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Abstract: The purpose of this study was to develop peak ground reaction force (pGRF) and peak
loading rate (pLR) prediction equations for high-impact activities in adult subjects with a broad
range of body masses, from normal weight to severe obesity. A total of 78 participants (27 males;
82.4 ± 20.6 kg) completed a series of trials involving jumps of different types and heights on force
plates while wearing accelerometers at the ankle, lower back, and hip. Regression equations were
developed to predict pGRF and pLR from accelerometry data. Leave-one-out cross-validation was
used to calculate prediction accuracy and Bland–Altman plots. Body mass was a predictor in all
models, along with peak acceleration in the pGRF models and peak acceleration rate in the pLR
models. The equations to predict pGRF had a coefficient of determination (R2) of at least 0.83,
and a mean absolute percentage error (MAPE) below 14.5%, while the R2 for the pLR prediction
equations was at least 0.87 and the highest MAPE was 24.7%. Jumping pGRF can be accurately
predicted through accelerometry data, enabling the continuous assessment of mechanical loading
in clinical settings. The pLR prediction equations yielded a lower accuracy when compared to the
pGRF equations.

Keywords: ground reaction force; loading rate; jumps; validation; biomechanics

1. Introduction

Bones respond to mechanical loading by altering their properties, such as mass, mi-
croarchitecture, and geometry, which ultimately dictate their strength and resistance to
fracture [1–3]. Therefore, physical activity is a paramount stimulus to maintain and improve
bone health throughout the life course [4]. However, the osteogenic effect of physical activ-
ity is highly dependent on the characteristics of mechanical loading [5]. Several studies on
experimental animals [1,6,7] have helped to form our understanding of the principles that
drive bone tissue’s adaptive response to mechanical loading. In general, high-magnitude
dynamic impact loading applied at high frequencies and including long rest periods seems
to favor increases in bone mass and strength [1]. This seems to corroborate the available
evidence from humans. For instance, findings from different types of sports have shown
that athletes practicing sports involving high- and/or odd-impact loading (e.g., volleyball
and football) have a greater bone mass and estimated bone strength compared to repetitive
and low-impact loading sports (e.g., cycling and swimming) [8]. Nevertheless, the precise
way in which the manipulation of mechanical loading variables influences bone tissue’s
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adaptive response in humans is not fully understood, particularly due to the difficulty in
accurately assessing bone’s mechanical loading and its components in vivo in humans.

Some questionnaires have been developed in an attempt to capture the bone-stimulating
characteristics of specific activities [9,10]. However, although the scores generated by such
subjective methods seem to be related to bone status, this association appears to be limited
and inconsistent across studies [11–13]. A more robust approach to assess mechanical
loading is the use of equipment such as force plates—the gold standard for ground reac-
tion force measurement [14]. However, the use of force plates is less applicable in some
clinical and research settings, as they are immobile and expensive devices that are limited
to assessments in laboratory conditions. In the last few years, objective methods based on
wearable devices have been proposed as a solution to overcome these limitations, since
acceleration and some mechanical loading variables resulting from body movement have
shown to be correlated [15,16]. In fact, several studies using different prediction model
approaches (e.g., linear regression, linear mixed models, machine learning) have already
shown that, through the use of acceleration data, it is possible to estimate some mechanical
loading components that are typically assessed only through force plates, namely, peak
ground reaction force (pGRF) [17–25] and peak loading rate (pLR) [19,21,22]. Although
accelerometry-based equations have shown high prediction accuracy [21,22], this versatile
approach to mechanical loading assessment is not widely used yet, either in clinical prac-
tice or research. One of the issues that may contribute to this fact is the lack of validation
studies covering a broader spectrum of activities, especially those known to have a greater
osteogenic effect, such as high-impact activities.

