NB, and so on [35].

GNB denotes the prior distribution, which is assumed to be Gaussian [36]. BNB
is designed for binary discrete data [37]. The Categorical NB assumes that each feature
described by the index has its own classification distribution [38]. MNB is utilized to
calculate the probability of discrete features [39]. CNB can be used to classify imbalanced
datasets when the features do not satisfy the conditions of mutual independence. [40].
NB contains multiple input variables and target variables as model outputs. Let S be the
state of the variable and X = (x1, x2, ..., xn) be the state of n input features. To estimate the
value of S based on X, the conditional probability of S needs to be calculated by X, and the
expression is [41]

p(S|X) =
p(X|S)p(S)

p(X)
, (22)

where p(S) and p(X) are constants that are obtained from data. p(X|S) can be calculated
as [41]

p(X|S) = p(x1, x2, ..., xn|S) =
n

∏
i=1

p(xi|S). (23)
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The expression of p(S|X) can be simplified as [41]

p(S|X) =
p(S)
p(X)

n

∏
i=1

p(xi|S). (24)

3.2. Ensemble Algorithms

As one of the current research hotspots, ensemble learning has been applied tentatively
in many fields, such as image processing, malware detection, and so on [42]. The multi-
model properties of ensemble learning enable to avoid the imprecise characteristic of a
single model, which also shows potential in solving complex problems.

Ensemble learning refers to strategically generating multiple weak classifiers and then
combining them into a strong classifier to complete the discrimination task, which has
superior generalization ability. Next, several effective algorithms in some fields will be
introduced. The ensemble algorithms are mainly divided into two categories, including se-
rial and parallel algorithms [43]. Random Forest (RF) and Bootstrap Aggregating (Bagging)
belong to the parallel algorithms. Boosting and Stacked Generalization (Stacking) are parts
of the serial algorithms.

3.2.1. RF

RF is a classifier containing multiple decision trees, and its output category is deter-
mined by the mode of the category output by individual decision trees [44]. The decision
tree adopts the top-down recursive method, which constructs a tree with the fastest entropy
decline based on information entropy. The information entropy is defined as [45]

H = −
n

∑
i=1

piln(pi), (25)

where H refers to the information entropy, and p indicates the probability. It can be seen
from Figure 4 that RF consists of multiple decision trees. Each decision tree will get a
discrimination result, and all the results determine the final output. The advantage of RF is
that it is able to process high-dimensional data and find the relationship between different
variables [46]. The advantage of RF is that it can process high-dimensional data, has strong
anti-noise ability, and avoids the overfitting problem.

Figure 4. Structure of the random forest classifier.

RF has superior performance in numerous aspects, especially in pathological research
and financial investment. However, because of its slow pace, the random forest classifier is
not applicable to real-time predictions.

3.2.2. Bagging

Bagging is an algorithm framework, which trains several different models respectively,
and then lets all models vote to test the output of samples [47]. As shown in Figure 5,
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Bagging adopts a sampling with replacement to generate multiple training subsets, which
are employed to train classifiers [48]. Each training process is independent, so the process
could be accelerated by parallel computing [49]. Especially, the training subset of Bagging
is randomly selected, which means that different subsets may contain the same data.
Moreover, Bagging introduces randomization in the training of each classifier. After
training, all classifiers are combined to reduce the variance of prediction results. After the
L-th iteration, the expectation of the strong classifier is expressed as [50]

φ(x) = EL(x, L). (26)

The difference between the real value y and the predicted value of the weak classifier
can be written as [50]

EL(y− φ(x, L))2 = y2 − 2yELφ(x, L) + ELφ2(x, L). (27)

The comparison result of classifiers is described as [50]

EL(y− φ(x, L))2 ≥ (y− φ(x))2. (28)

The expectation of multiple weak classifiers is better than that of the strong classifier,
that is, Bagging is able to effectively improve the discrimination accuracy, especially when
the variance between the variables is large.

Figure 5. Structure of Bagging classifier.

