
Citation: Xue, D.; Chi, Y.; Wu, B.;

Zhao, L. APT Attack Detection

Scheme Based on CK Sketch and

DNS Traffic. Sensors 2023, 23, 2217.

https://doi.org/10.3390/s23042217

Academic Editor: Ilsun You

Received: 30 December 2022

Revised: 5 February 2023

Accepted: 13 February 2023

Published: 16 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

APT Attack Detection Scheme Based on CK Sketch and
DNS Traffic
Defan Xue 1,*, Yaping Chi 1,2 , Bing Wu 1,2 and Lun Zhao 1,2

1 Beijing Electronic Science and Technology Institute, Beijing 100070, China
2 School of Telecommunications Engineering, Xidian University, Xi’an 710071, China
* Correspondence: bjutxuedefan@163.com or 20212901@mail.besti.edu.cn

Abstract: In recent years, Advanced Persistent Threat (APT) attacks against sensors have emerged as
a prominent security concern. Due to the low level of protection provided by sensors, APT attack
organizations are able to develop intrusion schemes that allow them to infiltrate, attack, lurk, spread,
and steal information from the target over an extended period of time. Through extensive research
on the APT attack process and current defense mechanisms, it has been found that analyzing Domain
Name Server (DNS) traffic in the communication control phase is an effective way of detecting APT
attacks. However, analyzing APT attacks based on traffic usually involves the detection of a vast
amount of DNS traffic, and current data preprocessing methods do not scale down data effectively,
leading to low detection efficiency. In previous work, most efforts have been focused on calculating
the features of request messages or corresponding messages without considering the association
between request messages and corresponding messages. To address these issues, we propose a
sketch-based APT attack traffic detection scheme. The scheme leverages the sketch structure to count
and compress network traffic, improving the efficiency of APT detection. Our work also analyzes the
limitations of traditional sketches in network traffic and proposes an improved sketch scheme. In
addition, we propose several effective features for detecting APT attacks. We validate and evaluate
our solution using 1,088,280 DNS traffic from a lab network and APT suspicious traffic from netresec
and contagio, using eight machine learning models. The experimental results show that for the
ExtraTrees model, our solution has a processing time of 0.0638 s and an accuracy of 0.97920, reducing
the processing time by approximately 50 times and improving detection accuracy by a small margin
compared to a dataset without sketch processing.

Keywords: APT attack; sketch; DNS; deep learning; sensor network

1. Introduction

With the development of the Internet of Things(IoT), sensors are more commonly
used in daily life, such as temperature sensors in cars, sound sensors for controlling lights,
and pressure sensors for weighing. Despite the widespread use of sensors, they often
lack robust intrusion detection systems compared to traditional hosts and are therefore
susceptible to security vulnerabilities, which Advanced Persistent Threat (APT) groups can
exploit to launch targeted attacks [1].

In recent years, APT is one of the most representative attacks on the Internet. APT
attacks have three main characteristics, which are advanced, persistent, and targeted [2–4].
For the characteristic of advanced, attackers can exploit zero-day vulnerabilities to launch
attacks that gather a variety of common attacks, such as puddle attacks and phishing
emails [5]. Due to the unknown character of zero-day attacks, they are thus able to bypass
the current rule-based matching detection system and cannot be defended. In addition,
the characteristic of advanced is also reflected in the attack method. Unlike traditional
attacks, many APT attacks utilize more stealthy approaches to accomplish their attack
purpose. For example, Turla[6] exploits the inherent security flaws of satellite commu-
nications to hide the location of C&C servers, MiniDuke tampers with users’ traffic by

Sensors 2023, 23, 2217. https://doi.org/10.3390/s23042217 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23042217
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042217?type=check_update&version=1


Sensors 2023, 23, 2217 2 of 23

using Tor to control egress nodes, and APT34 uses DNS tunnels to transmit data. Second,
APT attacks generally last for a long time, and once the attacker makes a connection to an
intranet machine, he or she tends to engage in long-term lurking or lateral movement to
gain greater benefit. Finally, most APT attacks are directed and targeted attacks. The at-
tacker will spend considerable time collecting information on the target based on social
engineering, including the target’s interpersonal relationship, commonly used software,
network deployment of the target machine, security protection, and so on. This collected
information facilitates the attacker to choose the appropriate loading method to penetrate
the target machine, thus reducing the cost of the attack and increasing the probability of
successful C&C connections.

All APT attacks can be roughly divided into the following five phases: information
gathering, embedded intrusion, communication control, lateral penetration, and data
returning [7,8]. In the communication control phase, the malware usually uses DNS
protocol to communicate with C&C servers, so building detection models for the anomalous
DNS traffic characteristics exhibited throughout the process of establishing communication
channels between the controlled hosts and C&C servers during APT attacks is an effective
approach to detecting APT attacks [9–12]. However, most of the current approaches for
detecting APT attacks based on anomalous DNS traffic have the following two problems:
(1) the lack of means to count or reduce the DNS traffic, which leads to low effectiveness
of training and testing on massive traffic datasets; (2) most of the DNS traffic features
currently proposed for detecting APT attacks focus on the domain name itself, lacking a
relationship between requests and accesses and time-dependent features.

Due to the long period of APT attacks and the very covert behavior of each phase, we
add features, such as the relationship between DNS requests and DNS responses, access
frequency, and time correlation, to those about DNS domain names. As far as the current
research is concerned, the huge amount of DNS traffic is a major obstacle to effectively
detecting APT attacks [13]. For example, the dataset used to detect APT attacks in the
experiments of Li [14] exceeded one billion items. Applying the sketch structure to detect
APT attacks based on anomalous DNS traffic can effectively solve the problem.

This article will be organized as four sections:

1. Introduction. Based on the current security situation of sensors, the specific meaning
and threats of APT attacks are introduced. This section summarizes the shortcomings
of the current research and expounds the main work and organizational structure of
this paper.

2. Related work. This part mainly introduces the process of APT attacks and the current
mainstream defense measures. Sketch is introduced according to the shortcomings of
the above methods, and its existing work in traffic measurement and attack detection
is introduced.

3. APT attack detection scheme based on CK sketch and DNS traffic. The proposed
scheme for APT attack detection is based on the combination of the characteristics
of the APT attack communication control stage and sketch structure. The scheme
is analyzed theoretically in depth, and the design ideas and implementation de-
tails of the data preprocessing, feature extraction, and the module for counting
and compressing DNS traffic with an improved sketch structure, are described in a
comprehensive manner.

4. Experience. In the part on the attack detection algorithm, open datasets were used
to test its performance. The detection algorithm was evaluated by indicators such as
true-positive rate (TPR), precision, accuracy, and processing time, and compared with
existing schemes of the same kind to verify its superiority.

The main contributions of this paper can be summarized as follows:

• Sketch structure is used to count and compress DNS traffic containing APT attacks,
which improves the efficiency of the approach without reducing the detection accuracy.