Until now, studies that have calibrated accelerometers to predict mechanical loading
variables have usually employed only simple activities, such as walking [19–21] or walking
and running [17,18,22,24], while activities eliciting higher impact loading have not yet been
tested. The fact that these accelerometry-based prediction equations are only valid for a
limited set of activities hinders their ability to accurately quantify the amount of loading
to which a person is subjected daily, as the physical activities performed daily are often
composed of other types of activities than just walking and running. Therefore, the validity
of these methods should be expanded to other activities that are commonly associated
with positive bone adaptations. Jumping exercises, for instance, are frequently used as a
strategy to improve bone health in post-menopausal women [26] and elderly men [27]. The
direct measurement of the mechanical loading involved in these activities would greatly
improve our ability to precisely control the loading regimen elicited by these physical
exercises, and to establish a more reliable relationship between mechanical stimulation and
the bone’s anabolic response and, consequently, to establish a clearer relationship between
exercise dose and the extent of the bone’s adaptive response [28]. So far, accelerations
recorded from body-worn devices have been shown to be correlated with ground reaction
forces during jumping [15], and accelerometers have also been successfully used to predict
other biomechanical variables during jumping activities [29]. Therefore, the objective of
this study was to develop accelerometry-based pGRF and pLR prediction equations for
high-impact activities in adult subjects with a broad range of body masses, from normal
weight to severe obesity.

2. Methods

An overall scheme of the experimental design and methods employed in this study
can be observed in Figure 1.
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lows: age between 18 and 65 years, and the ability to perform the jumps included in the 
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precluding any of the experimental exercises. The measurement of height (stadiometer 
model 213; Seca, Hamburg, Germany) and body mass (digital scale model 899; Seca, 
Hamburg, Germany) was carried out according to standard procedures [30]. 

2.2. Protocol 
The participants completed a series of trials involving jumps of different types and 
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of four jumps at each height, with a 30 s interval, and the continuous jumps were per-
formed in one set of 20 s at each height. Before starting the data collection, the partici-
pants performed a few repetitions of each jump type—always at the lowest height—to 
familiarize themselves with the protocol. The jumps were always performed in the fol-
lowing order: drop jumps, box jumps, continuous jumps—and from lower to higher 
heights. The landing phase of the drop jumps, the take-off phase of the box jumps, and 
both phases of the continuous jumps were recorded on a force plate at a 1000 Hz sam-
pling frequency (AMTI Corporation, Watertown, USA). The participants were instructed 
to jump with no restrictions regarding their arm movements, to land two-footed, and to 
remain stationary on the force plate for around five seconds after landing (except for the 
continuous jumps). To better characterize the types of jumps performed, the initial and 
final position of each jump can be seen in Figure 2. 

Throughout the protocol, three wearable sensors (GT9X Link; 100 Hz; ±16 g range; 
ActiGraph, Pensacola, FL, USA) were worn by each participant, at the following place-
ments: (i) right hip (along the anterior axillary line, at the level of the iliac crest); (ii) lower 
back (at the midpoint between the two posterior superior iliac spines); and (iii) right an-
kle (immediately superior to the lateral malleolus). The sensors worn at the hip and lower 
back were positioned on the same tightly secured elastic belt with clips, and the an-
kle-worn sensor was fixed by an elastic belt and adhesive tape. The wearable sensors 
were always positioned to ensure the alignment of the accelerometer’s vertical axis and 
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seen in Figure 3. The hip and lower back placements were chosen due to their proximity 
to the body’s center of mass, and the ankle placement was chosen because its location is 

Figure 1. Overall scheme of the study design and methods employed in the study.

2.1. Participants

A total of 78 adults participated in the study (27 males: 34.0± 12.3 years, 173.2± 6.3 cm,
83.2± 14.9 kg, 27.9± 5.6 kg·m−2; 51 females: 36.5± 11.2 years, 158.1± 6.8 cm, 82.0± 23.2 kg,
33.0 ± 9.6 kg·m−2; X ± SD). The protocol was approved by the local ethics committee (CES
192-14), and all participants were informed about the experiments’ purpose and protocol
before giving their written informed consent. The inclusion criteria were as follows: age
between 18 and 65 years, and the ability to perform the jumps included in the trials. The
exclusion criterion was the presence of any acute injury or chronic limitation precluding
any of the experimental exercises. The measurement of height (stadiometer model 213; Seca,
Hamburg, Germany) and body mass (digital scale model 899; Seca, Hamburg, Germany)
was carried out according to standard procedures [30].