3.2.3. Boosting

Similar to Bagging, Boosting also trains multiple weak classifiers to jointly decide the
final output [51]. However, weak classifiers are strengthened and trained by weighting in
Boosting [52]. Boosting is a framework, which obtains the subset, and utilizes the weak
classification algorithm to train to generate a series of base classifiers [53]. The optimization
model of Boosting is executed as [53]

Fm(x) = Fm−1(x) + argminθ

n

∑
i=1

L(yi, Fm−1(xi) + θ(xi)), (29)

where L denotes the greedy optimization. To solve the detailed problem of subsets and clas-
sifiers, Boosting derives multifarious algorithms, including Adaptive Boosting (AdaBoost),
Gradient Boosting Decision Tree (GBDT), Xtreme Gradient Boosting (XGBoost), and so on.

AdaBoost will select the key classification feature set in the training set for many times.
It trains the component weak classifier step by step and selects the best weak classifier with
an appropriate threshold. Finally, the best weak classifier for each iteration is selected to
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construct a strong classifier. However, AdaBoost combines weak classifiers to construct a
strong classifier [54]. The weights of each weak classifier are not equal, and the stronger
classifier will be assigned the high weight [55]. Specifically, the weighted error of the k-th
weak classifier Gk(x) is written as [54]

ek = P(Gk(xi) 6= yi) =
m

∑
i=1

wki I(Gk(xi) 6= yi), (30)

where w indicates the output weight. The weight coefficient of the k-th Gk(x) is defined as
[54]

αk =
1
2

log(
1− ek

ek
). (31)

It can be found that the weight coefficient decreases with the increase of weighted
error.

The expression of updated weight is [54]

wk+1,i =
wkiexp(−αkyiGk(xi))

∑m
i=1 exp(−αkyiGk(xi))

. (32)

AdaBoost needs a quality dataset because it is hard to handle noisy data and out-
liers. At present, AdaBoost is being used to classify text and images rather than binary
classification problems.

The core of GBDT is that each tree learns the residual of the sum of all previous
tree conclusions, which is the accumulation of the real value after adding the predicted
value [56]. The fitting error of GBDT, which is replaced by the negative gradient of the loss
function, is reduced by multiple iterations [57]. The negative gradient expression of the i-th
sample in the t-th iteration is performed as [56]

rti = −[
∂L(yi, f (xi))

∂ f (xi)
] f (x)= ft−1(x), (33)

where rti denotes the negative gradient, and L represents the loss function. After getting
the t-th decision tree, the optimal solution of the loss function is given by [56]

ctj = argmin ∑
xi∈Rtj

L(yi, ft−1(xi) + c), (34)

where c represents the optimal solution, R indicates the region of the child node, and j
denotes the number of the child node. The optimal solution could be utilized to update the
weak classifier [58].

XGBoost adopts a similar theory to GBDT [59]. GBDT applies the first derivative in
the loss function, but the loss function of XGBoost is approximated by the second-order
Tailor expansion. Furthermore, the objective function of XGBoost imports a regularizer to
avoid the over-fitting problem, which is expressed as [60]

Obj(t) =
n

∑
i=1

L(yi, ŷ(t)i ) +
t

∑
i=1

Ω( fi), (35)

where ŷ denotes the forecasting sample, and Ω represents the regularizer. XGBoost employs
regularization to avoid overfitting, and it usually has superior performance in dealing with
small and medium datasets.

3.2.4. Stacking

Stacking is an ensemble technique that combines multiple discrimination results
generated by using different learning algorithms on the dataset [61]. Stacking contains
two layers of classification models, as shown in Figure 6. The first layer applies various
classifiers to predict the result. The result is input into the second layer as the training
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set. The second layer is utilized to assign higher weights to better classifiers, so the two-
layer model could effectively reduce the variance [62]. Hence, Stacking will select several
classifiers with good fitting for deciding the final result. However, the good performance of
a single classifier does not mean that the combined effect is ideal.

Figure 6. Schematic of a stacking classifier framework.