Sensors 2023, 23, 2217 3 of 23

• The traditional sketch structure is improved to avoid the error problem caused by
the occurrence of hash conflicts in the count min (CM) sketch structure, and the
mechanism of adaptively adjusting the number of hash buckets in the sketch structure
is added to guarantee the accuracy rate while improving the efficiency of the algorithm
for the follow-up.

• The characteristics of APT attack traffic are emphatically analyzed. Based on the
characteristics of the DNS domain name, eight features are proposed that can reflect
the relationship between DNS request and DNS response, access frequency, and time
correlation in APT attacks.

• Combined with eight characteristics of APT attacks, eight machine learning effects
are compared. The algorithms include Logistic Regression(LR), KNN, GaussianNB,
DecisionTree, Bagging, RandomForest, ExtraTrees, and AdaBoost.

2. Related Work
2.1. APT Attack Model

Different APT attacks have different attack modes but have similar stage characteristics
in the attack process. All APT attacks can be roughly divided into the following five stages,
which is shown in Figure 1: information gathering, embedded intrusion, communication
control, lateral penetration, and data returning.

Figure 1. APT attack model.

• Information gathering
Information gathering is the process by which APT attackers use multiple means to
collect various information about the target network [15]. The collected information
mainly includes basic information about the network environment, overall architec-
ture, defense system software, and system vulnerabilities of the target system. Based
on the collected information, the weak points of the target network are analyzed and
targeted attacks are carried out.

• Embedded intrusion
Embedded intrusion is the stage where the APT attack formally begins, where the APT
attacker writes targeted malware to adapt to the target network environment based
on the information gathered about the target system network during the intelligence-
gathering phase.

• Communication control
After successfully compromising the target network, the APT attacker continuously
invades the internal core network devices based on the control of the internal network
devices already gained, which usually requires establishing a command and control
communication channel between the C&C server and the target infected host [16–19].
In this process, the data transmitted between the malware and the C&C server are
usually encrypted with SSL, so it is difficult for the target network’s defense system to
determine whether the data transmitted in the communication channel are malicious
communication with the C&C server or normal communication with a normal external
server. However, the communication traffic between malware and C&C servers
exhibits a significant difference from normal traffic [20], and APT attackers will employ
domain-flux [21] techniques, and infected hosts may try to connect to a large number
of domains suspected to be C&C servers.

• Lateral penetration
Lateral penetration is the stage in which an APT attack spreads to infect hosts. After an
APT attacker has compromised one target network host, he continuously elevates his
privileges and steals data within the scope of the privileges he has gained. However,



Sensors 2023, 23, 2217 4 of 23

APT attack activities are not satisfied with retrieving data on only one machine and
need to continuously find new internal network hosts for spreading propagation and
infiltrating the core network [22].

• Data Returning
The data-returning phase sends the discovered data packaged and compressed back to
the C&C server to complete the theft of data. The network traffic in the data returning
phase is not significantly different from normal network traffic [23], and detection of
this phase is difficult to achieve.

2.2. Existing APT Detection Methods

Zhao [24] proposed a systematic framework called IDNS, which identifies malicious
C&C domains by analyzing DNS traffic and establishes a reputation evaluation system for
judging whether the traffic is malicious or not by combining anomalous traffic detection
techniques. The features used to evaluate malicious traffic mainly include the characteristics
of the DNS domain name itself, lacking features about the time and the relationship between
request and response messages.

Cho DX [25] proposed a method to discover suspicious APT based on unknown
domain names. The unknown suspected domain names are derived by analyzing DNS
logs and traffic, using a similarity comparison of indicators of compromise (IOC) that have
appeared in real APT activities and other steps. The difficulty of this method is collecting
IOCs of real APT activities.

Fu Yu [26] , Shi Yong [27], Yan Guanghua [28], and Xu Congyuan [29], cover most
machine learning algorithms, including supervised and unsupervised learning, integrated
learning, and deep learning. The accuracy of the classifiers of these improved machine
learning algorithms is generally high, but they still need to be validated by datasets
constructed in realistic network environments, and the massive amount of traffic data in
the experimental part also affects the efficiency of model training. Wang [30] established
an APDD framework to collect a large amount of DNS request data and extracted all the
features consistent with APT attacks. It uses change vector analysis to build a credit scoring
system for DNS domains and outputs the ranking of suspicious domains according to
the credit score. The method relies on massive DNS data to determine the credit score of
APT attacks; however, the credit score cannot directly determine whether an APT attack
has occurred.

Lu Jiazhong [31] compared normal traffic and anomalous traffic by a time-transformed
feature approach to distinguish APT attacks, by capturing the signal of malicious traffic,
and then inferring the presence of APT attacks, and then using machine learning methods
to detect APT attacks in big data.

Wenlin Chu [32] proposed an SVM-based APT attack detection system using the NSL-
KDD database to implement method validation, in which principal component analysis
(PCA) was used for feature sampling and then compared using multiple machine learning
classifiers for classification.

The comparison of the existing APT detection methods is shown in Table 1. Most
of the existing detection approaches mentioned above rely on massive amounts of DNS
data and lack features about the relationship between DNS requests and responses, which
can lead to low detection efficiency and low accuracy for machine learning. The sketch-
based APT detection scheme proposed in this paper can significantly reduce the training
time of various machine learning models by counting and compressing DNS traffic while
guaranteeing the accuracy of the model, which allows defenders to detect APT attacks
faster and improve the efficiency of the scheme.



Sensors 2023, 23, 2217 5 of 23

Table 1. Comparison of existing APT detection methods.

Methods Advantages Disadvantages

Detection of unknown malicious traf-
fic [33]

The unknown malicious samples showed
high accuracy Lack of real dataset

Detection of certain APT group identifica-
tion [12]

Two features of original detection are pro-
posed The detection accuracy is not high

PCA or PCC combined with machine
learning [32,34]

It can better extract the characteristics of
APT attack

The number of datasets is small and the
model training time is long

DNS traffic analysis [35–37] High accuracy of model recognition DNS characteristics of APT attacks need
to be accurately determined

2.3. Sketch Structure

With the increasing prevalence of high-speed and non-uniformly distributed network
traffic, accurately measuring network properties has become a challenging task. This is due
to the sheer volume of network traffic data, which can result in decreased throughput if the
statistical measurement method employed has a certain degree of latency.

To address this issue, the field of network traffic statistical analysis has resorted to
using sketch structures. This technique involves constructing a hash function to count and
compress the network traffic. A sketch structure typically consists of two components:
(1) hash function, which calculates the hash value corresponding to the key in the data
stream as an index for data compression, aggregation, and storage, and (2) hash bucket,
which the sketch structure creator sets to a specific number for storing the required feature
values of the data stream.

Sketch structures have found extensive applications in a variety of areas, including
traffic analysis, stream size change measurement, large stream detection, and persistent
stream measurement. It has been demonstrated that the use of sketch structures can
significantly improve the statistical accuracy of network traffic data while simultaneously
compressing, aggregating, and storing it [38].

The classical CM sketch, introduced by Cormode G in [39], has been widely utilized in
various studies pertaining to network traffic statistics and analysis. This sketch structure is
shown in Figure 2. It serves as the foundation for many of its variants and consists of n hash
functions and n∗m two-dimensional arrays for compressing and counting network traffic.