2.2. Protocol

The participants completed a series of trials involving jumps of different types and
from different heights. First, drop jumps were executed from steps varying from 5 cm to
40 cm high, with 5 cm increments. Then, box jumps were performed starting from the floor
up to 5 cm, 15 cm, and 30 cm high boxes. Finally, continuous jumps were carried out at
two different heights: 5 cm and 15 cm. Drop and box jumps were executed in two sets of
four jumps at each height, with a 30 s interval, and the continuous jumps were performed in
one set of 20 s at each height. Before starting the data collection, the participants performed
a few repetitions of each jump type—always at the lowest height—to familiarize themselves
with the protocol. The jumps were always performed in the following order: drop jumps,
box jumps, continuous jumps—and from lower to higher heights. The landing phase of
the drop jumps, the take-off phase of the box jumps, and both phases of the continuous
jumps were recorded on a force plate at a 1000 Hz sampling frequency (AMTI Corporation,
Watertown, USA). The participants were instructed to jump with no restrictions regarding
their arm movements, to land two-footed, and to remain stationary on the force plate for
around five seconds after landing (except for the continuous jumps). To better characterize
the types of jumps performed, the initial and final position of each jump can be seen
in Figure 2.

Throughout the protocol, three wearable sensors (GT9X Link; 100 Hz; ±16 g range;
ActiGraph, Pensacola, FL, USA) were worn by each participant, at the following placements:
(i) right hip (along the anterior axillary line, at the level of the iliac crest); (ii) lower back
(at the midpoint between the two posterior superior iliac spines); and (iii) right ankle
(immediately superior to the lateral malleolus). The sensors worn at the hip and lower back
were positioned on the same tightly secured elastic belt with clips, and the ankle-worn
sensor was fixed by an elastic belt and adhesive tape. The wearable sensors were always
positioned to ensure the alignment of the accelerometer’s vertical axis and the standing
body’s longitudinal axis. The accelerometers’ positioning on the body can be seen in
Figure 3. The hip and lower back placements were chosen due to their proximity to the
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body’s center of mass, and the ankle placement was chosen because its location is closer to
the ground contact point. The wearable sensors were set to collect data at 100 Hz, which is
the device’s maximum sampling frequency.
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Figure 2. An example of a participant performing each of the jump types assayed. Panels (A,B) show
the initial (take-off phase) and final (landing phase) phases of the drop jumps, respectively, while
Panels (C,D) show the initial and final phases of the box jumps, respectively, and Panels (E,F) show
the initial and final phases of the continuous jumps, respectively.
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Figure 3. Accelerometers’ positioning on the body: Details of accelerometer positioning on the ankle,
lower back, and hip are displayed in Panels (A–C), respectively. Panel (D) shows all accelerometer
placements simultaneously.

Each wearable sensor used includes a primary and a secondary triaxial accelerometer.
As the manufacturer’s proprietary filter is not applied to the secondary accelerometer’s raw
data, only data from this accelerometer were used in this study. This increases the accuracy
and replicability of data collection and processing. Data from the force plates (Netforce,
Version 3.5.1; AMTI Corporation, Watertown, USA) and accelerometers (ActiLife version
6.13.3; ActiGraph, Pensacola, USA) were operated through the manufacturer-supplied
software and exported as raw data from the x, y, and z vectors. The ground reaction force
was expressed in newtons (N), and acceleration was expressed in gravitational acceleration
units (1 g = 9.807 m·s−2).

2.3. Data Processing

A flowchart showing the steps of the data processing can be seen in Figure 4. MATLAB
software (Version 2019a, MathWorks, Natick, MA, USA) was used to process the data
from both the force plates and the accelerometers. Data were processed according to the
following procedures: First, the ground reaction force signal from the force plate (1000 Hz)
was resampled to match the activity monitors’ sampling frequency (100 Hz). Then, both
the ground reaction force and acceleration signals were filtered using a Butterworth fourth-
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order low-pass filter, with a 20 Hz cutoff frequency, to attenuate the noise. This cutoff
frequency was selected based on visual inspection of the signals’ frequency spectra after
a fast Fourier transform (FFT). Afterwards, the ground reaction force and acceleration’s