4. Interference Discrimination Experiments

In this section, practical sensors-collected remote interference measurement data is
employed to analyze the testbed effectiveness. The selected single model algorithms
were employed to discriminate the interference of the base station [26]. The selected
ensemble algorithms have excellent performance on complex problems. Furthermore,
accuracy and recall are applied to assess the performances of algorithms. Accuracy refers
to the probability that the models correctly judge the test data, and recall indicates the
probability that the models correctly judge the data interfered by the atmospheric duct. As
such, the experiments include three parts. (a) Change the size of the dataset; (b) Change
the imbalance ratio (IR) of the data size; (c) Test the robustness of algorithms; (d) Time
complexity.

4.1. Interference Dataset

The dataset is the measurement of the sensor under the TDD system, which is provided
by China Mobile Group Jiangsu Co., Ltd. Some base stations were interfered by the
atmospheric duct in Jiangsu Province of China, which interfered with the reception of
the uplink signal. The data is collected from 240,000 antennas in Jiangsu, including the
longitude, latitude, time, antenna height, and down tilt angle.

Figure 7 shows the number of interfered base stations, which gradually increases
from 1.00 a.m. to 7.00 a.m., with the number dropping dramatically from 8.00 a.m. The
trend shows that the atmospheric duct usually appears from midnight to the morning.
From the explanation of meteorology, the temperature of the ground drops quickly and
the lower atmosphere is prone to temperature inversion from midnight to the morning,
which means that within a certain height, the temperature increases with the vertical height,
which causes the atmospheric duct phenomenon.
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Figure 7. Number of interfered base stations.

The meteorological data is obtained from CFSv2, which is a fully coupled model
representing the interaction between the earth’s atmosphere, oceans, land, and sea ice [63].
The meteorology of CFSv2 includes the temperature, relative humidity, pressure, salinity,
and so on. We download the temperature, relative humidity, and pressure data, which is
related to the atmospheric duct, to match with the base station according to the longitude
and latitude.

4.2. Algorithm Settings

The hardware and software configurations of experiments are listed in Table 1. The
algorithms in Section 3 are selected to test the performance of the interfered dataset. Unless
otherwise specified, all parameters are set to the values in Table 2 by default. The empirical
results show that a large proportion of algorithms converge after 100 iterations, which is
chosen as the maximum number of iterations in our experiments. Particularly, the iterations
of AdaBoost are 500 because the higher iterations of the algorithm will significantly improve
the discrimination results.

Table 1. Hardware and software configurations.

Designation Configuration

Core i5-4210 H 2.90 GHz
Operating system Windows 10

Random-access memory 12.0 GB
Python 3.7

Tensorflow 2.0.0
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Table 2. Settings of the key parameters in the algorithms.

Category Algorithms Parameters Value

Single
model

algorithms

kNN Number of neighbors 1

SVM
Kernel Linear/Radial basis function

Maximum number of iterations 100

NB Type Gaussian/Bernoulli/Complement

Ensemble
algorithms

RF Number of trees in the forest 100

Bagging Number of base estimators in the
ensemble 100

Boosting

AdaBoost
Maximum number of estimators 500

Learning rate 0.01

GBDT

Number of boosting stages to
perform 100

Learning rate 0.01

XGBoost
Number of decision trees 100

Learning rate 0.1

Stacking
Estimators Lr/rf/kNN/cart/svc/bayes

Final estimator LogisticRegression

4.3. Sensitivity of the Algorithms to the Data Size

To verify the influence of different data sizes, the size of the training set is set as 20,000,
30,000, 40,000, 50,000, and 60,000, respectively. The IR of each training set is 5:1: for instance,
in the training set of 20,000, about 3333 pieces of data are interfered by the atmospheric
duct, and the rest are normal. Moreover, the equivalent data is sampled per hour to form
the training set.

The size of the test set is set to 20% of the total number of the training set. The number
of the interfered data and the normal data are the same in the test set, which is applied to
emphasize the learning ability of the algorithms for the imbalanced dataset. Similarly, the
equivalent data is sampled per hour to form the test set, which ensures fairness in the time
domain.

There is no overlap between the training set and the test set. When the size of the
training set changes, both the training set and the test set will be selected randomly. Besides,
two indicators, including accuracy and recall, are applied to evaluate the learning ability of
the algorithms. The expression of accuracy can be expressed as

Acc =
TP + TN

TP + TN + FP + FN
, (36)

where TP is the true positive, TN is the true negative, FP is the false positive, and FN is
the false negative. In the interference discrimination problem, TP refers to the interfered
samples that are judged correctly by algorithms, TN denotes the interfered samples that
are judged incorrectly, FP represents the undisturbed samples that are judged correctly,
and FN indicates the undisturbed samples that are judged incorrectly.

The expression of recall is defined as

Recall =
TP

TP + FN
. (37)

The recall is utilized to reflect the judgment ability of the algorithm for specific indi-
cators, which is especially adopted to display the judgment of the interfered data in the
interference discrimination problem.
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Table 3 shows the specific classification results on different datasets. The accuracy
results of single model algorithms and ensemble algorithms are illustrated in Figure 8a,
and the recall of two kinds of algorithms is shown in Figure 8b.

Table 3. Results of changing the data size of the algorithms.

IR 5:1

Size of Training Data 20,000 30,000 40,000 50,000 60,000

Indicators Acc Recall Acc Recall Acc Recall Acc Recall Acc Recall

Single
model

algorithms

kNN 61.93 36.46 63.65 38.14 64.17 41.21 65.83 43.49 65.52 42.67

SVM 50.00 0.00 50.02 0.46 50.01 0.33 50.00 0.00 50.00 0.00

NB 54.74 17.58 54.76 17.16 54.69 18.13 55.14 18.19 54.74 17.73

Ensemble
algorithms

RF 70.18 43.23 71.27 45.61 72.38 48.07 73.83 50.73 74.00 50.92

Bagging 76.03 59.04 78.32 62.15 79.67 64.84 79.67 65.61 81.44 67.93

Boosting

AdaBoost 53.75 7.85 54.38 8.89 54.65 9.88 54.50 9.33 54.12 9.23

GBDT 50.00 0.00 50.00 0.00 50.00 0.00 50.00 0.00 50.00 0.00

XGBoost 69.58 41.89 70.56 43.31 71.98 46.73 72.49 47.98 72.88 48.14

Stacking 71.49 45.99 72.82 47.95 74.68 52.34 76.96 56.78 77.28 57.38

In Figure 8a, the accuracy of all algorithms keeps improving with the increase of data,
which means that the amount of data has a significant impact on the accuracy. Specifically,
Bagging has the highest accuracy, which demonstrates it could better characterize the
complex nonlinear relationship between variables. The recall has a similar trend with the
accuracy, as shown in Figure 8b, which shows that the recall of Bagging is higher than the
others, that is, Bagging could well learn the characteristics of the minority in the imbalanced
datasets.
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Figure 8. Accuracy and recall results of single model algorithms and ensemble algorithms with
different data sizes. (a) Accuracy results. (b) Recall results.

Stacking, RF, and XGBoost have stationary performance on the dataset, which validates
that the three algorithms could fit the complex nonlinear relationship among variables well.
The accuracy of kNN is generally precise, which indicates that there are a few differences
among the variables, so distance matching is hard to find the internal relationship among
variables. NB only needs a few samples to achieve high accuracy, so the accuracy has
changed rarely when the amount of data is sufficient. Meanwhile, the generalization
ability of the model is weak, so the learning ability of the minority is poor. The accuracy
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of AdaBoost is not high, because the weights tend to the classifiers that have superior
performance, and the generalization ability of the model is affected.

However, the accuracy results of SVM and GBDT only attain 50.00%, and the recall
results of the two algorithms are almost 0.00%. It is revealed that the two algorithms judge
the data as normal data with a high proportion in the training set. We also test the ideal
case with a 1:1 imbalance ratio. The experimental results show that the accuracy and recall
of the two algorithms have improved significantly, which indicates that the model training
of the two algorithms tends to characterize the data features with a high proportion, that is,
SVM and GBDT are not sensitive to the minority.

The accuracy of partial algorithms decreases when the data is increasing because the
selection of the datasets is random. Besides, with the increase of data, the weight of learning
will change, which also affects the accuracy.

Basically, the performance of ensemble algorithms generally outperforms single model
algorithms in the interference discrimination problem, which indicates that ensemble
algorithms are available for characterizing complex nonlinear relationships. Besides, the
accuracy of partial algorithms decreases when the data is increasing because the selection
of datasets is random. Besides, with the increase of data, the weight of learning will change,
which also affects the accuracy.

4.4. Sensitivity of the Algorithms to IR

Typically, IR refers to the ratio of the majority to the minority in the training set. In this
paper, IR represents the ratio of undisturbed samples to interfered samples in the training
set. To verify the influence of IR on algorithms, the IR of the training set is set as 3:1, 5:1, 7:1,
9:1, and 11:1, respectively. The size of all training sets is 40,000. Meanwhile, the equivalent
data is sampled per hour to form each training set.

As mentioned, the size of the test set is set to 20% of the number of the corresponding
training set. The number of the interfered data and the normal data are the same in each
test set. The equivalent data is sampled per hour to form the test set. Besides, there is no
intersection between the training set and the test set, and the dataset is selected randomly.
Similarly, accuracy and recall are applied to evaluate the algorithms.

The impact of IR on the algorithms is listed in Table 4. The accuracy results of single
classification algorithms and ensemble algorithms are shown in Figure 9a. The recall results
of two kinds of algorithms are shown in Figure 9b.

Table 4. Results of changing the IR on the algorithms.

Size of Training Data 40,000

IR 3:1 5:1 7:1 9:1 11:1

Indicators Acc Recall Acc Recall Acc Recall Acc Recall Acc Recall

Single
model

algorithms

kNN 67.10 51.57 64.17 41.21 61.92 34.26 61.59 30.98 60.26 27.55

SVM 50.99 2.33 50.01 0.33 50.00 0.00 50.00 0.00 50.00 0.00

NB 54.71 21.04 54.69 18.13 54.52 15.90 54.30 14.96 54.09 13.81

Ensemble
algorithms

RF 77.51 60.24 72.38 48.07 69.35 40.99 65.91 33.29 63.61 28.59

Bagging 82.37 72.89 79.67 64.84 76.37 57.16 73.68 51.20 71.37 46.33

Boosting

AdaBoost 54.68 9.71 54.65 9.88 52.39 5.06 51.98 4.04 51.90 3.82

GBDT 50.00 0.00 50.00 0.00 50.00 0.00 50.00 0.00 50.00 0.00

XGBoost 77.85 60.69 71.98 46.73 67.49 36.37 64.04 29.11 61.19 23.08

Stacking 81.04 67.70 74.68 52.34 70.45 42.63 66.26 33.79 64.29 29.81

It is shown in Figure 9a that with the increase of the IR, the accuracy results of all
algorithms decrease by degrees, which means that IR has an appreciable effect on the



Sensors 2023, 23, 2264 16 of 22

algorithms. When the IR is 3:1, the results among Bagging, Stacking, XGBoost, and RF are
close. It means that when the value of IR is small, the ensemble algorithms are capable of
achieving comparatively thorough learning of the dataset. However, with the increase of
IR, the decline range of Bagging is smaller than the others, which validates that Bagging is
able to learn the highly imbalanced dataset well.
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Figure 9. Accuracy and recall results of single model algorithms and ensemble algorithms with
different IR. (a) Accuracy results. (b) Recall results.

With the increase of the IR, the accuracy results of Stacking, XGBoost, and RF are
dropping obviously. When the IR is 11:1, the results of the three algorithms are close to
the result of kNN. Moreover, similar results could be found in Figure 9b. The recall of
kNN is even higher than that of XGBoost. It is reasonable that IR has a great impact on
the ensemble algorithms, that is, the characteristics of the minority in highly imbalanced
datasets are difficult to learn. Meanwhile, the reduction of the minority means that the
characteristics of the minority will be more prominent, so kNN is easy to match the point
at this time.