……

……

……

……

……

DATA(KEY,VALUE) Hashi

h0

h1

…
…

hn

1 2 mm−1……0

Figure 2. CM sketch structure.

When using the CM sketch for network traffic analysis, it is crucial to designate a
feature of the traffic, such as the DNS domain name or the Source IP, as the key and the rest
of the features as the values to be counted. The location of the network is calculated using
the n hash functions as specified in Equation (1).

loci = Hi(key), (1)

Each network traffic is mapped to n hash buckets, and then the value in the network
is added to the value in the hash bucket.



Sensors 2023, 23, 2217 6 of 23

3. Research Design

In this section, we will describe the process of the proposed scheme in this paper and
describe each part of the framework in detail in the subsections. This scheme is based on
sketch structure and detects whether APT attacks occur by analyzing DNS traffic. It can
report to the security officers quickly when it finds suspicious domains, and it can help the
defenders discover APT attacks faster.

3.1. Overview of the Approach

The running flow of the APT attack detection scheme proposed in this paper based on
Cuckoo (CK) sketch and DNS traffic is shown in Figure 3. The first operation of the original
traffic is data preprocessing. Since the number of original datasets is very large, this paper
reduced the dataset from the three perspectives of request type filtering, white list filtering,
and access frequency filtering. Furthermore, we extracted the second-level domain name
to facilitate the subsequent feature extraction.

Figure 3. Overview of the approach.

Next, we selected the domain names in the DNS traffic as the key, and for the com-
munication control phase of the APT attack, we selected eight features as parameters to
outline the network state statistics, the specific types and characteristics of these features



Sensors 2023, 23, 2217 7 of 23

will be described in Section 3.3. The DNS traffic is counted and compressed in the form
of a sketch structure, where each hash bucket in the sketch will output a data sample of
dimension 8, and these hash buckets are themselves linked to a DNS domain name. Thus,
the abnormal network state and traffic caused by the abnormal source DNS domain name
can be demonstrated by the variety of features. The above features become the prototype of
the training and testing feature set of the machine learning model in the subsequent steps.

After the original dataset has been counted and compressed by sketch structure, sev-
eral types of preprocessing operations are required, mainly including outlier removal,
missing value filling, feature scaling, etc., to improve the dataset and enhance the classifica-
tion effect and efficiency of the machine learning model.

Finally, the dataset after the above processing is the dataset to be classified. In order
to build the machine learning model and test its attack detection effect, we divided the
dataset into a training set and test set in the ratio of three to one. The training set is
marked as normal and abnormal according to the mapping relationship between the DNS
domain name and grid serial number in the sketch in advance. To solve the dichotomous
classification problem proposed in the last step of the algorithm, we chose eight typical
classifiers for attack detection, trained and tested these eight models, recorded the results,
evaluated the respective characteristics and learning effects, and selected the optimal
detection model.

3.2. Data Preprocessing

Malicious DNS traffic from APT attacks is mixed in with normal traffic, and DNS
traffic from internal network hosts can be very large, resulting in a very large size of raw
data collected in the end. Therefore, it is necessary to preprocess the data, reduce the
amount of data processed by the detection model, and ensure that the original data has
the same characteristics compared with the processed data. While improving the detection
efficiency, the detection results are not affected.

The data preprocessing consists of four parts in total, DNS packet filtering, folding the
domain into the second-level domain, white list filtering, and access frequency filtering.
The specific algorithm flow is shown in Figure 4.

Figure 4. Data preprocessing process.

• DNS packet filtering.

As can be seen from Figure 5, both the query and response data areas of DNS packets
contain two fields, query type and query class. In this paper, only DNS packets with query
class IN and query type A are processed. The query class is IN, which indicates the Internet
category; the query type A indicates the IP direction of the web server, and the type A
(address) is used to specify the IPv4 address corresponding to the domain name. The DNS
packets of other query types are not processed, and only the DNS packets requesting IPv4
addresses are retained for the first filtering of the original data.



Sensors 2023, 23, 2217 8 of 23

Figure 5. DNS packet format.

• Folding the domain into the second-level domain.

Since second-level domains are of higher value for identifying apt malicious traffic, all
domains are converted into second-level ones, such as www.zhihu.coa and wenda.zhihu.com,
which will be transformed into zhihu.com.

• White List Filtering

According to the characteristics associated with APT attacks, APT attackers expect
to be able to control the infected host for a long time, so they need to send commands
remotely through a C&C server. Using a server with a popular domain name as a C&C
server can achieve a good stealth effect, but it requires a great cost. An APT attacker has
to compromise a server with a popular domain name that has a well-developed defense
system installed, which undoubtedly increases the risk of exposure and is easy to detect
by network defenders. Therefore, it is generally believed that popular domain names are
not likely to be used for APT attacks. With such a premise, this paper proposes a white
list filtering detection algorithm. The top 10,000 domain websites can be obtained from
the Alexa website, and the domain white list is constructed based on the obtained domain
names. If the resolved domain name belongs to the white list, no further processing is
performed for the domain name and the current DNS data message is discarded directly.

• Access frequency filtering.

APT attacks are a low-frequency attack mode in which the malware in the internal
network host wants to initiate connection requests with external C&C servers by sending
DNS request messages, which are not very frequent. The number of DNS requests sent in a
day must be below a certain threshold, thus greatly reducing the risk of detection by the
defense system. In this paper, the threshold is set to 100 times/day, and a domain name
that is accessed more than 100 times in a day is considered normal, and the domain name
is removed from the candidate domain name results.

3.3. Feature Extraction

1. Domain Length
In APT attacks, attackers usually use the domain generation algorithm (DGA) algo-
rithm to generate a series of domain names, which are generally longer in length.
There are two reasons for this: first, the shorter domain names may have already been
registered by organizations or individuals, and the domain names generated by the
algorithm may conflict with the already registered algorithm, resulting in the failure of
the C&C server domain name; then, the attacker uses registered second-level domain
names to reduce maintenance costs, and the overall length of the domain name is
longer. Due to such a process of constructing domain names, this paper argues that



Sensors 2023, 23, 2217 9 of 23

the length of the domain name can be used to determine whether it is a malicious
domain name.

2. Number of Visits to the Domain
Whether it is the initiation of communication control or the lateral penetration phase,
in order to avoid detection, the attacker acts very stealthily and rarely initiates con-
nections with external servers. So, the fewer the number of visits to the domain to be
detected the more suspicious the domain is.

3. Access Period
Under normal circumstances, the time of the host accessing the domain name should
show a certain regularity related to people’s work and rest. APT attackers, in order
to improve the stealth of malware connections, usually initiate DNS requests when
people are sleeping, thus reducing the chance of being detected by humans. It is
reasonable to assume that DNS access requests during the period of 0 a.m. to 6 a.m.
each day are suspicious.

