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Abstract: This research combines the application of artificial intelligence in the production equipment
fault monitoring of aerospace components. It detects three-phase current abnormalities in large
hot-pressing furnaces through smart meters and provides early preventive maintenance. Different
anomalies are classified, and a suitable monitoring process algorithm is proposed to improve the
overall monitoring quality, accuracy, and stability by applying AI. We also designed a system to
present the heater’s power consumption and the hot-pressing furnace’s fan and visualize the process.
Combining artificial intelligence with the experience and technology of professional technicians and
researchers to detect and proactively grasp the health of the hot-pressing furnace equipment improves
the shortcomings of previous expert systems, achieves long-term stability, and reduces costs. The
complete algorithm introduces a model corresponding to the actual production environment, with
the best model result being XGBoost with an accuracy of 0.97.

Keywords: predictive maintenance; current monitoring; machine learning; monitoring algorithm;
aerospace

1. Introduction

This research mainly uses artificial intelligence to monitor the equipment’s main-
tenance time and the equipment’s health, adjust the production schedule and purchase
maintenance parts in advance, and reduce the production costs caused by downtime.

Fiber-reinforced polymer composites have recently been used as primary structural
materials for aerospace vehicles. The manufacturing process of composite materials has
adopted the process of intelligent manufacturing, including machine learning (ML) and
artificial intelligence (AI).

The manufacturing process of composite materials equipment of a hot-pressing furnace
requires at least eight hours or more. The cost of manufacturing parts, electricity, and labor
required is more than USD 100,000 each time. The equipment maintenance of the hot-
pressing furnace is required for abnormal monitoring and predictive maintenance. If an
abnormal situation occurs in each device, it must be tested by maintenance staff, which
is very time-consuming and inefficient. In the event of an anomaly, the loss can exceed
USD 100,000 in waste. Therefore, it is hoped that the existing early warning monitoring
system can reduce the need for warranty testing [1].

In the past, the expert system [2,3] was used as a monitoring process. However,
many anomalies and emergencies remained uncorrected. Therefore, expert systems do not

Sensors 2023, 23, 2230. https://doi.org/10.3390/s23042230 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9579-4426
https://doi.org/10.3390/s23042230
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042230?type=check_update&version=1


Sensors 2023, 23, 2230 2 of 17

solve the problem in the long run. This research makes use of artificial intelligence. The
method is presented. Through current monitoring, the power consumption of heaters and
fans during the formation and transformation of the hot-pressing furnace is recorded online.
We actively grasp the health of the hot-pressing furnace equipment to improve the lack of
expert systems in the past, achieve long-term stable use, and reduce costs. Sacco et al. [4]
used ML vision systems to develop machine learning applications in composites manufac-
turing for the University of South Carolina’s automated fiber placement process. Various
sensors are used in industrial fields, including pressure, temperature, force, and vibration,
but there is no complete process of automated data collection and analysis. Fault identifica-
tion has become more important in the maintenance of induction motors. So, the condition
of the bearing in induction machines must be continuously monitored. Because the amount
of current data is huge, we argue that current anomaly detection requires a scalable system
architecture ability including real-time data processing, resource efficiency, fault tolerance,
and extensibility. Xiang et al. [5] identified abnormal samples in distribution transformer
inspection reports, assisted inspectors to complete inspection work correctly and efficiently.
Balouji et al. [6] integrated an advanced generative adversarial network to detect anomalies
in FDIA data. Many scholars have proposed various artificial intelligence or machine
learning methods to improve special machines or imaging of three-phase current [7–9].
Related methods of artificial intelligence and machine learning models [10] use machine
learning and deep learning models, such as an SVR (Support Vector Regression) model, a
KNN (K-Nearest Neighbor) model, and a radial basis function (RBF) neural network model.
Other methods were also proposed: Hadi Salih et al. [11] proposed using the Discrete
Cosine Transform (DCT) to analyze the speed and the Probabilistic Neural Network (PNN)
to identify bearing failures.

An anomaly detection method based on local anomaly factors is proposed through
experiments on real datasets, and the results were deemed accurate by [12]. Zeng et al.
used the parallel symmetric multiprocessor computing machine for problems with high-
dimensional training sets. This new technique has significant advantages in speed without
reducing the generalization performance of the support vector machine (SVM) [13]. Wang
et al. improved the effectiveness of a real power system experimentally with parameters
optimization particle swarm optimization (PSO) algorithms [14]. The industry example in
the current case [15] analyzes power consumption data for fault detection, and predictive
maintenance, and provides the implementation code on the Web. Recently, industrial power
systems [16–19] deployed the power consumption of 16 servers in this pilot implementation
for a medium-sized enterprise. The system uses the Hadoop, Hive data warehouse with
Spark. Data storage is applied in electric power big data and provides query functions
for statistical and data performance tests. Extended deployment to intelligent cloud edge
computing architecture, providing ML and deep learning implementation in the cloud
edge environment, was realized. Zhu et al. combined Active learning (AL) and transfer
learning (TL) for remaining useful life (RUL) prediction to design a method that is more
practical with a lesser demand on the run-to-failure data under limited labeled samples
and even no labeled samples [20].

The paper is arranged into four different sections. Section 1 is the introduction, Section 2
presents monitoring with artificial intelligence and algorithm description. Section 3 presents
the current monitoring system and numerical results, and Section 4 is the conclusion.

2. Monitoring with Artificial Intelligence and Algorithm Description

This section proposes algorithms for monitoring current and equipment status and
presents a tree diagram and mapping algorithm. It is an algorithm that is easy to design
and apply to other machinery fault detection with high accuracy and has been introduced
in [21,22].

Our detection status (Figure 1) for current abnormalities is divided into normal Al-
gorithm A1 and abnormal Algorithm A2. In the case that A2 is divided into Algorithm
A21 and Algorithm A22, Algorithm A21 is further subdivided into two types which are
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abnormal in Case 1 but do not affect the status and new abnormalities in Case 2 but can be
classified. In the case of Algorithm A22, it is hoped that there are no rules to find a method
through deep learning or different mechanical learning, and it can be classified back to A21.
Our detection status (Figure 1) for current abnormalities is divided into normal Algorithm
A1 and abnormal Algorithm A2. In the case that A2 is divided into Algorithm A21 and
Algorithm A22, Algorithm A21 is further subdivided into two types that are abnormal in
Case 1 but do not affect the status and new abnormalities in Case 2 but can be classified. In
the case of Algorithm A22, it is hoped that there are no rules to find a method through deep
learning or different mechanical learning, and it can be classified back to A21.

Current Monitoring Start

A1 Detect current status A2 Looking for
Current status

A21 Find rule A22 No rule Man-
ual confirmation

Normal Abnormal

Figure 1. Algorithms for current and equipment status monitoring.

2.1. A1 Detect Current Status

In the algorithmA1, we give a threshold value, assuming the threshold value is θI = v,
the current C (Currentage) It > θI . Then, it is judged to be an activated state. In addition, we
record a mark ΨI = 1 in the instrument, set φtol = ε if the current returns to 110− φtol < C
< 110 + φtol Mark ΨI = 0, and continue to monitor the normal current. We continue to
monitor for a period of Γt = K points. If the current is normal, we continue to monitor to
maintain the operation of the machine, the calculation is referred to Algorithm 1.

Algorithm 1 A1 Determine the fan current status

Require: Set θI = v, φtol = ε
if V > θI then

It is judged that the current is in the starting state. Set a flag ΨA1 = 1
Continuously monitor for a period of time Γt = K minutes.
if C < 110− φtol or C > 110 + φtol then

Send a warning message, set ΨA1 = 0 and continuously monitor the current.
end if

end if

2.2. A2 Looking for Current Status and Heater

When the current exceeds the range, the system will send a warning message, and
further enter the AI monitoring process through A2, A21 A22, look for the corresponding
monitoring process and determine whether it belongs to the historical classification situa-
tion. If it is a new situation, it will use the algorithm of A22 Mechanism, combining manual
and unsupervised learning with studying and judging the situation. The calculation is
referred to Algorithm 2.
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2.2.1. A21 Find Rule

Abnormal conditions occur, but do not affect the operation of the equipment, nor it
will affect the machining process, so it belongs to the monitoring record, but it does not
need to do any processing. The specific hardware assumes that X1, X2, . . . are not at the
normal voltage but the system is functioning normally. If ΨA21 = 0, then the monitoring
light signal returns to the normal monitoring status. None of the above rules sets ΨA21 = 1,
executes A22. Exceptions have rules given in Algorithm 3.

Algorithm 2 A2 Looking for Current status

Require: Set φtol = ε,
Ensure: Load AI package and monitoring module.

if 110− φtol < C < 110 + φtol then
ΨA1 = 1 . indicating abnormal status

else
ΨA1 = 0 to send a warning message . indicating abnormal status
It is judged that it belongs to A21 with exceptions and rules ΨA21 = 1
It is judged that it belongs to A22 with exceptions and rules ΨA22 = 1

end if

Algorithm 3 A21 Find rule

Require: The voltage of the device X1, The voltage of the device X2, . . ., The voltage of the
device Xn.
if CX1 − φtol < C < CX1 + φtol then

ΨA1 = 1, ΨA21 = 0 . Normal standard
else if . . . then

ΨA1 = 1, ΨA21 = 0 . Normal standard
else if CXn − φtol < C < CXn + φtol then

ΨA1 = 1, ΨA21 = 0 . Normal standard
else

ΨA1 = 0, ΨA21 = 0 . Normal standard
if ΨA1 = 0, ΨA21 = 0 Conform to the rules then

Abnormal but does not affect the status. For exceptions, use data to determine the
category, and find exception rules among the exceptions. If it does not match, look for a
classification method.

ΨA1 = 1, ΨA21 = ∅
else

Classify new anomalies. Use supervised or unsupervised learning, enhanced
learning, use deep learning, new abnormal state, and at the same time conform to the
abnormal state of historical data. To use classification methods, record them for later use
or detection, and record the results.

Set up ΨA22 = 1, Judgment belongs to A22 There are no rules for exceptions, and
unsupervised learning is used to detect whether there are new classifications.

end if
end if

2.2.2. A22 No Rule Manual Confirmation

When A22 = 1 is set as an exceptional case, we record the data, and the message is
sent to the information Server side, and then, expert judgment is required to clarify the rule
classification and analysis. Processing is complete once ΨA1 = 1, ΨA22 = ∅, and for the
calculation, we refer to Algorithm 4.

2.3. Classification Models

In this research, the normal or abnormal state of the system is examined through the
classification of the state. Therefore, we use two machine learning methods to discuss the
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classification. One method is support vector machine (SVM) and the other is the most
popular eXtreme Gradient Boosting (XGboost) method and is introduced as follows:

Algorithm 4 A22 Manual confirmation

if ΨA22 = 1 then
Expert analysis and record.
Use unsupervised learning to detect whether there are new classifications.
Set ΨA1 = 1, ΨA22 = ∅ and confirm to return to the monitoring state to continuously

monitor the current.
end if

We divide anomaly detection into two parts, see Figure 2. Part 1 is a temperature
monitoring and part 2 current monitoring. The system can use the time to query the
electricity consumption statistics of a specific device at a specific time and provide data
download [23–25].

1. Temperature abnormality monitoring:

(a) Abnormal temperature: abnormal temperature of each part (Abnormal heating
curve).

(b) Find the fault: confirm the cause for repair.
(c) Maintenance focused on fixing equipment after it broke.

2. Current abnormality monitoring:

• Power consumption status of each component.
• Warning conditions: abnormal conditions, abnormal features, feature extraction.
• Display the cause of the failure: by capturing the K% of the current difference as

a judging feature, we can establish an early warning rule to monitor the power
consumption of the equipment during the overall process, and give an early
warning when an abnormality occurs.

• Find the fault: confirm the cause for repair.

Part 1: Temperature Monitoring

Abnormal
Temper-

ature

Fault
found

Carry out
repairs.

Part 2: Current Monitoring

Current
Sensor
moni-
toring

Causes
of push
failures

Carry out
repairs.

Figure 2. Cycle of Abnormal Detection.

2.4. Support Vector Machine

SVM first appeared in 1963 and was proposed by Vladimir Vapnik and Alexey Cher-
vonenkis. In 1992, a more powerful model was proposed by Bernhard Boser, Isabelle
Guyon, and Vladimir Vapnik, which can create nonlinear classifiers by applying kernel
techniques to the maximum margin hyperplane [26]. We want to find a classifier (a hyper-
plane) that can map xi’s into higher-dimensional space so that the two different classes
yi = 1 and yi = −1 of points can be divided. The hyperplane can be expressed as the
following formula:

xiw + b = 0
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We hope that the distance of the parallel hyperplane can separate the two groups of
data as much as possible. The formula is as follows:

xiw + b = +1 (1)

and
xiw + b = −1 (2)

We minimize ‖w‖ since it is always positive, i, xi and yi, where i runs from 1 to N, N
is the number of datasets. The following constraints apply:

xiw + b ≥ +1, yi = +1 (3)

xiw + b ≤ −1, yi = −1 (4)

yi(xiw + b)− 1 ≥ 0, ∀i (5)

From Equation (3) to (5), we can solve the following optimization problem:

min
w

‖w‖2

2
s.t. yi(xiw + b)− 1 ≥ 0

(6)

yi(xiw + b) − 1 ≥ 0, for all i ∈ N. In mathematical optimization, this is a constrained
optimization problem for finding the local maxima and minima of a function subject to
equality constraints. Because it is quadratic, the surface is a paraboloid, with just a single
global minimum. We can solve it by the Lagrangian method.

2.5. eXtreme Gradient Boosting

The XGBoost algorithm is classified as a regression method, so the output can be a
continuous value. The idea is to select a few features to make a weak classification decision
tree. At this time, the model outputs the predicted value and compares it with the actual
value. The difference can also be said to be residual. As the new actual value of the data, we
select the feature to train the next decision tree, so as to achieve the purpose of reviewing
the error part of the previous step. Because the residual is used as the actual value to
discuss, the predicted value calculated by the model must be added to the predicted value
of the previous step, and so on [27–29].

Suppose the dataset is X = (x1, x2, . . . , xn)tr. The corresponding value is
Y = (y1, y2, . . . , yn)tr. The superscript “tr” represents the transpose of the matrix. For
the data, xi model predictive output can be written as a function

ft(xi) = ŷi
(t) (7)

Among them, i = 1, 2, · · · , n, and “t” represents the model of the first step, and defines
f0(xi) = 0. So, according to the above definition, the data xi go through each step. The total
output of the model can be written as a general formula

ŷi
(t) = ŷi

(t−1) + ft(xi) (8)

Therefore, the objective function of XGBoost is defined as a loss function plus a regular
term used by the model to control the function to avoid overfitting Ω( ft).

J(t) =
n

∑
i=1

L(yi, ŷi
(t)) + Ω( ft)

=
n

∑
i=1

L(yi, ŷi
(t−1) + ft(xi)) + Ω( ft)

(9)

There are many ways to choose the loss function L, such as using the mean square error
(MSE), and the regular term is
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Ω( ft) = γTt +
1
2

λ
Tt

∑
j=1

w2
j (10)

where γ, λ are arbitrary parameters, Tt is the total number of leaf nodes of the model at step
t, labeled 1, 2, . . . , T; wj is the weight of the leaf node numbered j, that is, it is divided into
a certain leaf node model that will output the value, j = 1, 2, . . . , Tt. Then, XGBoost uses
a Taylor expansion to expand the loss function L to the second order so that the objective
function can be written as

J(t) ≈
n

∑
i=1

L(yi, ŷi
(t−1)) + gi ft(xi) +

1
2

h2
i ( ft(xi))

2 + Ω( ft) (11)

where gi =
∂L(yi ,ŷi

(t−1))

∂ŷi
(t−1) , hi =

∂2L(yi ,ŷi
(t−1))

∂(ŷi
(t−1))2 , they are the first and second partial derivatives of

L(yi, ŷi
(t−1)) to ŷi

(t−1), respectively. The above process is to describe the XGBoost algorithm.
Therefore, for this problem, we first calculate the continuous predicted value according to
the original XGBoost and then use it in the previous part of the logistic regression. The
Softmax function maps the value to a discrete probability value to solve this problem.

3. Current Monitoring System and Numerical Results

The goal of this system is to monitor the equipment and display the status of the
equipment in real time by capturing the current value of each piece of equipment. After
artificial intelligence technology is incorporated in the future, it is hoped that predictive
maintenance can be achieved. Figure 3 displays the current monitoring system’s content,
the cause of the abnormality, and the related status corresponding to the abnormal device.
We use three kinds of warning information: normal (green light), abnormal (red light), and
warning (yellow light) to represent the monitoring light of the system.

Figure 3. Current Monitoring System.

The hot-pressing furnace monitoring system uses three hot-pressing furnaces num-
bered 715, 930, and 1230. As shown in Figure 4, the equipment is divided into general
heaters (HO1, HO2, HO3, etc.), fans, and SCR (Silicon Controlled Rectifier).

Figure 4. Hot-pressing furnace monitoring system.

In Algorithm 1, A1 determines the current status. In the data acquisition part, data
from the three currents (R, S, T) of each device are retrieved every 30 min, and each device
will have one dataset per minute, a total of 30 strokes in 30 min; so, we use the data of
30 strokes to judge the abnormality of the equipment.
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The judgment logic is divided into two types: general heater and fan, and SCR (Silicon
Controlled Rectifier). In Algorithm 2, A2 is looking for the Current status and heater. In the
abnormal judgment of the general heater and fan, we divide it into two algorithms, and
use the warning score and Alarm score to record the result of this abnormal judgment.

At the beginning, we first calculate the average of the three current values as X̄, and
the average of the difference between the three currents as C. First algorithm: If the absolute
value of C is more significant than 10% of X̄ and less than 20% of X̄, it means that this
dataset is abnormal, and we set the warning score to 1. Second algorithm: If the absolute
value of C is greater than 20% of X̄, the dataset is abnormal. At this time, we set the Alarm
score to δ (Algorithm 2).

• X̄ = R+S+T
3 .

• Y = (RS)+(ST)+(RT)
3 .

In Algorithm 3, A21 finds abnormal light signal judgment rule:

Green Light δ < 5, γ < 10.

Yellow Light δ < 5, γ > 10.

Pink Light δ > 5.

Red Light

1. A phase current of 715 A and the previous minute exceeds 200 A.
2. At any one of the equivalent currents.
3. The current exceeds 600 A between any equivalent current and the previous

minute.

Here, δ is the alarm score and γ is the warning score. In the SCR abnormal judgment,
we take the maximum value of the three currents (C) and the absolute value average of the
three current differences (Z) for comparison, if

• C = (max{R}+ max{S}+ max{T})/3.
• Z = (|(max{R} −max{S})|+ |(max{S} −max{T})|+ |(max{R} −max{T})|)/3.

Abnormal light signal judgment rule:

Green Light C > 0.9Z .

Yellow Light 0.8Z < C < 0.9Z .

Pink Light C < 0.8Z .

Red Light

1. 715: The difference from the previous minute when the R/S/T phase currents
are either equivalent or exceed 200 A.

2. 930: When the difference between the R/S/T phase currents and the previous
minute exceed 150 A at an equivalent level.

The results are displayed on each furnace’s electricity consumption record page, as
shown in Figure 5. This page is divided into two parts. The left half is the equipment status
of the hot-pressing furnace and the right half is the electricity meters, as shown in Figure 6,
indicating which lights are displayed. It indicates the equipment status of the hot-pressing
furnace, allowing warranty staff to check different equipment and speed up the process of
equipment maintenance. The right side of the Figure shows the actual configuration of the
meter and the monitoring equipment.

In addition, we can query the historical current record of the device on the right side
of the device status, as shown in Figure 7. After selecting the time and device, we can
know the three current values of the device. In addition, multiple devices can be selected
at the same time to compare the values between the devices, as shown in Figure 8, so that
the maintenance staff can know the status of the equipment before actually inspecting the
equipment before further maintenance, which improves the efficiency of inspection.
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Figure 5. Hot-pressing furnace monitoring and electricity consumption record system.

Figure 6. Hot-pressing furnace monitoring system and electricity meters.

Figure 7. History of three current records.
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Figure 8. Comparison of devices, press furnace heat, equipment, and abnormal time values.

The maintenance staff can further inquire about the current data of the equipment
through this record to speed up the maintenance process. Figure 9 shows the abnormality
record of the hot-pressing furnace.

Figure 9. The abnormality record of the hot-pressing furnace.

This system also integrates the health status of each hot-pressing furnace for a whole
day, as shown in Figure 10. The warranty staff can refer to these data to ensure whether
the hot-pressing furnace has been in an abnormal state for a long time or the state has
been exceeded. If the trend is getting worse, we repair the hot-press furnace in advance to
achieve the effect of predicting the warranty.

In terms of calculation, the comprehensive risk light for equipment health refers to the
result calculated from the previous abnormal records. If the green light is green, the score
is 1, the yellow light is 2, the pink light is 3, and the red light is 3. Counting the score as
4, there will be a light record every thirty minutes, and we add up and average the scores
throughout the day to get the health light for the day.

In the process of early warning judgment, this study proposes warning information
by capturing the physical characteristics of the current and transmitting the information to
the system to notify the relevant staff. Among them, the current data acquisition process is
to query the electricity consumption statistics of a specific device through time through the
platform’s application programming interface (API). The system provides the recording
unit, and the record and data download information whose duration is the electricity
consumption information, which can be extracted and obtained through the API. Figure 11
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shows the visualization system, and the Single-Phase Current Abnormal Releases show the
abnormal process. Figure 12 shows the alert State of the current monitoring system.

Figure 10. The abnormality record of the hot-pressing furnace.

Figure 11. Visualization system.

Figure 12. Abnormal Alarm.

The operation process of the fan is divided into three steps. In the first step, the current
is larger at startup. In the second step, the operation of the fan changes as the pressure
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and temperature increase. When the pressure is released, the operating current begins to
decrease. In the third step, the process is over when the fan running current is 0. Figure 13
shows when the fan starts, Figure 14 shows when the process ends, and the fan stops.

Figure 13. The System of Fan Start.

Figure 14. The System of Fan stops at the end of the process.

To ensure the stable operation of the generator, the engine needs at least three windings.
In the case of perfect balance, all three phases share the same load. Under normal conditions,
the current difference between the three phases does not exceed 10% of the total (Figure 15,
Three-phase load balancing). From Figure 16, it can be seen that the SCR current changes
with time. Because the SCR mainly regulates the heating work, it will adjust the temperature
as required. The current of the heater group will start with demand, and the process current
is stable at about 60 A, as shown in Figure 17. This is the broken line diagram of the current
when the fan is operating. It can be seen that there will be an increased starting current
when the fan is started, and the production process will tend to be stable, as shown in
Figure 18.
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After the system is integrated into the artificial intelligence model, important infor-
mation is understood from the historical electricity usage records and the field expert
experience, which will be used as the judgment basis for the subsequent establishment of
electricity usage early warning rules, and the predicted report will be issued. The steps are
as follows: Step 1: Hot-pressing furnace actuation sequence. Step 2: Fan actuation process.
Step 3: Current range when the heater is activated. Finally, three-phase load balancing.

Figure 15. Balanced Three-Phase Load.

Figure 16. SCR Phased.

Figure 17. Heater System.

The fan participates in the entire manufacturing process, and the starting current of
549 to 613 A keeps an average of 110 to 120 A during the operation process until the current
is 0 A and the process ends. BANK 1 to 3 of the heater group, the current data maintain a
constant value after the control is stabilized. When the heating wire fails, the currents of
each phase range will fall between 53 and 55 or 60 and 63.
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Numerical Result

This subsection presents data and system implementation results and numerical
results. Finally, the numerical results of the SVM and XGBoost classification models
are presented.