As mentioned before, NB is driven by a few samples, so the performance of NB
changes little. The performance of AdaBoost is still not improved on the imbalanced
dataset due to the weight distribution problem.

From the experimental results illustrated in Figures 10 and 11, SVM and GBDT are
not sensitive to the minority. However, it is observed that when the IR is 3:1, the accuracy
of SVM is 50.99% and the recall of SVM is 2.33%. It means that SVM is able to be utilized to
characterize the minority only when the IR is low enough, which further confirms that the
learning ability of SVM for the imbalanced dataset is weak.
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Figure 10. Accuracy results of algorithms in the training set that contains 1% abnormal data.
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Figure 11. Accuracy results of algorithms in the training set that contains 5% abnormal data.

4.5. Robustness Analysis of the Algorithms

Data measurement failure caused by equipment power failure is unavoidable. In
consequence, the abnormal data is included in our dataset considering the actual equipment
conditions. The main forms of the abnormal data are the down tilt angle, equaling −1◦,
when the antenna height is 0, and so forth. Some abnormal data is added to the training set
to analyze the robustness of the algorithms.

We adopt the training set of Part C as the initial training set of the experiment. The IR
of the training set is still 5:1. In the following, the abnormal data randomly replaces the
same amount of data in the training set, and the replaced proportion is 1% and 5% of the
training set, respectively.

The test set does not change in all experiments. About 1000 pieces of abnormal data
are employed to form the test set. The equivalent abnormal data is sampled per hour to
form the test set. In addition, there is no overlap between the training set and the test set.
The accuracy is used for evaluating the robustness of the algorithms.

Table 5 shows the learning ability of the algorithms for abnormal data. The accuracy
results of algorithms, which are trained by the 1% dataset, are shown in Figure 10. It can be
seen that with the increase of the training data, the accuracy results of most algorithms are
improving. The accuracy of XGBoost is higher than the others, which means that XGBoost
could learn the characteristics of abnormal data well even if the number of data is small.
Moreover, the performance of RF, kNN, and Bagging is also stationary.

Table 5. Results of the algorithms on abnormal data.

Indicator Accuracy

Size of Training Data 20,000 30,000 40,000 50,000 60,000

Proportion of Abnormal Data 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Single
model

algorithms

kNN 77.76 91.50 80.33 93.87 84.09 97.23 86.85 93.97 86.95 96.83

SVM 63.63 63.63 63.63 63.63 63.63 63.63 63.63 63.63 63.63 63.63

NB 63.63 63.83 63.43 63.73 63.54 63.93 63.54 63.43 63.43 63.63

Ensemble
algorithms

RF 88.73 95.25 90.31 95.55 90.61 96.64 91.40 95.25 92.29 95.75

Bagging 89.32 96.34 90.51 96.24 91.10 96.73 92.19 95.06 92.68 96.65

Boosting

AdaBoost 63.63 83.59 63.63 83.79 63.63 83.70 63.63 80.83 63.63 80.73

GBDT 63.63 63.63 63.63 63.63 63.63 63.63 63.63 63.63 63.63 63.63

XGBoost 89.42 96.34 90.90 96.54 91.69 97.03 92.49 95.84 92.88 97.13

Stacking 63.63 96.44 63.63 96.73 63.63 97.92 63.63 96.54 63.63 97.82
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The accuracy results of SVM, AdaBoost, NB, and Stacking are 63.63% when the training
set contains 1% abnormal data. By analyzing the test set, we find that the data, which is
not affected by the atmospheric duct, accounts for 63.63% of the training set. It means that
the above four algorithms are not sensitive to samples when the number of samples is
extremely low.

Figure 11 presents the robustness of the algorithms on the training set with 5% abnor-
mal data. It is observed that the increase of the abnormal data from 1% to 5% improves the
accuracy of the algorithms. Stacking outperforms other algorithms. In Figure 11, 40,000
pieces of training data achieve higher accuracy than that of 50,000 pieces, which indicates
that the data characteristics contained in the randomly selected database have not been
well learned by the algorithms. The accuracy difference between 40,000 and 50,000 data is
about 1%, which indicates that the random data selection will cause fluctuations, but there
is no large deviation,.

Compared to Figures 10 and 11, it can be known that the increase of the abnormal data
from 1% to 5% greatly improves the accuracy of kNN and Stacking, which means the two
algorithms will be trained well when the number of the abnormal data reaches a certain
level, but it also reflects that they are not sensitive to a few samples in a highly imbalanced
dataset.

Moreover, AdaBoost is also greatly affected by the number of abnormal data, although
the accuracy is not ideal. However, the increase of the abnormal data does not improve the
accuracy of SVM and GBDT, which means the learning ability of the two algorithms is weak
when the dataset is a highly imbalanced set and there are complex nonlinear relationships
between the variables. Besides, with the increase of the abnormal data, the accuracy of NB
changes slightly, which means that NB is sensitive to the abnormal data, that is, NB has
ordinary learning ability for the highly imbalanced dataset.

4.6. Time Complexity

To analyze the algorithm efficiency, we list the time complexity of each algorithm,
namely, the floating-point operations. To ensure comparison consistency, the time complex-
ity is the result of running the code once in each algorithm. The time complexity and order
of the algorithms are listed in Table 6 where n represents the number of inputs.

The time complexity is explained in detail. k denotes the dimension of a single sample
characteristics. c indicates the number of categories. m represents the number of decision
trees. d refers to the depth of the tree. ||x||0 means all non missing items in the training
data. The order of Bagging and Stacking is related to the time complexity of base classifiers.

Specifically, the order of SVM is quadratic, which is unfriendly to the problem with
considerable training data. The order of Bagging and Stacking depends on the selected
base classifier, that is, when the order of the base classifier is low, the time complexity
of Bagging and Stacking is acceptable. XGBoost adopts fractional data block parallelism,
which enables the time complexity competitive.

To intuitively compare the complexity of the algorithm, we run the program in the
configuration environment of Part B, and listed the test time in Table 6. Without loss of
generality, each algorithm only compares the training time. The training set is selected
from Part C, the data size is 40,000, and the IR is 5:1.

The time consumption of algorithms is shown in Table 6. It can be found that although
the order of ensemble algorithms is generally higher than that of single model algorithms,
its time consumption in solving the complex interference discrimination is still acceptable.
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Table 6. Time complexity of the algorithms.

Algorithms Time Complexity Order Test

kNN O(kn) O(n) 1.49 s

SVM O(n2) O(n2) 8.20 s

NB O(ckn) O(n) 1.02 s

RF O(kdmnlogn) O(nlogn) 3.98 s

Bagging O(Base) O(Base) 11.52 s

AdaBoost O(knlogn) O(nlogn) 3.49 s

GBDT O(kdnlogn) O(nlogn) 2.46 s

XGBoost O(md||x||0 + ||x||0logn) O(logn) 1.79 s

Stacking O(Base) O(Base) 47.78 s

5. Conclusions

In this paper, a remote interference discrimination testbed with several promising AI
algorithms was proposed to assist operators in identifying interference. The introduced
framework for the testbed and the detailed design of the modules were presented. Fur-
thermore, the testbed with 5,520,000 network-side data made a consistent comparison of
nine AI algorithms. Numerical results illustrated that the ensemble algorithm had higher
interference discrimination accuracy than the single model algorithm. Operators could
select the algorithm with appropriate complexity to discriminate interference according
to the conditions of hardware equipment. Considering the fluctuating accuracy of the
algorithm, future work will consider optimizing the ability of the algorithm to learn data
characteristics so that the algorithm can achieve stable performance. Moreover, the accuracy
upper bound of remote interference discrimination deserves further exploration.
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TDD Time-Division Duplex
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SVM Support Vector Machine
NB Naive Bayes
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AdaBoost Adaptive Boosting
GBDT Gradient Boosting Decision Tree
XGBoost Xtreme Gradient Boosting
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Bagging Bootstrap Aggregating
Stacking Stacked Generalization
PE Parabolic Equation
IR Imbalance Ratio
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