4. Digital Feature
According to several malicious domain names with numbers that have been found, ma-
licious domain names usually change some letters to numbers or add some numbers
to the regular domain names. The domain names generated by the DGA algorithm
based on the domain-flux technology generally contain numbers. APT attackers also
deliberately alter domain names to pretend to be normal ones, for example, the letter
“o” might be replaced with a 0, and the letter “l” with a 1. Calculate the proportion
of digits based on whether the domain name contains digits. As for the numerical
feature of the domain name, focus on the domain name that contains digits 0 or 1.

5. Packet Length Characteristics
According to the characteristics of APT attack traffic analyzed above, the downstream
traffic is generally the control commands sent by APT attackers, while the upstream
traffic is the result of the information returned by the controlled host after the execution
of the control commands. This is different from normal DNS traffic. In this section,
the average length of upstream and downstream packets is calculated respectively as
the feature of packet length.

6. Domain Name Request and Response Interval
In some APT attacks, the attacker-controlled DNS servers are not guaranteed to be
online for a long time to increase the stealthiness, so the malware does not receive
the IP address of the C&C server when it initiates a request message for the C&C
server domain name. Based on such a situation, this paper proposes the time interval
between DNS domain name response and request as a feature for the following
reasons: in APT attacks, the DNS resolution process for the C&C server domain
name is unusual, and this feature can reflect the complete resolution process; the
frequency of malware-initiated DNS requests should be below a certain threshold,
and the malicious domain name is not in the corresponding cache of the DNS server,
and it takes more time to query the IP address corresponding to the domain name.
If the time interval between the response and the request is too large, the domain
name can be considered suspicious.

7. Time to Live (TTL)
TTL is the retention time of domain name resolution records in DNS servers, increasing
the TTL value can accelerate the domain name resolution time, and decreasing the
TTL value can accelerate the effective time of domain name resolution. The default
TTL is currently given as 3600 s, and the value can be adjusted by itself as needed.
Leyla [40] summarizes the DNS features used until 2018 and mentions the body of
literature about TTL as a feature for detection. The TTL distribution of APT traffic has
variability from normal traffic, so the TTL value is added to the classification vector as
a feature dimension. The TTL values of normal traffic are mostly concentrated below
1000, but there are several values above 1000; the TTL values in the DNS dataset of



Sensors 2023, 23, 2217 10 of 23

APT are distributed at both ends, with one end distributed at 60 and below, and the
other end distributed at around 100.

8. Domain Access Interval
Under normal circumstances, the time interval between two visits to the same domain
by internal hosts is not too small. The attacker has a long period of latency during
the lateral penetration phase, in which the infected hosts rarely visit external servers
to hide their behavior, so the longer the interval between domain accesses, the more
suspicious the domain is.

Among the above eight features, features 1, 4, and 5 do not need to be accumulated
and can be calculated directly using domain names; features 2 and 3 are accumulated using
counting; features 6, 7, and 8 are calculated and measured in the form of entropy.

3.4. Count and Compress DNS Traffic with an Improved Sketch Structure

In Section 2, we discussed sketch structure, an important tool in network traffic
computation which has gained attention in the field of network attack detection with
the advantage of small space and time overhead. Traditional sketch structures, such as
the Count sketch and CM sketch, are employed for detecting abnormal network traffic
by setting the number of hash buckets to a predetermined value. This is due to the
unpredictable nature of network traffic during analysis. However, this approach can result
in hash collisions when the network traffic is high and lead to an inefficient utilization of
memory and computational resources when the traffic is low.

To address these challenges, the present study proposes an improved CK hash sketch
structure. This structure consists of a multi-layered sketch architecture that employs
multiple hash functions and hash buckets. The creation of the different sketch layers is
guided by the principle of cuckoo hash, enabling the resolution of hash conflicts.

The proposed CK sketch structure dynamically adjusts the number of hash functions
and hash buckets based on the size of the network traffic data, thereby improving through-
put and reducing the occurrence of hash collisions during statistical analysis. This results in
a more efficient utilization of resources and improved accuracy of network traffic analysis.

3.4.1. Data Structure

The Bloom filter [41] is a data structure used to represent a collection or determine
whether an element belongs to a collection. This data structure is a simple and efficient
storage structure. It was used in database at first, and has been widely used in network in
recent years [42].

To attain optimal analysis of network traffic statistics, the CK sketch data structure
proposed in this study is shown in Figure 6. This data structure encompasses multiple
layers of hash buckets and Bloom filters, which serve to record the storage location of
network traffic.

……
S0=20k

…… S1=21k

……

Sn−1=2n−1k

...

Hash0

Hash1

Hashn−1

……Hashn

DATA(KEY,VALUE)

Sn=2nk

(KEY,VALUE)

(KEY,VALUE)

(KEY,VALUE)

(KEY,VALUE)

...

Main 

Hash
……

Ke

y

……n

Figure 6. CK sketch data structure.



Sensors 2023, 23, 2217 11 of 23

1. Hash bucket: The incoming network traffic is comprised of (Key, Value) pairs, where
the key is represented as the DNS domain name, and the value is a set of eight feature
values selected to describe APT attacks, as outlined in Section 3.3. The Hn function
of each layer computes the key present in the network traffic and maps the relevant
(Key, Value) pair to the appropriate hash bucket, based on the calculated value.

loc = Hn(key), (2)

The outcome of the hash function operation varies between each layer, and to com-
prehensively account for the heterogeneity of network traffic, the number of hash
buckets in layer n + 1 is double that of layer n.

Sn+1 = 2Sn, (3)

2. Bloom filter: This structure encompasses the main hash function and a two-dimensional
vector. The main hash function is employed to map the network traffic into the two-
dimensional vector, where the key is recorded in the first line of the corresponding
position in the mapping. Upon completion of data insertion, the number of layers in
which the data are located will be recorded in the second row of the corresponding
position in the mapping.

3.4.2. Counting and Compressing

The process of compressing the statistical DNS traffic (Key, Value) is shown in Figure 7
and consists of the following five steps, where the key is the DNS domain name and the
value is the eight features used to describe the APT attack in Section 3.3.

Figure 7. Compress and count flow chart.



Sensors 2023, 23, 2217 12 of 23

1. Determine whether the current DNS traffic is already located in the hash bucket. The
key in the network traffic (Key, Value) is calculated by the main hash function through
Equation (4) to obtain the Locm.

Locm = Hm(key), (4)

According to whether the Locm position in the Bloom filter already contains elements,
corresponding to the following three cases.

• There are no data in this position, then the element is added to the Locm position
in the Bloom filter, and the element is stored in the multi-layer hash bucket from
the first layer.

• There are data in this location but the corresponding key is different from the
corresponding key of the current DNS traffic, the element will be stored in the
hash bucket of the multi-layer starting from the first layer.

• There are data in this location and the corresponding key is the same as the
corresponding key of the current network traffic, the element will be stored in
the corresponding layer of the multi-layer hash bucket directly according to the
number of layers in the Bloom filter.

2. Calculate the location of the hash bucket where the DNS traffic is stored. Put the
network traffic (Key, Value) into the nth layer according to step 1 and Equation (5) to
determine the location where the DNS traffic is stored in the nth layer.