Figure 18. Fan Current system.

We collect the current data of hot pressure, from 1 September 2020, to 31 October 2020,
and obtain about 34 million data points, because 33.6 million of them have zero value or a
very small current value. The ratio of the current value is about 6 to 4, so the number of
small and zero values is deleted, and there are about 400,000 pieces of data that can be used
for analysis. We obtain numerical results using SVM and XGBoost models and use 80% of
the data as training data and the remaining 20% as test data. The validation profile uses
2519 data points from 0:00 to 1:59 on 11 March 2021, to verify the model’s accuracy. Finally,
the accuracy of the two methods is compared using a confusion matrix and shown in the
following Table 1.

Table 1. Confusion matrix of SVM and XGBoost model.

Confusion Matrix of SVM Confusion Matrix of XGBoost

True/Predict Normal Abnormal True/Predict Normal Abnormal

Normal 0.90 0.1 Normal 0.97 0.03
Abnormal 0 1 Abnormal 0.11 0.89

Figure 19 shows the results of the hot-pressing furnace current monitoring feature
extraction analysis. The data are automatically retrieved through API, and then, the
pairwise difference between the three-phase currents and the average of the three currents
are calculated as the training data, and the three load balances are set a label for each piece
of data; 1 is abnormal, 0 is normal, and the maximum value of the three-phase current
difference is greater than 1 to be considered or not, and less than 1 is considered normal.
The orange box is the correlation between the label and the current difference. The darker
the color, the higher the correlation. From a correlation point of view, the correlation of the
current difference with LABEL is higher than that of the three-phase current.

In Table 2, the overall accuracy rate is 91.7%, the upper left is normal data, and the
model prediction is normal. The upper right is normal data, but the model prediction is
abnormal. The lower left is the abnormal data in the model prediction as normal, and
the lower right is the abnormal data, and the model prediction is abnormal. The SVM
model degree is stricter for normal data, and it is easy to misjudge normal as abnormal,
so the accuracy rate is only 90% and XGBoost is as high as 97%. However, the confusion
matrix of the XGBoost model predicts abnormal results under the same data. The XGBoost
model has 11% misjudgments so that the abnormal conditions can be further improved
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through algorithms. Finally, we display the overall test set’s judgment data and the results’
prediction accuracy, shown in the table below.

The accuracy rate of XGBoost is as high as 99.96%. Other model results will also have
high accuracy because system anomalies are incidental events.

Figure 19. Feature Correlation.

Table 2. The accuracy of XGBoost and SVM model.

Model Accuracy

SVM 0.9867
XGBoost 0.9996

4. Conclusions

In this research, artificial intelligence is applied to the predictive maintenance of the
hot-pressing furnace. The abnormality and instability of the hot-pressing furnace are de-
tected by monitoring current data combined with artificial intelligence. This research has
developed a corresponding algorithm and artificial intelligence real-time system. Based on
the actual situation, combined with the experience and technology of professional techni-
cians and researchers, a corresponding algorithm and artificial intelligence real-time system
have been developed, and real-time visual monitoring is presented, including algorithmic
monitoring of abnormal and normal conditions. The monitoring system of this study
can have several advantages, reducing huge downtime losses, reducing the occurrence
of abnormal situations, strengthening the ability to predict, and the system can be con-
tinuously improved. The results of this system can continue to improve our algorithm,
increase the accuracy of prediction, reduce the shutdown of abnormal conditions, and
minimize economic losses. In the current monitoring, the model’s accuracy is as high as
0.89. XGBoost has the highest accuracy. Through the detection of abnormal effects and
comparing the two models, XGBoost has a higher accuracy rate and a single type of error
data. In constructing the artificial intelligence real-time system, we have established a
hot-press furnace current data database, a health monitoring system, and an equipment
abnormality warning push. Through such a system, it is hoped that the time for staff
inspections can be reduced, the use of equipment will be continuously monitored online,
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and unplanned downtime will be reduced to zero. In the future, a three-phase current can
be combined with fans and sensors to achieve predictive maintenance.
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