resultant vector was calculated (ri =
√

x2
i + y2

i + z2
i ). After that, both signals were adjusted

using the time set by the system’s clock and then synchronized by the maximum cross-
correlation coefficient. Then, the ground reaction force and acceleration signals were
visually inspected, and whenever their peaks were not in the same hundredth of a second,
manual adjustments to the synchronization were performed. An example of the ground
reaction force and acceleration signals for each jump type can be observed in Figure 5. Next,
the peak acceleration (pACC) was determined by the following criteria: (i) a minimum
magnitude of three standard deviations above the mean acceleration value recorded during
a trial, and (ii) a separation of at least 0.2 s for continuous jumps and 4 s for the other
jumps. Then, pGRF was defined as the highest value within +/− 0.2 (continuous jumps) or
+/− 4 (drop and box jumps) seconds of each pACC, according to the jump type. The rates
of change were computed through a centered derivative from the beginning of the foot
contact to the curve peak (Equation (1)). The pLR and peak acceleration rate (pAR) were
defined as the maximum value in the array derived from Equation (1) and represented by
f ′imax

in Equation (2).

f ′i =
fi+1 − fi−1

ti+1 − ti−1
(1)

f ′imax
= max

(
f ′i
)

(2)
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Figure 5. Examples of the ground reaction force and acceleration signals for all of the jump types
performed. The first column, formed by Panels (A–D), shows the ground reaction force and accelera-
tion signal for accelerometers at the ankle, lower back, and hip for the drop jump from 5 cm height.
Panels (E–H) show the same signals, but for the box jumps of 5 cm height, while Panels (I–L) show
the signals for the continuous jumps of 5 cm.

Finally, the mean pGRF, pACC, pLR, and pAR of the resultant vector and its vertical
component for each participant at each jump type and height for each accelerometer
placement were extracted and used in all subsequent analyses.

2.4. Statistical Analyses

Statistical analyses were performed using R statistical software (version 4.2.1, R Foun-
dation for Statistical Computing, Vienna, Austria). All code used in the data analysis
is registered in an open platform (https://bit.ly/3szNSJS, accessed on 31 October 2022).
Statistical significance was set as α = 0.05.

Linear mixed models were used to develop pGRF and pLR prediction equations
for each vector (resultant and vertical) and accelerometer placement (ankle, lower back,
and hip). Body mass was tested as a predictor in all models, along with the acceleration
magnitude (pACC) in the pGRF models and its rate (pAR) in the pLR models. These

https://bit.ly/3szNSJS
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predictors were entered as fixed effects and kept in the model, as all were shown to be
significant (p < 0.05). The subject and the interaction between jump type and jump height
were tested as random effects, and both factors were shown to improve the models. The
final models were chosen according to the −2 log-likelihood statistic [31]. The conditional
coefficient of determination (R2), which estimates the variance explained by both fixed and
random factors [32], was computed.

Model validation was performed using the leave-one-out cross-validation method [33].
This method consists of separating data from one of the subjects into a testing dataset while
keeping the remainder in the training dataset. Then, a new model is developed using the
training dataset, with the same parameters that were defined using the entire sample. This
new model is then applied to predict the outcome for the subject in the testing dataset. The
whole process is repeated once for each participant (78 times). Data from the testing dataset
were used in all subsequent analyses.

Model quality was then evaluated both numerically and graphically. The numerical
assessment was performed by computing the following accuracy indices: mean absolute
error (MAE), mean absolute percentage error (MAPE), and root-mean-square error (RMSE).
To visually analyze the agreement between the values predicted by the models and those
measured by the force plates, Bland–Altman plots were drawn. These plots are constructed
by plotting the mean of the actual and predicted values on the x-axis and their difference
on the y-axis. Then, the bias was calculated as the mean of these differences and plotted as
a continuous horizontal line. The limits of agreement were defined as bias ± 1.96 standard
deviation and plotted as horizontal dashed lines [34]. To further test whether there was any
systematic under- or overestimation of the values by the models, one-sample t-tests were
performed to check whether the bias were significantly different from zero. Finally, linear
regressions were employed to examine whether the difference between the actual and
predicted values was affected by their magnitude, thereby verifying whether the prediction
was constant throughout the entire magnitude range [35].

3. Results

In our protocol, three distinct jump types were performed, each using several different
heights. This variety of jumping trials produced a considerable heterogeneity in the re-
sponse of both the force-plate- and accelerometer-measured variables. The results obtained
for pGRF, pLR, pACC, and pAR, with respect to their resultant vectors, can be observed in
Figure 6 (see Supplementary Figure S1 for the vertical vector).

Panels A and B show the force-plate-measured variables normalized by the subject’s
body mass, and by the pGRF and pLR, respectively. It can be seen that, in the drop jump
trials, there is a tendency for the loading magnitude to increase as the jump height increases.
This tendency is also observed for the box jumps, but with a lower magnitude. As for
the continuous jumps, both assayed heights elicited reasonably similar loading profiles.
Panels C and D show the values of the accelerometer-measured variables—pACC and pAR,
respectively—for each trial. It can be observed that, for all jump types and heights, data
from ankle-worn accelerometers typically record higher values compared to data from the
accelerometers placed at the lower back and hip. Moreover, during the drop jumps, there is
a constant increase in the values from the ankle accelerometers as the jump height increases,
while values from the lower back and hip accelerometers tend to plateau from 30 cm height
onwards. As for the box jumps, the pACC values remain reasonably constant throughout
the assayed heights, whereas pAR tends to slightly decrease as the jump heights increase.
Lastly, for the continuous jumps, both pACC and pAR from the lower-back- and hip-worn
accelerometers marginally decrease when comparing the 5 cm to 15 cm jumps. However,
the opposite is true for the ankle accelerometers, with their pACC and pAR increasing from
5 cm to 15 cm height.
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Figure 6. Distribution of the resultant vectors of mechanical loading (peak ground reaction force on
Panel (A) and peak loading rate on Panel (B)) and acceleration (peak acceleration on Panel (C) and
peak acceleration rate on Panel (D)) variables per jump type and height combination. Abbreviations:
BW, body weight; pACC, peak acceleration; pAR, peak acceleration rate; pGRF, peak ground reaction
force; pLR, peak loading rate.

Accelerometer-based mechanical loading prediction equations were developed based
on linear mixed models. The regression coefficients, R2, and accuracy indices of the models
derived from accelerometers worn at the ankle, lower back, and hip, and from the resultant
and vertical vectors, are presented in Table 1. The R2 values for the pGRF models ranged
from 0.83 to 0.92, showing that all of the models were able to explain at least 80% of the
pGRF variance, and the observed MAPE values were between 12.3% and 14.5%. Despite the
similar accuracy results achieved by all equations, the model derived from data from the
resultant vector of accelerometers worn at the hip was shown to have the lowest accuracy
error, represented by the smallest MAE (302.1 N), MAPE (12.3%), and RMSE (396.6 N).
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Table 1. Regression equations, R2, and accuracy indices for prediction of pGRF and pLR based on accelerometer-derived data.

Vector Accelerometer Placement Regression Equations R2 MAE MAPE RMSE

pGRF prediction equations

Resultant Ankle pGRF (N) = 1551.020 − 132.384(pACC) + 7.927(body mass)
+ 2.415(pACC × body mass) 0.84 341.2 ± 275.1 13.9% ± 13.4% 438.2 ± 569.4

Lower back pGRF (N) = −350.125 + 152.952(pACC) + 22.618(body mass)
+ 0.654(pACC × body mass) 0.92 376.3 ± 257.9 14.5% ± 10.7% 456.1 ± 508.5

Hip pGRF (N) = −493.877 + 188.759(pACC) + 18.008(body mass)
+ 1.279(pACC × body mass) 0.90 302.1 ± 257.2 12.3% ± 13.4% 396.6 ± 549.2

Vertical Ankle pGRF (N) = 1662.525 − 196.301(pACC) + 8.515(body mass)
+ 3.169(pACC × body mass) 0.83 350.4 ± 282.8 14.4% ± 14.5% 450.1 ± 581.0

Lower back pGRF (N) = −287.919 + 131.396(pACC) + 24.338(body mass)
+ 0.642(pACC × body mass) 0.90 371.0 ± 257.1 14.4% ± 10.9% 451.3 ± 509.8