Locn = Hn(key), (5)

3. Determine whether there is a hash conflict. If the Locn position in the hash bucket
does not contain any data, then there is no hash conflict. If there are already data in
it and the data are the same as the data to be inserted, then there is no hash conflict,
otherwise, there is a hash conflict.

4. Count and compress network traffic (Key, Value). If there is no hash conflict, the key
in the network traffic is recorded, and the value is added to the value in the hash
bucket. If a hash conflict occurs, create a different hash function Hn+1 and a layer
of hash bucket Sn+1, where the number of hash buckets in Sn+1 is twice the number
of Sn. The hash function of layer n + 1 is used to calculate Formula (6) to obtain the
location of layer n + 1 traffic, and insert this DNS traffic into the layer n + 1 hash
bucket according to the above steps. Finally, the number of layers where the traffic
resides is recorded in Bloom filter. Figure 8 shows an example of step 4 counting
and compressing DNS traffic (Key, Value) with hash conflict. At this time, after main
hash calculation, the Bloom filter does not contain the number of layers of the traffic.
Therefore, counting and compressing network traffic started from the first layer of the
CK sketch.

Locn+1 = Hn+1(key), (6)

5. Record the number of hash bucket layers where the DNS traffic (Key, Value) is located.
After counting and compressing, the number of layers where the DNS traffic is located
will be recorded in the Bloom filter.



Sensors 2023, 23, 2217 13 of 23

……

……

H0(x)

H1（x）

DATA(KEY,VAL

UE)

Hash Collision

DATA(KEY,VAL

UE)
……H0（x）

Hash Collision

……Hn−1（x）

……H1（x）

DATA(KEY,VAL

UE)
……H0（x）

Hash Collision

...

……Hn−1（x）

……H1（x）

DATA(KEY,VAL

UE)
……H0（x）

...

……Hn（x）

New Hash and 

sketch

S1=2
1
k

New Hash and 

sketch

Sn−1=2
n−1

k

New Hash and 

sketch

Sn=2
n
k

(KEY,VALUE)

(KEY,VALUE)

(KEY,VALUE)

(KEY,VALUE)

(KEY,VALUE)

(KEY,VALUE)

(KEY,VALUE)

(KEY,VALUE)

(KEY,VALUE)

S0=2
0
k

S0=2
0
k

S1=2
1
k

S0=2
0
k

S0=2
0
k

S1=2
1
k

Sn−1=2
n−1

k

Main Hash

Ke

y ……

n ……

Main Hash

Key ……

Null ……

Bloom Filter

Figure 8. Example of hash collision.



Sensors 2023, 23, 2217 14 of 23

4. Experiments
4.1. Data Set Description

The experimental dataset consists of two parts of data, which are APT malicious DNS
traffic provided by netresec and contagio and normal DNS data from the lab. The malicious
traffic dataset contains 15 different types of malicious network traffic from the sources
shown in Table 1 below. The secure network traffic comes from a week of DNS traffic
within the lab and contains 1,088,280 DNS records. The above malicious data are filtered,
and the DNS traffic part of them is selected and combined with the DNS traffic of the lab to
obtain the experimental dataset, and the distribution of attributes is shown in Table 2.

Table 2. Malicious dataset attributes.

Dataset File Name File Size

contagio Sality 38.2 MB
XTremeRAT 3.50 MB

BIN_TrojanCookies 905 KB
BIN_Sanny-Daws 868 KB

BIN_Lagulon 626 KB
PDF_CVE-2011-2462 341 KB

8202_tbd 323 KB
BIN_XtremeRat 308 KB

BIN_LetsGo_yahoosb 306 KB
BIN_8202 305 KB

BIN_Taidoor 196 KB

ICEDID 2020-07-14-IcedID 3.72 MB
2020-05-19-IcedID 3.60 MB

FORMBOOK 2020-07-09-Formbook 1.55 MB

Zloader 2020-06-09-ZLoader 6.18 MB

4.2. Experimental Environment

To verify the performance of the algorithm proposed in this section, the test program
was deployed on a host computer with Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz
2.81 GHz, 16G RAM, Nvidia GTX 1060 GPU, Win10 OS, Python 3.6 version.

4.3. Metrics

True Positive (TP), indicating samples that are malicious traffic and are correctly
detected as attack traffic.

True Negative (TN), indicating samples that are actually normal traffic and are correctly
detected as normal traffic.

False Positive (FP), indicating samples that are normal traffic but are incorrectly
detected as attack traffic.

False Negative (FN), indicating samples that are malicious traffic but are incorrectly
detected as normal traffic.

1. TPR
True Positive Rate (TPR) means the proportion of true positive samples to all positive
samples in the current positive sample, which is the accuracy of the measurement.
The accuracy of the measurement is also known as sensitivity. It is expressed by
Equation (7).

TPR =
TP

TP + FN
, (7)



Sensors 2023, 23, 2217 15 of 23

2. Precision
Precision means the proportion of samples that are positive and correctly classified as
positive to all samples classified as positive. It is expressed by Equation (8).

Precision =
TP

TP + FP
, (8)

3. Accuracy
Accuracy means the percentage of all samples that are correctly detected. It is ex-
pressed by Equation (9).

Accurary =
TP + TN

TP + FP + TN + FN
, (9)

4. F-measure
F-measure, also known as F1-Score, combines the precision and recall considera-
tions of detection accuracy and is the summed average of the two, calculated using
Equation (10).

F-measure =
2 × Precision × Recall

Precision + Recall
, (10)

5. Throughput
It is the number of successfully processed data per unit of time. The experimental
part uses the number of packets successfully deposited into the sketch structure per
second as the throughput. Higher throughput means faster and shorter processing
time for network traffic and better performance.

6. Processing time
Our scheme first performs feature extraction and summary statistics through CK
sketch, and then includes machine learning model training and prediction after
preprocessing. The data preprocessing and resampling parts contain a lot of manual
offline operations, and the running time is difficult to count, so we only focus on the
time consumed by the construction of the machine learning part of the classification
model and test set prediction.

4.4. Model Training and Results
4.4.1. APT Detection Results

The selected dataset is compressed and counted using the CK sketch structure after
the preprocessing operation. The eight features illustrated in Section 3.3 are selected and
eight classical machine learning models are used for training and testing. The results are
shown in Table 3.

Table 3. Experimental dataset attributes.

Type DNS Packet Num Type of Filtered Size of Data

Malware traffic 21,120 15 3.58 MB
Normal traffic 1,088,280 1 193.2 MB

From Table 4, we can see that the six models of KNN, DecisionTree, bagging, Ran-
domForest, ExtraTrees, and AdaBoost can achieve an accuracy rate of 0.96 or higher,
among which DecisionTree, ExtraTrees, and RandomForest consume less time in train-
ing and testing. The time consumption is lower, which proves the effectiveness of our
proposed scheme. Overall, DecisionTree achieves both high detection accuracy and
detection efficiency.



Sensors 2023, 23, 2217 16 of 23

Table 4. APT detection results.

Precision Recall F-Score Accurary Training
Duration/(s)

Testing
Duration/(s)

LR 0.82774 0.77266 0.76728 0.77859 0.082741 0.069814
KNN 0.96523 0.96540 0.96463 0.96463 0.073833 0.348069

GaussianNB 0.78524 0.66480 0.63183 0.67442 0.005000 0.005950
DecisionTree 0.97055 0.97096 0.97044 0.97045 0.020942 0.025300

Bagging 0.96819 0.96802 0.96705 0.96705 0.142618 0.522602
RandomForest 0.96515 0.96472 0.96366 0.96366 0.042885 0.054854

ExtraTrees 0.97558 0.97592 0.97529 0.97529 0.063829 0.066821
AdaBoost 0.96374 0.96393 0.96318 0.96318 0.092753 0.088790

4.4.2. Testing Duration Comparison

This experiment compares the effect of sketch structure on the training time of various
machine learning models in the proposed scheme. In the experiments, we used the same
dataset to train all the models, record the time required to finish training the models,
and then used the dataset counted and compressed by the sketch structure to train the
models and record the time required. The experimental results are shown in Figures 9
and 10, where the horizontal coordinates represent the different machine learning models
and the vertical coordinates represent the time spent on model training. The experimen-
tal results show that the traffic data, after being statistically compressed by sketch, can
significantly reduce the training time of all machine learning models, among which the
KNN and Bagging models reduce the time most significantly. The reason is that after the
data are compressed by sketch, the traffic from the same DNS domain will be counted
and compressed into a hash bucket, which makes the number of training samples drop
significantly and saves a lot of time.

Figure 9. Comparison of training time of six models before and after sketch processing.



Sensors 2023, 23, 2217 17 of 23

Figure 10. Comparison of the training time of two models before and after sketch processing.

4.4.3. Testing Accuracy Comparison

This experiment compares the accuracy difference between six machine learning mod-
els trained and detected using the original dataset and the dataset compressed and counted
by CK sketch. The experimental results are shown in Figure 11, where the horizontal coor-
dinates represent the four metrics used to measure the detection accuracy of the models
and the vertical coordinates represent the accuracy values. The experiments show that,
except for RandomForest, the other five machine learning models exhibit higher accuracy
when trained and detected with the CK sketch structure.

4.4.4. Throughput Comparison

In this experiment, the objective was to compare the processing efficiency of network
traffic among different sketch structures. The experiment evaluated the throughput of
CK sketch, CM sketch, and Count sketch when compressing and counting network traffic.
The results of the experiment are depicted in Figure 12, where the horizontal axis represents
the number of hash functions present in each sketch structure and the vertical axis depicts
the number of packets processed per second. The findings reveal that as the number of
hash functions increases, the processing efficiency of all methods for network traffic data
decreases. However, CK sketch exhibits a considerable advantage over the other methods
in processing network traffic, owing to the fact that, unlike CM sketch and Count sketch,
CK sketch only requires multiple hash calculations in case of hash conflict and thus avoids
excessive hash operations and saves a considerable amount of time.



Sensors 2023, 23, 2217 18 of 23

(a) (b)

(c) (d)

(e) (f)

Figure 11. Comparison of model training accuracy before and after sketch processing: (a) Adaboost
accuracy; (b) Bagging accuracy, (c) DecisionTree accuracy; (d) ExtraTrees accuracy; (e) Definitions
accuracy; (f) RandomForest accuracy.



Sensors 2023, 23, 2217 19 of 23

Figure 12. Throughput comparison.

4.5. The Conclusion of Experiment

The experimental results show that the scheme is effective in detecting APT attacks and
drastically reduces the time for training multiple machine learning models. We compare
the performance of CK sketch with two other sketch structures in terms of throughput and
based on the results we can see that the throughput of CK sketch is much larger than the
other two sketch structures. Using the sketch structure to count and compress massive DNS
traffic can effectively improve the efficiency of detecting APT attacks and reduce losses.

4.6. Comparison with Previous Work

In the scheme proposed by Yan Guanghua, the author used eight DNS traffic features
combined with deep learning to judge APT attacks. However, these eight features lack the
consideration of APT attack access time and TLL value in DNS traffic packets, resulting in
the failure to accurately detect APT attacks with time rules. Therefore, on the basis of some
of the above eight features, this paper adds access time period, packet length, TTL, and other
features, so as to obtain a more accurate detection effect. In the part of data preprocessing,
the author mainly uses the means of domain name ranking and access times to screen the
initial data, and this method has a certain effect. However, the amount of data cannot be
reduced effectively, which leads to the training time of the model being too long and the
decrease in detection efficiency. Therefore, this paper introduces the CK sketch structure
to compress and count the DNS traffic while guaranteeing the accuracy, and significantly
reduce the time for model training. However, due to data privacy, the above authors’
datasets were not available. In the comparative experiment, the dataset in Section 4.1 was
used to compare the accuracy and model training time of this paper and Yan Guanghua
with the same amount of data. The experimental results are shown in Table 5. We find
that the introduction of new features in this paper can improve the accuracy of APT attack
detection to some extent. More importantly, the use of the CK sketch structure in this paper
greatly reduces the time of model training, because the CK sketch structure uses statistics
and compresses the data used for model training.



Sensors 2023, 23, 2217 20 of 23

Table 5. Comparison with recent studies.

Scheme Accuarcy Recall Training Duration/(s)

Scheme of this paper 0.97981 0.97981 0.0624
Yan Guanghua 0.96711 0.96787 3.1746

4.7. Discussion of limitations

Since CK sketch uses domain names as the key to compress and count DNS traffic,
the diversity of domain names in datasets will affect the time superiority of the scheme
proposed in this paper. Therefore, we filter the dataset in Section 4.1 and tested only one
DNS traffic with the same domain name. The experimental results are shown in Table 6.

Table 6. Limitation contrast experiment.

Scheme Training Duration/(s)

Sketch 0.0647
Non-sketch 0.0646

The test results show that the proposed scheme cannot greatly reduce the time of
model training when the domain name in the dataset is repeated. Based on the above
characteristics, we can improve the structure of sketch or select multiple features as key in
future research.

5. Conclusions and Future Work

In this paper, we present a novel APT attack detection approach based on the com-
bination of the CK sketch structure and DNS traffic analysis. Our work allows security
personnel to quickly identify and respond to potential APT attacks based on the analysis of
DNS traffic. The proposed method leverages the unique characteristics of DNS traffic to
identify potential APT attacks and utilizes the CK sketch structure to efficiently compress
and summarize the traffic statistics. The experimental results demonstrate the effective-
ness of the proposed approach in terms of both processing time and detection accuracy.
Specifically, when applied to the ExtraTrees model, the processing time was reduced by
approximately 50 times to 0.0638 s while maintaining a high accuracy of 0.97920. This
reduction in processing time is expected to be achievable with other machine learning
models as well.

It is important to note that the scope of our current work is limited to the communica-
tion control phase of APT attacks and does not take into account the characteristics of other
phases. Additionally, the scheme may not provide significant time savings in cases where
DNS traffic exhibits a high degree of variability in terms of domain names.

