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Abstract: In estimation of linear systems, an efficient event-triggered Kalman filter algorithm is
proposed. Based on the hypothesis test of Gaussian distribution, the significance of the event-
triggered threshold is given. Based on the threshold, the actual trigger frequency of the estimated
system can be accurately set. Combining the threshold and the proposed event-triggered mechanism,
an event-triggered Kalman filter is proposed and the approximate estimation accuracy can also be
calculated. Whether it is a steady system or a time-varying system, the proposed algorithm can
reasonably set the threshold according to the required accuracy in advance. The proposed event-
triggered estimator not only effectively reduces the communication cost, but also has high accuracy.
Finally, simulation examples verify the correctness and effectiveness of the proposed algorithm.
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1. Introduction

The growing demands of communications, navigation positioning, fault detection,
and environmental monitoring have spawned wireless sensor network systems [1–5]. In
wireless sensor networks, due to the limitation of bandwidth and energy, frequent data
transmission is unfavorable, which not only increases the communication costs, but also
induces some negative network phenomena, such as packet loss, network delay, etc. In
order to reduce the waste of resources in the operation of the equipment and ensure the
quality of communication, a better transmission mechanism is worth seeking. Unlike
traditional time-triggered mechanisms, an event-triggered one transmits information only
when needed. It effectively alleviates the problems of network congestion and waste of
resources, and has attracted widespread attention from scholars [6–10].

As early as 1983, Ho et al. first introduced the concept of event trigger into discrete
systems [11]. Later, in the development of event-triggered filter estimation, a trigger
mechanism named send-on-delta (SOD) emerges. The trigger mechanism is based on
differences in the measured signals, and when the signal deviates from the delta, the
communication is triggered. It is one of the classic solutions to solve redundant data
transmission in wireless sensor networks [12]. Subsequently, in [13], using estimation
variance as a trigger condition, Trimpe et al. correlated trigger decision with estimator
performance, and estimation algorithms for distributed sensor nodes that can be applied in
two cases were designed, and another popular trigger mechanism was proposed. Based on
the innovation and its covariance information, Wang N.et al. proposed an event-triggered
sequence fusion estimator. It is an improvement of the SOD mechanism, which solves
the problem of event-triggered estimators of observation noise under the linear minimum
variance criterion [14]. Zhang et al. introduced the event trigger mechanism into the
H∞ filtering framework. The trigger conditions depend on the current measurement and
the difference between the latest transmission, which significantly saves communication
resources, and the filtering error has proved to be asymptotically stable [15]. In [16],
the event-triggered mechanism under malicious denial-of-service attacks is studied, and
estimating performance and network communication are analyzed.
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The trigger mechanisms used in the above works are all static; that is, a constant is used
as the trigger threshold [17]. With the in-depth study of event triggers, the setting of the
threshold is no longer conservative and dynamic event trigger mechanisms appeared [18].
In [19], taking into account the unknown input of the network control system, an adaptive
threshold including system state vector and neural network weight estimation is designed,
and the stability of the system is rigorously proved by using the Lyapunov stability theory.
In [20], for the multi-agent system, event-triggered mechanisms in the centralized and
distributed cases are developed, and the dynamic threshold of the distributed system is
set by introducing internal variables and exponential functions, which greatly reduces
the transmission burden. For uncertain systems with transmission delays, a distributed
transmission scheme based on a dynamic event trigger is proposed in [21]. Different
from [20], the trigger time series of the system is determined by the dynamic event variable
rules. In [22], a novel decentralized trigger condition is designed, whose trigger threshold
is constructed by the rate of change, and the Zeno behavior in the trigger process is avoided
by adding a corresponding constant term.

In fact, the selection of the event-triggered threshold depends on the preset accuracy
and trigger rate, but there are few works on the accuracy range and trigger rate at a certain
threshold. Compared with the traditional trigger mechanism, the one proposed in this
paper can give a quantitative relationship between trigger threshold, communication rate,
and estimation error. Clearly, it is important for wireless sensors to clarify the relationship
between the communication frequency and the corresponding estimation accuracy range.
At the same time, the trigger mechanism with better performance at the same trigger rate
is sought. For these reasons, the motivation for our study came into being. The main
contributions of this paper are summarized as follows:

1. For wireless sensors, an event-triggered mechanism is proposed. The proposed event-
triggered mechanism is based on a normal distribution constructed from the predicted
and filtered differences. When the constructed normal distribution trigger function
exceeds a tolerable threshold, the filtering results are transmitted.

2. The theoretical trigger probability and estimation accuracy under the proposed trigger
mechanism are derived. For linear time-invariant systems, the Riccati equation can be
used to obtain the estimation error variance of the event-triggered estimator. For linear
time-varying systems without steady-state estimation, an approximate estimation
accuracy can be obtained. Therefore, their trigger threshold can be set according to
the precision requirements.

3. The simulation verifies the correctness of the proposed theorems and inferences. Com-
pared with several types of event trigger mechanisms in the existing literature [14,22],
the trigger mechanism proposed in this paper has higher estimation accuracy and
better performance under the same trigger rate.

Notation: Rn denotes the n-dimensional Euclidean space, Rn×m denotes the set of n
by m real-valued matrices, ‘E’ denotes the mathematical expectation, MT and M−1 are the
transpose and inverse of matrix M, respectively, chol(P) is the Cholesky decomposition of
matrix P, tr(M) is the trace of matrix M, In is the n-dimensional identity matrix, N (µ, δ2)
denotes the Gaussian distribution with mean µ and variance δ2, δkt is the Kronecker delta
function (δtt = 1, δtk = 0 (t 6= k)), x̃k|k−τ = xk − x̂k|k−τ is the state estimation error, and
z̃k|k−τ = zk − ẑk|k−τ(τ = 0, 1, · · · , k− 1) is the measurement prediction error.

2. Problem Formulation

Consider the following linear system:

xk+1 = Φxk + Γwk (1)

zk = Hxk + vk (2)
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where k is discrete time, xk+1 ∈ Rn is the state vector, zk ∈ Rm is the measurement vector,
Φ ∈ Rn×n is the state transition matrix, Γ ∈ Rn×m is the noise transfer matrix, H ∈ Rm×n is
the measurement matrix, wk is the process noise, and vk is the measurement noise.

Assumption 1. wk and vk are uncorrelated white Gaussian noise processes with zero means and
variances Qk and Rk, respectively,

E
[(

wk
vk

)(
wT

t vT
t

)]
=

[
Qk 0
0 Rk

]
δkt (3)

Assumption 2. The initial state x0 is dependent on wk and vk, and satisfies:

E[x0] = µ0, E[(x0 − µ0)(x0 − µ0)
T] = P0 (4)

2.1. Threshold Selection of Event-Triggered Mechanism

Taking into account the characteristics of intelligence and the low power consumption
of current sensors, as well as the advantages of event-triggered mechanisms based on state
estimation, an event-triggered Kalman filter based on the state estimation is designed. The
smart sensor node is responsible for continuous filtering and judgment. If the trigger con-
dition is not satisfied, the prediction actions will be performed by the center; otherwise, the
filter estimation will be sent by the smart sensor node and the target states will be updated
by the receiving center. This structure can effectively reduce communication redundancy.

Theorem 1. For the system in Equations (1) and (2), the test statistics obey the following distribution:

γk = (chol(Px
k,τ))

−1(x̂k|k−τ − x̂k|k) ∼ N (0, In) (5)

where
x̂k|k = x̂k|k−1 + Kkz̃k|k−1 (6)

Kk = Pk|k−1HT[HPk|k−1HT + Rk]
−1

(7)

z̃k|k−1 = zk −Hx̂k|k−1 (8)

x̂k|k−1 = Φx̂k−1|k−1 (9)

Pk|k−1 = ΦPk−1|k−1ΦT + ΓQk−1(Γ)
T (10)

x̂k|k−τ is the τ − step Kalman prediction:

x̂k|k−τ = Φτ−1x̂k−τ+1|k−τ , τ ≥ 1 (11)

and the second moment Px
k,τ of (x̂k|k−τ − x̂k|k) can be written as:

Px
k,τ = E{(x̂k|k−τ − x̂k|k)(x̂k|k−τ − x̂k|k)

T}

= Pk|k − Pk|k−τ − P(1)
k|k−τ

− P(2)
k|k−τ

− · · · − P(τ)
k|k−τ

−
(

P(1)
k|k−τ

)T
−
(

P(2)
k|k−τ

)T
− · · · −

(
P(τ)

k|k−τ

)T (12)

where the filtering error variance Pk|kis:

Pk|k = [In −KkH]Pk|k−1 (13)

the prediction error variance Pk|k−τ in Equation (12) is calculated by:

Pk|k−τ = