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Abstract: Ensuring safe food supplies has recently become a serious problem all over the world.
Controlling the quality, spoilage, and standing time for products with a short shelf life is a
quite difficult problem. However, electronic noses can make all these controls possible. In this
study, which aims to develop a different approach to the solution of this problem, electronic nose
data obtained from 12 different beef cuts were classified. In the dataset, there are four classes
(1: excellent, 2: good, 3: acceptable, and 4: spoiled) indicating beef quality. The classifications
were performed separately for each cut and all cut shapes. The ANOVA method was used to
determine the active features in the dataset with data for 12 features. The same classification
processes were carried out by using the three active features selected by the ANOVA method.
Three different machine learning methods, Artificial Neural Network, K Nearest Neighbor, and
Logistic Regression, which are frequently used in the literature, were used in classifications. In the
experimental studies, a classification accuracy of 100% was obtained as a result of the classification
performed with ANN using the data obtained by combining all the tables in the dataset.

Keywords: decision support system; e-nose; data fusion; control; beef quality

1. Introduction

Meat, which is one of the richest food sources in terms of protein and fat and is
frequently consumed by living things in nature, is a product that should be consumed in
a short time. It should be stored in cold and sterile environments so that its quality does
not deteriorate in the process from production to consumption [1]. The spoiling time of
the meat may differ depending on the creature from which it is obtained. The quality
of meat is a factor that is directly related to its nutritional value and economic value.
Therefore, quality controls of meat must be carried out carefully in all processes from
production to consumption. Quality features include the physical and chemical features
of meat [2]. Since meat is an attractive food source for microorganisms, microbial growth
also occurs rapidly in meat, which is a factor impacting its flavor, smell, and nutritional
value [3]. Meet quality controls are carried out by experts; however, problems can arise
since it is not always possible to find such specialists.

Automatic detection systems continue to be developed in order to maintain the neces-
sary controls and evaluations for when experts are unavailable [4]. As food spoils, odor
and gas are emitted due to microbial activity [5]. Here, the odor is caused by the different
gases that spread, and it is possible to obtain information about the quality of food by
detecting these emitted gases through sensors [6,7]. These systems, which contain a sensor
array and imitate the human nose, are called electronic noses (e-noses). Electronic noses
are used in detecting the freshness of meat [8], drug detection [9], disease diagnosis [10],
and the diagnosis of the COVID-19 infection, which has turned into a pandemic in recent
years [11].

There are many studies in the literature that use data from e-noses to automatically
determine the quality of different foods [7,12–14]. E-nose studies tracing perishable
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foods are more common [15,16]. In order to clarify the aim of this study, the stud-
ies conducted with e-nose data in the literature are first described in detail and in
chronological order.

In their study, Panigrahi et al. used a polymer-based e-nose system to analyze the
freshness of beef stored at temperatures between 10 ◦C and 42 ◦C. They performed di-
mensionality reduction of the signal by applying Principal Component Analysis (PCA).
The obtained data were classified by radial basis function ANN. They performed the
classification processes by dividing the data they obtained into two groups as corrupted
and intact, and achieved high classification accuracies [17]. Li et al. combined data from
two different e-nose devices for the detection and classification of damaged apples.
They used PCA for feature extraction and a probabilistic neural network for classifica-
tion. They obtained results with a low error rate with the methods they suggested [18].
Cevoli et al. collected data with an e-nose containing six sensor arrays to classify cheeses
according to production technique and ripening time. They tried different preprocess-
ing methods on the data they obtained. In their study, they performed four different
feature extraction algorithms and feature reduction operations with PCA, and both
sets of reduced data were classified with ANN [19]. Papadopoulou et al. investigated
the deterioration process of sirloins stored at different storage temperatures. In their
study, the classification processes were carried out by using electronic nose data and the
data obtained from microbiological analyzes. Three classes were determined as fresh,
semi-fresh, and spoiled. They used the SVM method for classification and obtained high
classification accuracy [20]. Dang et al. have proposed a classification system that they
call an enhanced support machine community. In the study based on e-nose data, kernel
PCA was used for feature extraction and a new fusion approach was proposed. They
obtained high classification accuracies with their proposed methods [21]. Wijaya et al.
have developed an e-nose to detect and monitor beef quality. The KNN method was
used to identify four beef classes. The experimental results of the study revealed that
the proposed system can distinguish beef quality with high classification accuracy [22].
Stating that wines can be distinguished according to the fermentation process, type, and
year as well as the production area, Liu et al. developed an e-nose to detect different
wine odors. In the experimental results of the study, where Extreme Gradient Boosting,
Random Forest, SVM, and Back Propagation Neural Networks (BPNN) were used to
classify the obtained data, high classification accuracies were obtained with the BPNN
method [23]. Using e-nose, Ghasemi-Varnamkhasti et al. have classified different types
of cheese. Various methods, such as ANN, PCA, Linear Discriminant Analysis (LDA),
and SVM were used within the scope of the study. In the classification of the cheese
types’ storage time, the highest accuracy was obtained with the LDA method [24]. Sarno
et al. created a dataset for the detection of pork mixed with beef. By mixing seven
different ratios of beef and pork, they collected data for each sample for 120 s with an
e-nose. A high classification accuracy was obtained in the experimental results of the
study, in which the data size was reduced by PCA and the classification was performed
with SVM [25]. Wakhid et al. used different-sized chambers to determine the purity
of meats and collected the data with an e-nose by placing the mixed meat in these
chambers. The highest classification accuracy was obtained from the data collected in
the 50 mL chamber [26]. Hibatulah et al. proposed a method that can predict the micro-
bial population in meat. The Support Vector Machine Regression method was used in
training and testing the data obtained from an e-nose. As a result of the experiments,
they obtained high R2 and RMSE values [27].

Considering the studies in the literature, it is vital to monitor beef quality rapidly,
effectively and with high accuracy. Based on these problems, this study was carried out
in order to classify data collected from different cuts of meat with a higher accuracy than
other studies in the literature. In addition, it is aimed to classify beef quality with high
accuracy, regardless of cuts. Considering the studies in the literature and based on these
aims, the procedures carried out within the scope of this study are as follows:
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• E-nose data obtained from 12 different beef cuts was used.
• The data in the 12 tables created for each beef cut in the dataset were classified

separately.
• The data in each of the 12 tables were reclassified with the active features determined

by the ANOVA method.
• In order to eliminate the beef cut shape factor, all tables were combined into a

single table.
• The 26,640 rows of data obtained as a result of combining all tables were classified by

using the same methods.
• Classifications with 26,640 rows of data and features selected by ANOVA were per-

formed with the same methods again.
• The obtained results were analyzed with confusion matrices and performance metrics.

As a result of these processes, the contributions of the study to the literature can be
summarized as follows:

• The 12-table data generated for each beef cut was classified separately. In this way, the
classification accuracy for each cut could be analyzed.

• Effective features were determined with ANOVA and more accurate and faster results
were obtained with fewer data in each table.

• By combining all the tables in the dataset, the beef cut factor was disabled and classifi-
cations were carried out.

• With the effective features determined by ANOVA, high accuracy and high-speed
prediction accuracy were achieved on all data in the dataset.

The remainder of this paper is organized as follows. Section 2 describes the mate-
rial and methods, Section 3 presents the experimental results, and Section 4 provides a
discussion and conclusions.

2. Material and Methods

In this section, the dataset used in the study, the machine learning methods (ANN,
KNN, and LR), Analysis of Variance (ANOVA), which is used to reduce the number of
features, increase the classification accuracy and reduce the calculation time, the confusion
matrix used to observe the classification data of the classification models, and the methods
utilized to measure the models’ performance are explained. A mind map showing these
processes is given in Figure 1.
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2.1. Dataset: Electronic Nose from Various Beef Cuts (ENVBC)

Wijaya et al. developed a low-cost and fast-operating meat evaluation system [28].
With the electronic nose they developed, they evaluated the variation in quality with
time of different beef cuts and used 12 different beef cuts to construct the dataset.
These cut shapes were round (shank), top sirloin, tenderloin, flap meat (flank), striploin
(shortloin), brisket, clod/chuck, skirt meat (plate), inside/outside, rib eye, shin, and
fat. The deterioration process of the beef was recorded with 11 sensors for 2220 min
for each cut shape. Arduino was used for data gathering. The obtained data was
constructed as a dataset consisting of 12 tables. The tables consisted of 2220 rows
and 11 sensor features for each cut. For the evaluation of meat quality, 4 classes were
defined: (1) excellent, (2) good, (3) acceptable, and (4) spoiled. Total viable count (TVC)
values were used while determining these classes. This value indicates the number of
microbial populations [29]. Table 1 shows the gas sensors used in the creation of the
dataset and information on which gases these sensors can detect.

Table 1. The sensors used in the creation of the dataset and the gases they detect.

Gas Sensor What Gases Does it Detect?

MQ2 Alcohol, LPG, smoke, propane, methane, butane, hydrogen
MQ3 Alcohol, carbon monoxide, methane, LPG, hexane
MQ4 Methane
MQ5 Alcohol, carbon monoxide, hydrogen, LPG, methane
MQ6 LPG, Propane, Iso-butane
MQ8 Hydrogen
MQ9 Methane, propane and carbon monoxide

MQ135 Nox, Alcohol, carbon dioxide, smoke, ammonia, benzene
MQ136 Hydrogen sulfide
MQ137 Ammonia
MQ138 Alcohols, aldehydes, ketones

Figure 2 illustrates the process of obtaining data from 12 different beef cuts by
sensors. Beef placed in a box was measured once per minute with 11 different sensors
for 2220 min. The received data was turned into tables and a dataset consisting of
12 tables was created. The visuals of 12 different beef cuts used in the creation of the
dataset are given in Figure 3.
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2.2. Machine Learning (ML)

ML uses a combination of algorithms that parse data and then applies what it learns to
make an informed decision [30]. Because machine learning uses data to feed an algorithm
that can understand the relationship between input and output, it requires little human
intervention after deployment [31]. Machine learning models can provide their own pre-
dictions based on the received amount of data input [32]. Moreover, they can also increase
their predictive capacity as they learn more about the information they are processing. In
this study, three different ML methods were used for data classification. Information about
these models is given in the following sections.

2.2.1. Artificial Neural Network (ANN)

An Artificial Neural Network is a network of interconnected artificial neurons, where
each neuron represents an information processing unit. These interconnected nodes trans-
mit information to each other, mimicking the human brain. The nodes interact with each
other and share information. Each node receives input and performs some operations on
it before transmitting [33]. These operations are performed by a nonlinear mathematical
function called the activation function. The activation function transforms the input into an
output that will later be used as input for other nodes. There are certain weights between
the nodes and these weights are updated with each learning round of the model [34]. If
the performance (accuracy) ratio is high, the weights are not updated. These weights are
updated with feedback each round to improve accuracy. According to the accuracy of
the result from the network, these weights are renewed through certain functions. The
leftmost layer is the input layer, the last one is the output layer, and all layers in between
are referred to as hidden layers. Increasing the hidden layers and the nodes within them
usually increases the accuracy; however, this requires a large amount of computational
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power, and in some cases, increasing the number of hidden layers reduces the accuracy,
contrary to expectations [35].

2.2.2. K-Nearest Neighbor (KNN)

In the simplest sense, KNN is based on estimating the class of the vector formed
by the independent variables of the value to be estimated. This is based on the class
information of the densest nearest neighbors. The KNN (K-Nearest Neighbor) algorithm
makes predictions of two fundamental values. The distance value is the distance of the
point to be estimated from other points based on a Euclidean distance calculation function.
The K value (neighborhood number) is determined by how many nearest neighbors the
calculation will be made over, and the K value directly affects the result. If K = 1, the
probability of the model being overfit is very high. If it is much greater, the model produces
very general results. Therefore, estimating the optimum K value is a critical step [36].

2.2.3. Logistic Regression (LR)

LR is a statistical machine learning method. It differs from linear regression by the
type of line used to separate two classes. In linear regression, classification is performed
by drawing a straight line, but the sigmoid function is used for classification in logistic
regression. The sigmoid function compresses data between 0 and 1. Classification can be
performed thanks to this function. The implementation and interpretation of the logistic
regression algorithm are easy due to these features. The LR algorithm performs well if the
dataset is linearly separable, i.e., it does not contain very complex data. This algorithm is
less likely to have problems with overfitting. However, it can be overfit in complex and
large datasets. If the number of data (number of rows) in the dataset is less than the number
of features (columns), the probability of overfitting is quite high, so LR should not be used
in this case [37].

2.3. (Analysis of Variance) ANOVA

ANOVA is a method utilized to test whether there is a statistically significant difference
between the means of independent variables [38] and it is a parametric test [39]. The use
of ANOVA requires certain conditions such as normal distribution of the data and equal
group variances. It should not go unnoticed that the test shows only statistical differences.
The difference between the variables can be detected with ANOVA; however, it cannot be
determined between which variables the difference is [40]. In this study, it was determined
which variables could be more effective in classification according to the data obtained
from the sensors with ANOVA and TVC data. Here, ANOVA determines which features
are statistically different from other features.

2.4. Confusion Matrix

Thanks to this table, the current situation in the data set and the number of correct
and incorrect predictions of the classification model can be observed. The confusion matrix
contains four values for each class, regardless of its size: True Positive (TP), False Positive
(FP), True Negative (TN), and False Negative (FN) [41]. True positives are TP+FN, true
negatives are TN+FP. Using these data, the performance of classification models can be
calculated. By closely examining the confusion matrix data in precision classification
problems, the hyperparameters of the models can be adjusted, thus enabling more precise
classification. The size of the confusion matrices is determined by the number of classes in
the classification problem [42]. The number of classes in this study is four. Figure 4 shows
TP, FP, TN, and FN values in a two-class confusion matrix and obtaining these values in a
four-class confusion matrix. Obtaining values in a four-class confusion matrix is for class 2.
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2.5. Performance Evaluation

In classification studies carried out in areas that are directly related to human health,
such as health, food, and environment, the performance of the models needs to be assessed
according to more than one criterion. It is extremely important to be able to build robust
models, as very small increases or decreases in performance can directly affect people [43].
The performance of classification models is assessed according to various metrics. However,
there are values to be necessarily checked. Accuracy (AC), F1 Score (F1), Precision (PR),
Recall (RE), and Specificity (SP) metrics were used in this study. Accuracy is the percentage
of samples correctly classified. F1 Score is a measure of a test’s accuracy (the harmonic mean
of PR and RE), and in general, it is a measure of the precision and robustness of a model [44].
In some studies, it is possible to evaluate the results by directly giving this metric. Precision
is a metric that shows how many of the positively predicted values are actually positive.
Recall indicates how many of the samples that should have been predicted as positive were
predicted as positive. Specificity (False Positive Rate) is a measure of how many negative
data are falsely classified as positive. These metrics are calculated using the confusion
matrix data [45]. The formula for each metric is shown in Table 2.

Table 2. Performance metrics formulas.

Metrics Formula

Accuracy (AC) TP+TN
TP+TN+FP+FN x100

F1 Score
(F1) 2x PR x RE

PR+RE

Precision
(PR)

TP
TP+FP

Recall
(RE)

TP
TP+FN

Specificity (SP) FP
FP+TN

3. Experimental Results

In this section, the experimental results of the study are described. A computer with
Intel®® Core i7™ 12700K 3.61 GHz, NVIDIA GeForce RTX 3080Ti, and 64 GB RAM was
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used in performing the experiments. Coding processes were carried out with the Python
programming language. The ENVBC dataset used in the study consists of a total of 12 types
of tables, and each of these 12 tables is derived from measurements taken from different
beef cuts. Each table has 2220 rows of data corresponding to 2220 min of measurements.
A total of 11 sensors and the TVC data were provided as input to the machine learning
methods, and the output predictions consisted of four classes. This dataset, in which the
deterioration stages of beef are examined, needs to be classified with high success, and
the data should be analyzed in detail as the results are extremely important for human
health. For this reason, the data obtained from each cut were classified separately by ANN,
KNN, and LR methods, and 12 different results were recorded. Following this step, feature
selection was performed with the ANOVA method in order to achieve high classification
accuracy and low computation time with fewer features. The same classification processes
were carried out with the three features obtained, and the 12 results obtained at this stage
were recorded. Then, the 12 tables were combined and a single table containing all the
data was obtained in order to show that the quality of meat can be determined without
considering the cut. After combining all the tables, the data were given as input to the
same methods and classification results were obtained. At the last stage, reclassification
processes were carried out with the features selected by ANOVA. The flow chart in Figure 5
demonstrates these processes.
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The cross-validation method was used to perform detailed performance analyzes
of the classification models. This method enables classification models to be compared
objectively. In this method, the data set is divided into ten parts consisting of nine training
parts and one test part in each cycle. The training and testing processes are carried out in as
many cycles as the number of parts. The process is performed in 10 steps so that all parts
are used in the test. The average classification accuracy of the model is calculated by taking
the arithmetic average of the obtained results. The cross-validation structure used in the
study is shown in Figure 6.

In the first stage of the classifications, 2220 rows of data in the tables created for each
beef cut were given as input to the classification models, and 12 results were obtained as a
result of the classifications. Table 3 gives the classification results obtained according to the
beef cuts.
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Table 3. Classification results for each cut of beef with all features.

AC (%) F1 PR RE SP Train
Time (s)

Test
Time (s)

Inside-
Outside

ANN 98.9 0.989 0.989 0.989 0.997 19.616 0.038
KNN 98.5 0.985 0.985 0.985 0.995 0.104 0.124

LR 98.7 0.987 0.988 0.987 0.996 11.948 0.012

Round
ANN 99.3 0.993 0.993 0.993 0.997 19.133 0.037
KNN 98.8 0.988 0.988 0.988 0.994 0.106 0.11

LR 98.9 0.989 0.989 0.989 0.995 6.114 0.012

Top Sirloin
ANN 99.3 0.993 0.993 0.993 0.998 19.668 0.039
KNN 98.2 0.983 0.983 0.982 0.993 0.105 0.116

LR 98.8 0.988 0.988 0.988 0.993 19.397 0.014

Tenderloin
ANN 99.4 0.994 0.994 0.994 0.998 18.746 0.036
KNN 98.6 0.986 0.986 0.986 0.994 0.084 0.119

LR 99.5 0.996 0.996 0.995 0.998 12.456 0.018

Flap Meat
ANN 99.5 0.995 0.995 0.995 0.998 18.143 0.036
KNN 98.2 0.982 0.982 0.982 0.989 0.089 0.108

LR 98.6 0.986 0.986 0.986 0.991 11.547 0.013

Striploin
ANN 99.3 0.993 0.993 0.993 0.999 18.604 0.039
KNN 99 0.99 0.99 0.99 0.992 0.096 0.12

LR 99.3 0.993 0.993 0.993 0.996 5.253 0.014

Rib Eye
ANN 98.7 0.987 0.987 0.987 0.997 18.53 0.038
KNN 99.4 0.994 0.994 0.994 0.999 0.092 0.102

LR 99.2 0.992 0.992 0.992 0.999 9.098 0.015

Skirt Meat
ANN 99.7 0.997 0.997 0.997 0.999 21.204 0.071
KNN 99.6 0.996 0.996 0.996 0.999 0.106 0.114

LR 99.5 0.995 0.995 0.995 0.997 9.772 0.016

Brisket
ANN 99 0.99 0.99 0.99 0.997 18.479 0.035
KNN 98.5 0.985 0.985 0.985 0.991 0.103 0.115

LR 98.9 0.989 0.989 0.989 0.996 11.804 0.011

Clod
Chuck

ANN 99.7 0.997 0.997 0.997 0.999 20.717 0.041
KNN 98.9 0.989 0.989 0.989 0.992 0.099 0.116

LR 99.5 0.995 0.995 0.995 0.997 14.857 0.017

Shin
ANN 99.3 0.993 0.993 0.993 0.998 19.588 0.035
KNN 98.7 0.987 0.987 0.987 0.994 0.114 0.126

LR 99.2 0.992 0.992 0.992 0.999 11.946 0.016

Fat
ANN 99.5 0.995 0.995 0.995 0.997 19.733 0.037
KNN 98.6 0.986 0.986 0.986 0.992 0.098 0.135

LR 99.1 0.991 0.991 0.991 0.994 22.757 0.013
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According to Table 3, the highest classification accuracy was obtained from the ANN
model with 99.7% in the Skirt Meat and Clod Chuck beef cuts. The highest classification
accuracy for each beef cut was obtained from different models. However, classification
accuracy is expected to be at the highest level for each beef cut. When Table 3 is examined,
it can be seen that the longest training times were achieved by the ANN model and the
KNN model achieved the shortest. The longest test time was achieved by the KNN model
in each use of beef cut data, and the shortest test time was achieved by LR. These times are
expected to be shorter because the quality assessment of beef must be quickly carried out
using the models in different environments.

In the second stage of the classifications, the selection of the effective features in each
table was performed with the ANOVA method. This method determined TVC, MQ137,
and MQ5 as the most effective features. Classification of data for each beef cut was carried
out by using these features, and the classification results obtained are presented in Table 4.

Table 4. Classification results for each cut of beef with reduced features.

AC (%) F1 PR RE SP Train
Time (s)

Test
Time (s)

Inside-
Outside

ANN 99.2 0.992 0.992 0.992 0.999 18.745 0.02
KNN 99.5 0.995 0.995 0.995 0.999 0.058 0.083

LR 96.6 0.965 0.966 0.966 0.96 6.83 0.01

Round
ANN 98.8 0.988 0.988 0.988 0.997 18.154 0.016
KNN 99.2 0.992 0.992 0.992 0.998 0.067 0.082

LR 99 0.99 0.99 0.99 0.997 4.818 0.007

Top Sirloin
ANN 98.7 0.987 0.987 0.987 0.998 23.533 0.018
KNN 99.1 0.991 0.991 0.991 0.998 0.084 0.091

LR 96 0.959 0.959 0.96 0.966 9.906 0.008

Tenderloin
ANN 99.6 0.996 0.996 0.996 0.999 17.073 0.022
KNN 99.7 0.997 0.997 0.997 0.999 0.07 0.081

LR 99.1 0.991 0.991 0.991 0.993 5.886 0.007

Flap Meat
ANN 99.6 0.996 0.996 0.996 0.999 17.085 0.018
KNN 99.9 0.999 0.999 0.999 0.999 0.062 0.076

LR 96.8 0.966 0.969 0.968 0.961 5.464 0.005

Striploin
ANN 99.9 0.999 0.999 0.999 1 18.249 0.021
KNN 99.9 0.999 0.999 0.999 1 0.064 0.088

LR 99.7 0.997 0.997 0.997 0.998 5.683 0.008

Rib Eye
ANN 99.5 0.995 0.995 0.995 0.999 17.062 0.02
KNN 99.6 0.996 0.996 0.996 0.999 0.063 0.078

LR 98.4 0.984 0.984 0.984 0.989 5.216 0.006

Skirt Meat
ANN 99.8 0.998 0.998 0.998 1 19.406 0.019
KNN 99.5 0.995 0.996 0.995 0.999 0.073 0.091

LR 99.4 0.994 0.994 0.994 0.998 9.594 0.01

Brisket
ANN 99.2 0.992 0.992 0.992 0.999 18.411 0.02
KNN 98.7 0.987 0.987 0.987 0.993 0.081 0.09

LR 97.6 0.976 0.976 0.976 0.986 7.232 0.009

Clod
Chuck

ANN 99.9 0.999 0.999 0.999 0.999 19.008 0.021
KNN 99.7 0.997 0.997 0.997 0.997 0.076 0.091

LR 99 0.989 0.99 0.99 0.986 6.641 0.01

Shin
ANN 99.6 0.996 0.996 0.996 0.999 18.005 0.02
KNN 99.9 0.999 0.999 0.999 1 0.081 0.088

LR 97.7 0.977 0.977 0.977 0.977 4.342 0.006

Fat
ANN 99.3 0.993 0.993 0.993 0.999 18.875 0.019
KNN 99.5 0.995 0.995 0.995 0.999 0.065 0.089

LR 98.6 0.986 0.986 0.986 0.991 7.323 0.008
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Looking at the data in Tables 3 and 4, it can be observed that the accuracy in classifi-
cations performed with active features has increased, and the other classification metrics
have increased in line with accuracy. This proves that classification models perform better
with learning. In addition, it is generally expected that the training and test times decrease
in classifications carried out with a small number of features, and the obtained results show
that the train and test times decreased significantly.

To evaluate the quality without considering the beef cut, all tables in the dataset were
combined and a table with 26,640 rows of data was obtained. In this way, the impact of the
cut shape was eliminated when evaluating the meat quality. This situation is important in
terms of the practicality of the models’ use in real-life.

In the third stage, classifications were carried out with all data. The confusion matrices
obtained as a result of these classifications are shown in Figure 7.
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Examining the confusion matrices in Figure 7, it can be seen that the correct classifi-
cations were performed with the ANN model. When evaluated according to classes, it is
seen that the most correctly classified class is class 1. The performance metrics calculated
by using the confusion matrix data for this classification are presented in Table 5.

Table 5. Classification results with all features and concatenated data.

AC (%) F1 PR RE SP Train Time (s) Test Time (s)

ANN 99.9 0.999 0.999 0.999 1 205.253 0.154
KNN 98.8 0.988 0.988 0.988 0.994 0.493 1.368

LR 98.9 0.989 0.989 0.989 0.998 406.085 0.024

In the classification carried out using all the data, the highest classification accuracy
was obtained from the ANN model. In parallel with the classification accuracy metric,
the highest value in other metrics was also achieved by the ANN model. Although the
lowest classification accuracy was observed for the KNN model, the classification accuracy
of the LR model is also very close to that of the KNN model. According to Table 5, the
shortest training time was observed for the KNN model, whereas this model had the
longest test time.

At the last stage of the classifications, all the data were analyzed with the active
features selected by the ANOVA method. The aim here is to reduce the training and
test times as well as allow the models to classify quickly. In the literature, classification
accuracy does not always increase in the case of feature reduction. However, in this study,
both the training and test times decreased, and the classification accuracy increased in the
classifications performed with reduced features. This is an ideal situation for classification
models. Figure 8 presents the confusion matrices obtained as a result of classifications by
using all data and reduced features.
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According to Figure 8a, all the data were classified correctly in the confusion matrix
of the ANN model. The performance metrics obtained as a result of the classifications
performed by using all data and reduced features are provided in Table 6.

Table 6. Classification results with reduced features and concatenated data.

AC (%) F1 PR RE SP Train Time (s) Test Time (s)

ANN 100 1 1 1 1 137.617 0.129
KNN 98.9 0.989 0.989 0.989 0.997 0.205 0.0866

LR 98.6 0.986 0.986 0.986 0.997 45.535 0.011

Examining Table 6, it is seen that the ANN model achieved 100% accuracy by correctly
classifying all the data. The use of active features reduced the training and test times for all
models. Although feature reduction slightly affected the classification performance of the
KNN model, it affected the LR model more negatively. The ANN model has come to the
fore as the most preferred model among all models.

It is not surprising that the ANOVA method determines TVC, MQ137, and MQ5
features as effective. The data with these features differ according to the classes. In Figure 9,
the frequencies of the feature values according to the classes in the dataset are shown.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 9. Frequencies of data by classes: 1, excellent (blue curve); 2, good (red curve); 3, acceptable 
(green curve); and 4, spoiled (yellow curve). 

4. Discussion and Conclusions 
In this study, data recorded by measuring the quality of 12 different beef cuts by 

sensors were used. In the dataset, there are 12 tables in total. Each table contains the data 
collected for each beef cut. These data were used in four different classification stages. In 
the first stage, each table data was given as input to the ANN, KNN, and LR models. In 
the second stage, among the 12 features, the most effective features were determined by 
the ANOVA method, which were the TVC, MQ137, and MQ5 features. Classifications 
were then again carried out with the same methods.  

In the third stage, all the data were combined so that the classification models were 
not affected by the beef cuts. The classification processes were carried out by the same 
models with a total of 26,640 rows of data and 12 features. In the fourth stage, the same 

Figure 9. Cont.



Sensors 2023, 23, 2222 13 of 16

Sensors 2023, 23, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 9. Frequencies of data by classes: 1, excellent (blue curve); 2, good (red curve); 3, acceptable 
(green curve); and 4, spoiled (yellow curve). 

4. Discussion and Conclusions 
In this study, data recorded by measuring the quality of 12 different beef cuts by 

sensors were used. In the dataset, there are 12 tables in total. Each table contains the data 
collected for each beef cut. These data were used in four different classification stages. In 
the first stage, each table data was given as input to the ANN, KNN, and LR models. In 
the second stage, among the 12 features, the most effective features were determined by 
the ANOVA method, which were the TVC, MQ137, and MQ5 features. Classifications 
were then again carried out with the same methods.  

In the third stage, all the data were combined so that the classification models were 
not affected by the beef cuts. The classification processes were carried out by the same 
models with a total of 26,640 rows of data and 12 features. In the fourth stage, the same 

Figure 9. Frequencies of data by classes: 1, excellent (blue curve); 2, good (red curve); 3, acceptable
(green curve); and 4, spoiled (yellow curve).

In Figure 9, the frequencies for the TVC, MQ137, and MQ5 feature values differ
according to classes. In addition, the feature values are also in different value ranges
according to classes. In other features, the feature values are gathered in approximately the
same area. This is a situation that complicates prediction in classification models. It also
extends the training and test times of the model. The TVC, MQ137 and MQ5 features are
noticeably more efficient than the other features. The effectiveness of these features was
also enhanced by the ANOVA method in the study.

4. Discussion and Conclusions

In this study, data recorded by measuring the quality of 12 different beef cuts by
sensors were used. In the dataset, there are 12 tables in total. Each table contains the data
collected for each beef cut. These data were used in four different classification stages. In
the first stage, each table data was given as input to the ANN, KNN, and LR models. In the
second stage, among the 12 features, the most effective features were determined by the
ANOVA method, which were the TVC, MQ137, and MQ5 features. Classifications were
then again carried out with the same methods.

In the third stage, all the data were combined so that the classification models were not
affected by the beef cuts. The classification processes were carried out by the same models
with a total of 26,640 rows of data and 12 features. In the fourth stage, the same models
were used in classification processes performed with the TVC, MQ137, and MQ5 active
features. As a result of these analyzes, it was observed that feature reduction processes
increased the classification accuracy of the models and other performance metrics. In the
classification carried out with the effective features and combined data, the ANN model
achieved a classification accuracy of 100%. In addition, feature reduction was found to
significantly reduce the training and test times. In the literature, there are other studies
conducted with the dataset used in this study. Table 7 provides comparisons with the
studies of other authors who have analyzed the dataset [28].
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Table 7. Comparisons with other studies using the same dataset.

Study Methods Max. Performance

Kaya et al. [46] KNN, Linear Discriminant,
Decision Tree Accuracy: 98%

Wijaya et al. [47]
Adaboost, Random Forest,
Support Vector Machine
(SVM) and Decision Tree

Accuracy: 99.9%

Wijaya et al. [1] Theoretic Ensemble Feature
Selection and KNN and SVM F1 Score: 99%

Enériz et al. [48] ANN on FPGA Accuracy: 93.73%

Pulluri et al. [49]
KNN, Extreme Learning

Machine (ELM), SVM, ANN,
Deep Neural Network (DNN)

Accuracy: 98%

Hibatulah et al. [27] Support Vector Regression R2: 0.977 and RMSE: 0.026

This Study ANN, KNN, SVM

Accuracy: 100%
Precision: 100%

Recall: 100%
F1 Score: 100%

When Table 7 is examined, it is seen that the highest classification accuracy was
achieved in this study. The classification accuracy of other studies is also reasonably high.
However, since meat is an important food source for living things and can spoil very
quickly, it is extremely important to determine its quality in a quick and accurate way.

The methods proposed in this study can be used to determine beef quality. The 100%
classification accuracy achieved through training with 26,640 data, is a sufficient level for
the classification of new data. The data can be augmented to make the models more robust.
With data augmentation, the number of scenarios will increase and the models will become
more informed. In addition, higher-quality sensors can be used to obtain more accurate
data so that healthier decisions can be made. The proposed models are of suitable size and
sufficiently fast to work in mobile applications and various embedded systems. They are
also suitable for the server–client mode of operation. The data sent from the network can
be quickly classified by the model on the server and sent back to the client. The obtained
training and test times demonstrate that this structure is convenient.

Author Contributions: A.F. and Y.S.T., literature research and preparation of the draft, analysis of
data and results, and arrangement the materials, methods and data. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in the study can be accessed from the link https:
//doi.org/10.7910/DVN/XNFVTS (accessed on 15 December 2022).

Acknowledgments: This project was supported by the Scientific Research Coordinator of Selcuk
University with the project number 22111002.

Conflicts of Interest: The authors declare no competing interest.

References
1. Wijaya, D.R.; Afianti, F. Information-theoretic ensemble feature selection with multi-stage aggregation for sensor array optimiza-

tion. IEEE Sens. J. 2020, 21, 476–489. [CrossRef]
2. Huang, C.; Gu, Y. A Machine Learning Method for the Quantitative Detection of Adulterated Meat Using a MOS-Based E-Nose.

Foods 2022, 11, 602. [CrossRef]

https://doi.org/10.7910/DVN/XNFVTS
https://doi.org/10.7910/DVN/XNFVTS
http://doi.org/10.1109/JSEN.2020.3000756
http://doi.org/10.3390/foods11040602


Sensors 2023, 23, 2222 15 of 16

3. Wijaya, D.R.; Sarno, R.; Zulaika, E. DWTLSTM for electronic nose signal processing in beef quality monitoring. Sens. Actuators B
Chem. 2021, 326, 128931. [CrossRef]

4. Mu, F.; Gu, Y.; Zhang, J.; Zhang, L. Milk source identification and milk quality estimation using an electronic nose and machine
learning techniques. Sensors 2020, 20, 4238. [CrossRef] [PubMed]

5. Hui, T.; Fang, Z.; Ma, Q.; Hamid, N.; Li, Y. Effect of cold atmospheric plasma-assisted curing process on the color, odor, volatile
composition, and heterocyclic amines in beef meat roasted by charcoal and superheated steam. Meat Sci. 2023, 196, 109046.
[CrossRef]

6. Huang, Y.; Doh, I.-J.; Bae, E. Design and validation of a portable machine learning-based electronic nose. Sensors 2021, 21, 3923.
[CrossRef]

7. Hua, Z.; Yu, Y.; Zhao, C.; Zong, J.; Shi, Y.; Men, H. A feature dimensionality reduction strategy coupled with an electronic nose to
identify the quality of egg. J. Food Process Eng. 2021, 44, e13873. [CrossRef]

8. Chen, J.; Gu, J.; Zhang, R.; Mao, Y.; Tian, S. Freshness evaluation of three kinds of meats based on the electronic nose. Sensors
2019, 19, 605. [CrossRef]

9. Stassen, I.; Bueken, B.; Reinsch, H.; Oudenhoven, J.F.M.; Wputers, D.; Hajek, J.; Van Speybroeck, V.; Stock, N.; Vereecken, P.M.; Van
Schaijk, R.; et al. Towards metal–organic framework based field effect chemical sensors: UiO-66-NH2 for nerve agent detection.
Chem. Sci. 2016, 7, 5827–5832. [CrossRef]

10. Eamsa-Ard, T.; Seesaard, T.; Kitiyakara, T.; Kerdcharoen, T. Screening and discrimination of Hepatocellular carcinoma patients by
testing exhaled breath with smart devices using composite polymer/carbon nanotube gas sensors. In Proceedings of the 2016 9th
Biomedical Engineering International Conference (BMEiCON), Laung Prabang, Laos, 7–9 December 2016; IEEE: Manhattan, NY,
USA, 2016.

11. Adigal, S.S.; Rayaroth, N.V.; John, R.V.; Pai, K.M.; Bhandari, S.; Mohapatra, A.K.; Lukose, J.; Patil, A.; Bankapur, A.; Chidangil, S.
A review on human body fluids for the diagnosis of viral infections: Scope for rapid detection of COVID-19. Expert Rev. Mol.
Diagn. 2021, 21, 31–42. [CrossRef]

12. Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Tian, Y.; Dai, C. A decision fusion method based on hyperspectral imaging and electronic nose
techniques for moisture content prediction in frozen-thawed pork. LWT 2022, 165, 113778. [CrossRef]

13. Avian, C.; Leu, J.-S.; Prakosa, S.W.; Faisal, M. An Improved Classification of Pork Adulteration in Beef Based on Electronic Nose
Using Modified Deep Extreme Learning with Principal Component Analysis as Feature Learning. Food Anal. Methods 2022, 15,
3020–3031. [CrossRef]

14. Roy, M.; Yadav, B. Electronic nose for detection of food adulteration: A review. J. Food Sci. Technol. 2022, 59, 846–858. [CrossRef]
15. Wen, R.; Kong, B.; Yin, X.; Zhang, H.; Chen, Q. Characterisation of flavour profile of beef jerky inoculated with different

autochthonous lactic acid bacteria using electronic nose and gas chromatography–ion mobility spectrometry. Meat Sci. 2022,
183, 108658. [CrossRef]

16. Andre, R.S.; Facure, M.H.; Mercante, L.A.; Correa, D.S. Electronic nose based on hybrid free-standing nanofibrous mats for meat
spoilage monitoring. Sens. Actuators B Chem. 2022, 353, 131114. [CrossRef]

17. Panigrahi, S.; Balasubramanian, S.; Gu, H.; Logue, C.; Marchello, M. Neural-network-integrated electronic nose system for
identification of spoiled beef. LWT-Food Sci. Technol. 2006, 39, 135–145. [CrossRef]

18. Li, C.; Heinemann, P.; Sherry, R. Neural network and Bayesian network fusion models to fuse electronic nose and surface acoustic
wave sensor data for apple defect detection. Sens. Actuators B Chem. 2007, 125, 301–310. [CrossRef]