In future work, our focus will be on expanding the scope of APT attack characterization
to encompass not only DNS traffic but also TCP and HTTP traffic. This will provide a
more comprehensive understanding of APT attacks and allow for the selection of different
attributes as keys in the sketch structure, providing greater adaptability to a wider range of
APT attack scenarios. Additionally, we aim to gather more information about the suspect
domain names and hosts involved in APT attacks for improved security analysis.

Author Contributions: Conceptualization, D.X.; methodology, D.X.; software, D.X.; validation, D.X.,
Y.C. and L.Z.; formal analysis, D.X. and B.W.; data curation, L.Z.; writing–original draft preparation,
D.X. and B.W.; writing–review and editing, D.X., B.W., and Y.C.; visualization, D.X.; supervision,
Y.C.; project administration, Y.C.; funding acquisition, Y.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the Fundamental Research Funds for the Central Univer-
sities under Grant No.328202273 and National Key Research and Development Program of China
under Grant 2018YFB1004100.



Sensors 2023, 23, 2217 21 of 23

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: In this paper, the malicious APT attacks DNS datasets are from two
sites: https://www.netresec.com/ and http://contagiodump.blogspot.com/, which are accessed on
10 November 2022. The secure network DNS traffic cannot be shared due to privacy issues.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

APT Advanced Persistent Threat
TP True Positive
TPR True Positive Rate
TN True Negative
FP False Positive
FN False Negative
Iot Internet of Things
CK Cuckoo
TTL Time To Live
LR Logistic Regression
DNS Domain Name Server
MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of Open Access Journals
TLA Three letter acronym
LD Linear dichroism

References
1. Yan, G.; Li, Q.; Guo, D.; Meng, X. Discovering suspicious APT behaviors by analyzing DNS activities. Sensors 2020, 20, 731.

[CrossRef] [PubMed]
2. Auty, M. Anatomy of an advanced persistent threat. Netw. Secur. 2015, 2015, 13–16. [CrossRef]
3. Chen, P.; Desmet, L.; Huygens, C. A study on advanced persistent threats. In Proceedings of the IFIP International Conference on

Communications and Multimedia Security, Aveiro, Portugal, 25–26 September 2014 ; Springer: Berlin/Heidelberg, Germany,
2014; pp. 63–72.

4. Virvilis, N.; Gritzalis, D. The big four-what we did wrong in advanced persistent threat detection? In Proceedings of the 2013
International Conference on Availability, Reliability and Security, IEEE, Regensburg, Germany, 2–6 September 2013; pp. 248–254.

5. Alhogail, A.; Alsabih, A. Applying machine learning and natural language processing to detect phishing email. Comput. Secur.
2021, 110, 102414. [CrossRef]

6. Housen-Couriel, D. Cybersecurity and anti-satellite capabilities (asat) new threats and new legal responses. J. Law Cyber Warf.
2015, 4, 116–149.

7. Bhatt, P.; Yano, E.T.; Gustavsson, P. Towards a framework to detect multi-stage advanced persistent threats attacks. In Proceedings
of the 2014 IEEE 8th International Symposium on Service Oriented System Engineering, Oxford, UK, 7–11 April 2014; pp. 390–395.

8. Hutchins, E.M.; Cloppert, M.J.; Amin, R.M. Intelligence-driven computer network defense informed by analysis of adversary
campaigns and intrusion kill chains. Lead. Issues Inf. Warf. Secur. Res. 2011, 1, 80.

9. Xiang, Z.; Guo, D.; Li, Q. Detecting mobile advanced persistent threats based on large-scale DNS logs. Comput. Secur. 2020,
96, 101933. [CrossRef]

10. Niu, W.; Zhang, X.; Yang, G.; Zhu, J.; Ren, Z. Identifying APT malware domain based on mobile DNS logging. Math. Probl. Eng.
2017, 2017, 4916953. [CrossRef]

11. Nadji, Y.I. Understanding DNS-Based Criminal Infrastructure for Informing Takedowns. Ph.D. Thesis, Georgia Institute of
Technology, Atlanta, GA, USA, 2015.

12. Liu, J.; Liu, Y.; Li, J.; Sun, W.; Cheng, J.; Zhang, R.; Huang, X.; Pang, J. Two statistical traffic features for certain APT group
identification. J. Inf. Secur. Appl. 2022, 67, 103207. [CrossRef]

13. Mahdavifar, S.; Ghorbani, A.A. Application of deep learning to cybersecurity: A survey. Neurocomputing 2019, 347, 149–176.
[CrossRef]

14. Li, M.; Li, Q.; Xuan, G.; Guo, D. Identifying compromised hosts under APT using DNS request sequences. J. Parallel Distrib.
Comput. 2021, 152, 67–78. [CrossRef]

https://www.netresec.com/
http://contagiodump.blogspot.com/
http://doi.org/10.3390/s20030731
http://www.ncbi.nlm.nih.gov/pubmed/32013016
http://dx.doi.org/10.1016/S1353-4858(15)30028-3
http://dx.doi.org/10.1016/j.cose.2021.102414
http://dx.doi.org/10.1016/j.cose.2020.101933
http://dx.doi.org/10.1155/2017/4916953
http://dx.doi.org/10.1016/j.jisa.2022.103207
http://dx.doi.org/10.1016/j.neucom.2019.02.056
http://dx.doi.org/10.1016/j.jpdc.2021.02.017


Sensors 2023, 23, 2217 22 of 23

15. Singh, S.; Sharma, P.K.; Moon, S.Y.; Moon, D.; Park, J.H. A comprehensive study on APT attacks and countermeasures for future
networks and communications: Challenges and solutions. J. Supercomput. 2019, 75, 4543–4574. [CrossRef]

16. Lu, J.; Chen, K.; Zhuo, Z.; Zhang, X. A temporal correlation and traffic analysis approach for APT attacks detection. Clust.
Comput. 2019, 22, 7347–7358. [CrossRef]

17. Marchetti, M.; Pierazzi, F.; Colajanni, M.; Guido, A. Analysis of high volumes of network traffic for advanced persistent threat
detection. Comput. Netw. 2016, 109, 127–141. [CrossRef]

18. Das, A.; Shen, M.Y.; Shashanka, M.; Wang, J. Detection of exfiltration and tunneling over DNS. In Proceedings of the 2017
16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017;
pp. 737–742.

19. Shang, L.; Guo, D.; Ji, Y.; Li, Q. Discovering unknown advanced persistent threat using shared features mined by neural networks.
Comput. Netw. 2021, 189, 107937. [CrossRef]

20. Lemay, A.; Calvet, J.; Menet, F.; Fernandez, J.M. Survey of publicly available reports on advanced persistent threat actors. Comput.
Secur. 2018, 72, 26–59. [CrossRef]

21. Yadav, S.; Reddy, A.K.K.; Reddy, A.N.; Ranjan, S. Detecting algorithmically generated domain-flux attacks with DNS traffic
analysis. IEEE/Acm Trans. Netw. 2012, 20, 1663–1677. [CrossRef]

22. Ussath, M.; Jaeger, D.; Cheng, F.; Meinel, C. Advanced persistent threats: Behind the scenes. In Proceedings of the IEEE 2016
Annual Conference on Information Science and Systems (CISS), Princeton, NJ, USA, 16–18 March 2016; pp. 181–186.

23. Xuan, C.D.; Duong, D.; Dau, H.X. A multi-layer approach for advanced persistent threat detection using machine learning based
on network traffic. J. Intell. Fuzzy Syst. 2021, 40, 11311–11329. [CrossRef]

24. Zhao, X.; Xu, W. Zhao G., Xu K., Xu L., Wu B. Detecting APT malware infections based on malicious DNS and traffic analysis.
IEEE Access 2015, 3, 1132–1142. [CrossRef]

25. Cho, D.X.; Nam, H.H. A method of monitoring and detecting APT attacks based on unknown domains. Procedia Comput. Sci.
2019, 150, 316–323. [CrossRef]

26. Fu, Y.; Yu, L.; Hambolu, O.; Ozcelik, I.; Husain, B.; Sun, J.; Sapra, K.; Du, D.; Beasley, C.T.; Brooks, R.R. Stealthy domain generation
algorithms. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1430–1443. [CrossRef]

27. Shi, Y.; Chen, G.; Li, J. Malicious domain name detection based on extreme machine learning. Neural Process. Lett. 2018,
48, 1347–1357. [CrossRef]

28. Yan, G.; Li, Q.; Guo, D.; Li, B. AULD: Large scale suspicious DNS activities detection via unsupervised learning in advanced
persistent threats. Sensors 2019, 19, 3180. [CrossRef] [PubMed]

29. Xu, C.; Shen, J.; Du, X. Detection method of domain names generated by DGAs based on semantic representation and deep
neural network. Comput. Secur. 2019, 85, 77–88. [CrossRef]

30. Wang, X.; Li, Q.; Yan, G.; Xuan, G.; Dong, G. Detection of Latency and Suspicious DNS Behavior in Advanced Persistent Threats.
J. Comput. Res. Dev. 2017, 54, 2334–2343.

31. Lu, J.; Zhang, X.; Junfeng, W.; Lingyun, Y. APT traffic detection based on time transform. In Proceedings of the IEEE 2016
International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Changsha, China, 17–18 December 2016;
pp. 9–13.

32. Chu, W.L.; Lin, C.J.; Chang, K.N. Detection and classification of advanced persistent threats and attacks using the support vector
machine. Appl. Sci. 2019, 9, 4579. [CrossRef]

33. Ruiling, G.; Jiawen, D.; Xiang, C.; Shouyou, S. A DNS-based Data Exfiltration Traffic Detection Method for Unknown Samples. In
Proceedings of the 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC), Guilin, China, 11–13 July 2022;
pp. 191–198. [CrossRef]

34. Javed, S.H.; Ahmad, M.B.; Asif, M.; Almotiri, S.H.; Masood, K.; Ghamdi, M.A.A. An Intelligent System to Detect Advanced
Persistent Threats in Industrial Internet of Things (I-IoT). Electronics 2022, 11, 742. [CrossRef]

35. Van Cong, B.; Quoc Thanh, N.; Duy Phuong, N. A novel framework for APT attack detection based on network traffic. Int. J.
Nonlinear Anal. Appl. 2022, 13, 2933–2945.

36. Huang, X.; Su, B.; Zhang, R.; Chen, F.; Zhao, J.; Gao, Y. APT Attack Detection Method Based on Traffic Log Features. In
Proceedings of the 2022 IEEE 2nd International Conference on Computer Systems (ICCS), Qingdao, China, 22–24 September 2022;
pp. 29–34. [CrossRef]

37. Zhou, Y.; Yang, L.; Wang, Z.; Li, G.; Ning, X. DNS attack detection based on multi-dimensional fusion model. In Proceedings of
the 2022 International Conference on Networking and Network Applications (NaNA), IEEE, Urumqi, China, 3–5 December 2022;
pp. 74–81.

38. Tang, J.; Cheng, Y.; Hao, Y.; Song, W. SIP flooding attack detection with a multi-dimensional sketch design. IEEE Trans. Dependable
Secur. Comput. 2014, 11, 582–595. [CrossRef]

39. Cormode, G.; Muthukrishnan, S. An improved data stream summary: The count-min sketch and its applications. J. Algorithms
2005, 55, 58–75. [CrossRef]

40. Zhauniarovich, Y.; Khalil, I.; Yu, T.; Dacier, M. A survey on malicious domains detection through DNS data analysis. ACM
Comput. Surv. (CSUR) 2018, 51, 1–36. [CrossRef]

http://dx.doi.org/10.1007/s11227-016-1850-4
http://dx.doi.org/10.1007/s10586-017-1256-y
http://dx.doi.org/10.1016/j.comnet.2016.05.018
http://dx.doi.org/10.1016/j.comnet.2021.107937
http://dx.doi.org/10.1016/j.cose.2017.08.005
http://dx.doi.org/10.1109/TNET.2012.2184552
http://dx.doi.org/10.3233/JIFS-202465
http://dx.doi.org/10.1109/ACCESS.2015.2458581
http://dx.doi.org/10.1016/j.procs.2019.02.058
http://dx.doi.org/10.1109/TIFS.2017.2668361
http://dx.doi.org/10.1007/s11063-017-9666-7
http://dx.doi.org/10.3390/s19143180
http://www.ncbi.nlm.nih.gov/pubmed/31330986
http://dx.doi.org/10.1016/j.cose.2019.04.015
http://dx.doi.org/10.3390/app9214579
http://dx.doi.org/10.1109/DSC55868.2022.00032
http://dx.doi.org/10.3390/electronics11050742
http://dx.doi.org/10.1109/ICCS56273.2022.9987983
http://dx.doi.org/10.1109/TDSC.2014.2302298
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1145/3191329


Sensors 2023, 23, 2217 23 of 23

41. Bloom, B.H. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 1970, 13, 422–426. [CrossRef]
42. Zhao, Y.; Zhang, Y.; Yi, P.; Yang, T.; Cui, B.; Uhlig, S. The Stair Sketch: Bringing more Clarity to Memorize Recent Events. In

Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 9–12 May
2022; pp. 164–177. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1109/ICDE53745.2022.00017

	Introduction
	Related Work
	APT Attack Model
	Existing APT Detection Methods
	Sketch Structure

	Research Design
	Overview of the Approach
	Data Preprocessing
	Feature Extraction
	Count and Compress DNS Traffic with an Improved Sketch Structure
	Data Structure
	Counting and Compressing


	Experiments
	Data Set Description
	Experimental Environment
	Metrics
	Model Training and Results
	APT Detection Results
	Testing Duration Comparison
	Testing Accuracy Comparison
	Throughput Comparison

	The Conclusion of Experiment
	Comparison with Previous Work
	Discussion of limitations

	Conclusions and Future Work
	References