Hip pGRF (N) = −786.169 + 177.403(pACC) + 23.953(body mass)
+ 1.355(pACC × body mass) 0.88 322.9 ± 273.3 13.3% ± 15.0% 422.9 ± 578.1

pLR prediction equation

Resultant Ankle pLR (N·s−1) = 71932.438 − 218.268(pAR) + 74.463(body mass)
+ 3.474(pAR × body mass)

0.88 18,973 ± 14,494 23.4% ± 26.6% 23,868 ± 29,433

Lower back pLR (N·s−1) = −1161.976 + 22.804(pAR) + 624.413(body mass)
+ 2.135(pAR × body mass)

0.89 20,320 ± 14,799 23.9% ± 23.6% 25,132 ± 28,807

Hip pLR (N·s−1) = 5118.300 + 33.054(pAR) + 346.667(body mass)
+ 2.835(pAR × body mass)

0.91 16,812 ± 13,485 20.7% ± 24.5% 21,546 ± 27,240

Vertical Ankle pLR (N·s−1) = 58864.225 − 194.575(pAR) + 142.545(body mass)
+ 3.733(pAR × body mass)

0.87 18,147 ± 14,387 23.1% ± 28.8% 23,152 ± 29,707

Lower back pLR (N·s−1) = 8303.550 − 19.708(pAR) + 685.299(body mass)
+ 1.900(pAR × body mass)

0.88 21,001 ± 14,831 24.7% ± 25.2% 25,704 ± 28,869

Hip pLR (N·s−1) = −11471.926 + 15.332(pAR) + 691.269(body mass)
+ 2.670(pAR × body mass)

0.88 18,801 ± 15,478 22.9% ± 27.5% 24,345 ± 30,582

Abbreviations: MAE, mean absolute error; MAPE, mean absolute percentage error; pACC, peak acceleration; pAR, peak acceleration rate; pGRF, peak ground reaction force; pLR, peak
loading rate; RMSE, root-mean-square error. Data: mean ± standard deviation.
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Compared to the pGRF models, the pLR equations yielded poorer results. Although
their R2 ranged from 0.87 to 0.91, their error measures were high, with MAPE ranging
from 20.7% to 24.7%. Nevertheless, similar to the pGRF models developed, the best pLR
prediction equation in terms of prediction accuracy was the one from the resultant vector
derived from hip-worn accelerometers, even though its error estimates were higher, with
an MAE of 16812 N, MAPE of 20.7%, and RMSE of 21545 N.

To visualize the agreement between the pGRF and pLR values measured by the force
plates and predicted by the models, a series of Bland–Altman plots were built for both
the resultant and vertical vectors and for all accelerometer placements. Figure 7 shows
the Bland–Altman plots for the resultant pGRF (panel A) and pLR (panel B) vectors of the
hip-worn accelerometers. Both plots show good agreement levels, as at least 94% of the
data points are within the limits of agreement and the data tend to cluster around zero.
Bland–Altman plots for the other accelerometer placements and vectors also showed the
same previously described patterns and can be found in Supplementary Figure S2 for pGRF
and in Supplementary Figure S3 for pLR. Moreover, as could be observed from the results
of the one-sample t-tests, none of the equations presented a bias significantly different
from zero (p > 0.05). Furthermore, all of the equations showed a proportional bias, i.e., the
magnitude of the values influences the prediction error. However, as the linear regressions
used to assess the proportional bias presented a very small R2 (maximum value of 0.10),
this effect is negligible.
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while dashed lines show the limits of agreement (bias ± standard deviation). Abbreviations: pGRF,
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Finally, an R package was also developed [36] to simplify the application of all of
the necessary data processing steps involved in the implementation of the developed
prediction equations. The package website (https://verasls.github.io/impactr, accessed on
31 October 2022) has all of the installation instructions and documentation necessary to
apply this method on the user’s own data.

4. Discussion

This study aimed to develop accelerometer-based mechanical loading prediction
equations for pGRF and pLR, for jumping exercises of different types and heights. We
also tested different accelerometer placements and data derived from both the resultant
and vertical acceleration vectors. Our results showed that the pGRF prediction models
developed for jumping activities based on accelerometry data have an MAPE around
13%. The prediction equations developed for pLR resulted in a lower accuracy, with an
MAPE around 22%. These models are the first to be developed specifically for high-impact
jumping activities in adults.

https://verasls.github.io/impactr
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When comparing the accuracy indices of the pGRF prediction equations developed in
the present study with other equations from past investigations, developed for walking
and running, it can be seen that our models have a lower accuracy [17,18,20–22]. This
can be explained, at least partially, by the high heterogeneity in the jumping movement
patterns, as several combinations of jump types and heights were tested in our study. In
addition, subjects with different skill levels were included in the sample, which may have
favored heterogeneity. Nevertheless, these MAPE values are similar to the results usually
found in accelerometer-based energy expenditure prediction models [37], which have
widespread use in research. As for the pLR prediction equations, they presented a lower
accuracy compared to the pGRF equations, corroborating previous findings [19,21,22]. This
is possibly due to the fact that the loading rate is typically calculated through a derivative of
the force signal from the beginning of the foot’s contact with the floor to the point where the
pGRF is achieved [19,21,22,38]. As this is a small time window—usually less than 0.2 s for
the jumps that were performed in our protocol—it requires a fine sampling acquisition that
captures small graduations in the force values throughout time, which is difficult to achieve
with common accelerometer sampling frequencies, which are usually 100 Hz at maximum.
Nevertheless, although our pLR prediction models had worse accuracy compared with
the pGRF models, their accuracy was similar or even better than the results from previous
studies that developed models to predict pLR during walking only [19,21]. Furthermore,
although our prediction equations’ error was relatively low, it was accompanied by a
high dispersion, as shown by its standard deviation values. This dispersion, however,
is somewhat expected, given that our data included several types and heights of jumps,
performed with no restriction to arm movements. Nevertheless, we have opted to include
this wide range of movement patterns in order to increase the external validity of the
equations, conferring them with a greater usability, without, for example, the need for
different models for different kinds of jumps, which would hinder the application of the
models to real-world data.

Bone increases its mass and optimizes its geometry and microarchitecture in response
to adequate mechanical stimulation [1,2], particularly of high magnitude [39,40]. These
types of high-intensity impact activities have been shown to be more strongly associated
with bone health improvements, even if they are only performed in small volumes through-
out the day. In fact, Vainionpää et al. [39] demonstrated that performing a relatively low
number (<100) of impacts with pACC above 4.9 g daily is positively associated with in-
creases in bone mineral density. Usually, this acceleration magnitude can be achieved
only by specific movements, such as jumps [16,39]. Nevertheless, accelerometry-based
mechanical loading regression models have mostly been validated for a set of activities
such as walking and running, which elicit relatively low acceleration magnitudes [18,21,22].
The results of our study provide new mechanical loading prediction models for jumping,
which is noteworthy because jumping is one of the most popular and effective exercises
prescribed for bone health improvement [41], but also one that could increase the risk of
fracture in patients with severe osteoporosis and bone fragility. Therefore, it is crucial to
develop strategies that can adequately monitor the mechanical loading associated with
this activity.

The development of such models was performed with the direct purpose of assessing
the loading sustained by the skeletal system during daily physical activity. To date, physi-
cal activity monitoring and exercise prescription aiming for bone health promotion have
largely been carried out almost blindly or through the use of subjective instruments such as
questionnaires. Moreover, the absence of a trustworthy method to monitor daily mechani-
cal loading may preclude the prescription and self-involvement of patients in high-impact
activities that may expose them to a higher risk of musculoskeletal injuries. These issues
may be overcome with the recent popularization of wearable sensors, such as accelerome-
ters, and their ability to be used as a tool for mechanical loading prediction. This would
allow some important clinical applications, as the models developed in this study—when
used in combination with other prediction equations for other types of activities [22]—can
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be used to fully analyze the mechanical loading spectrum to which people are subjected
daily and relate this information with bone health parameters. Therefore, a more complete
understanding can be achieved as to how mechanical loading influences bone health by,
for instance, identifying the loading volume and magnitude range that are more efficient in
inducing bone health benefits. Moreover, the development and distribution of an R package
that automates the steps necessary to apply these models enhances their applicability to
potential users [16]. This can prove to be an important tool, as the application of these
models depends on several laborious steps—such as the application of digital filters to
reduce noise from the signal, the detection of the peaks in this signal, and the computation
of derivatives to obtain the acceleration rate—necessary for the pRL prediction.

In our protocol, three accelerometer placements (ankle, lower back, and hip) and
two vectors (resultant and vertical) were tested. Overall, the prediction models’ perfor-
mance was reasonably consistent among the different placement and vector combinations,
allowing some conclusions to be drawn. First, the hip accelerometer placement, which
has traditionally been widely employed in research for the direct measurement of physical
activity intensity [42], yielded a slightly better accuracy compared to the other placements
tested. This is useful considering that previous data collected from hip-worn accelerometers
for other purposes can be adequately reanalyzed to obtain mechanical loading predictions.
Furthermore, studies that aim to extract mechanical loading together with other variables
derived from accelerometry data, and that use the hip as the default accelerometer place-
ment, can reliably use this placement. Second, as the magnitude of the resultant vectors of
both pGRF and pLR in the activities that were tested is derived mostly from the vertical
vector, and there were no considerable differences in performance between models using
both vectors, they can be used interchangeably to predict mechanical loading. In addition,
while models using data from the vertical vector allow the use of uniaxial accelerometers,
data derived from the resultant vector have the important advantage of not depending on
the correct orientation of the accelerometer’s axes, which cannot be guaranteed during data
collection in free-living conditions [43].

Although the models presented in this study proved to be valid, some limitations
ought to be considered. First, the choice of activity to elicit high-impact loading was
jumping, and several combinations of jump type and height were tested. Nevertheless,
the results presented here cannot be assured for other high-impact activities, or even
for other types of jumps that were not tested. Second, no external sample for model
validation was recruited. However, the leave-one-out cross-validation method that was
used is the recommended strategy in these situations [33]. Third, to apply these models in
accelerometer-recorded free-living physical activity data, there would be a need to identify
the periods in the acceleration signal in which the activity being performed is jumping.
Therefore, other methods for physical activity pattern detection based on accelerometer
data, such as the models developed by Wang et al. [44], should be used in combination with
these models to allow accurate prediction. Finally, as the jumps were always performed in
the same order, the subjects may have experienced fatigue, especially in the last few trials,
which could have led to changes in their jumping movement patterns.

In conclusion, accelerometry-based mechanical loading prediction models, especially
for pGRF, have proven to be a valid method for determining the mechanical stimulation
induced by jumps of various types and heights. These prediction models were validated
using data from both the resultant and vertical vectors and with accelerometers placed
at the ankle, lower back, and hip. The results from this study will enable the continuous
assessment of mechanical loading in clinical settings, providing a means to objectively
determine the osteogenic potential of daily physical activity and to better monitor and
prescribe exercise aimed to improve bone health. Compared to pGRF, the prediction of
pLR showed lower accuracy.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/xxx/s1, Figure S1: Distribution of the vertical vector of mechanical loading
(peak ground reaction force on Panel A and peak loading rate on Panel B) and acceleration (peak
acceleration on Panel C and peak acceleration rate on Panel D) variables per jump type and height
combination. Abbreviations: BW, body weight; pACC, peak acceleration; pAR, peak acceleration rate;
pGRF, peak ground reaction force; pLR, peak loading rate; Figure S2: Bland-Altman plots showing
agreement between actual and predicted peak ground reaction force for accelerometers worn at
ankle (Panels A and D), lower back (Panels B and E) and hip (Panels C and F), for both the resultant
vector (Panels A to C) and its vertical component (Panels D to F). Continuous thick lines show bias
(average of the differences between actual and predicted values) while dashed lines show the limits
of agreement (bias ± 1.96 standard deviation). Abbreviations: pGRF, peak ground reaction force;
Figure S3: Bland-Altman plots showing agreement between actual and predicted peak loading rate
for accelerometers worn at ankle (Panels A and D), lower back (Panels B and E) and hip (Panels
C and F), for both the resultant vector (Panels A to C) and its vertical component (Panels D to F).
Continuous thick lines show bias (average of the differences between actual and predicted values)
while dashed lines show the limits of agreement (bias ± 1.96 standard deviation). Abbreviations:
pLR, peak loading rate.
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