19. Cevoli, C.; Cerretani, L.; Gori, A.; Caboni, M.F.; Toschi, T.G.; Fabbri, A. Classification of Pecorino cheeses using electronic nose
combined with artificial neural network and comparison with GC–MS analysis of volatile compounds. Food Chem. 2011, 129,
1315–1319. [CrossRef]

20. Papadopoulou, O.S.; Panagou, E.Z.; Mohareb, F.R.; Nychas, G.-J.E. Sensory and microbiological quality assessment of beef fillets
using a portable electronic nose in tandem with support vector machine analysis. Food Res. Int. 2013, 50, 241–249. [CrossRef]

21. Dang, L.; Tian, F.; Zhang, L.; Kadri, C.; Yin, X.; Peng, X.; Liu, S. A novel classifier ensemble for recognition of multiple indoor air
contaminants by an electronic nose. Sens. Actuators A Phys. 2014, 207, 67–74. [CrossRef]

22. Wijaya, D.R.; Sarno, R.; Zulaika, E.; Sabila, S.I. Development of mobile electronic nose for beef quality monitoring. Procedia
Comput. Sci. 2017, 124, 728–735. [CrossRef]

23. Liu, H.; Li, Q.; Yan, B.; Zhang, L.; Gu, Y. Bionic electronic nose based on MOS sensors array and machine learning algorithms
used for wine properties detection. Sensors 2018, 19, 45. [CrossRef] [PubMed]

24. Ghasemi-Varnamkhasti, M.; Mohammad-Razdari, A.; Yoosefian, S.H.; Izadi, Z.; Siadat, M. Aging discrimination of French cheese
types based on the optimization of an electronic nose using multivariate computational approaches combined with response
surface method (RSM). LWT 2019, 111, 85–98. [CrossRef]

25. Sarno, R.; Triyana, K.; Sabilla, S.I.; Wijaya, D.R.; Sunaryono, D.; Fatichah, C. Detecting pork adulteration in beef for halal
authentication using an optimized electronic nose system. IEEE Access 2020, 8, 221700–221711. [CrossRef]

26. Wakhid, S.; Sarno, R.; Sabilla, S.I. The effect of gas concentration on detection and classification of beef and pork mixtures using
E-nose. Comput. Electron. Agric. 2022, 195, 106838. [CrossRef]

27. Hibatulah, R.P.; Wijaya, D.R.; Wikusna, W. Prediction of Microbial Population in Meat Using Electronic Nose and Support Vector
Regression Algorithm. In Proceedings of the 2022 1st International Conference on Information System & Information Technology
(ICISIT), Yogyakarta, Indonesia, 27–28 July 2022; IEEE: Manhattan, NY, USA, 2022.

http://doi.org/10.1016/j.snb.2020.128931
http://doi.org/10.3390/s20154238
http://www.ncbi.nlm.nih.gov/pubmed/32751425
http://doi.org/10.1016/j.meatsci.2022.109046
http://doi.org/10.3390/s21113923
http://doi.org/10.1111/jfpe.13873
http://doi.org/10.3390/s19030605
http://doi.org/10.1039/C6SC00987E
http://doi.org/10.1080/14737159.2021.1874355
http://doi.org/10.1016/j.lwt.2022.113778
http://doi.org/10.1007/s12161-022-02361-9
http://doi.org/10.1007/s13197-021-05057-w
http://doi.org/10.1016/j.meatsci.2021.108658
http://doi.org/10.1016/j.snb.2021.131114
http://doi.org/10.1016/j.lwt.2005.01.002
http://doi.org/10.1016/j.snb.2007.02.027
http://doi.org/10.1016/j.foodchem.2011.05.126
http://doi.org/10.1016/j.foodres.2012.10.020
http://doi.org/10.1016/j.sna.2013.12.029
http://doi.org/10.1016/j.procs.2017.12.211
http://doi.org/10.3390/s19010045
http://www.ncbi.nlm.nih.gov/pubmed/30583545
http://doi.org/10.1016/j.lwt.2019.04.099
http://doi.org/10.1109/ACCESS.2020.3043394
http://doi.org/10.1016/j.compag.2022.106838


Sensors 2023, 23, 2222 16 of 16

28. Wijaya, D.R. Dataset for Electronic Nose from Various Beef Cuts; Harvard Dataverse: Cambridge, MA, USA, 2018.
29. Wijaya, D.R.; Sarno, R.; Zulaika, E.; Afianti, F. Electronic nose homogeneous data sets for beef quality classification and microbial

population prediction. BMC Res. Notes 2022, 15, 237. [CrossRef]
30. Taspinar, Y.S.; Cinar, I.; Koklu, M. Prediction of Computer Type Using Benchmark Scores of Hardware Units. Selcuk University J.

Eng. Sci. 2021, 20, 11–17.
31. Sabanci, K.; Aslan, M.F.; Slavova, V.; Genova, S. The Use of Fluorescence Spectroscopic Data and Machine-Learning Algorithms

to Discriminate Red Onion Cultivar and Breeding Line. Agriculture 2022, 12, 1652. [CrossRef]
32. Ropelewska, E.; Slavova, V.; Sabanci, K.; Aslan, M.F.; Masheva, V.; Petkova, M. Differentiation of Yeast-Inoculated and Uninocu-

lated Tomatoes Using Fluorescence Spectroscopy Combined with Machine Learning. Agriculture 2022, 12, 1887. [CrossRef]
33. Kishore, B.; Yasar, A.; Taspinar, Y.S.; Kursun, R.; Cinar, I.; Shankar, V.G.; Koklu, M.; Ofori, I. Computer-aided multiclass

classification of corn from corn images integrating deep feature extraction. Comput. Intell. Neurosci. 2022, 2022, 2062944.
[CrossRef]
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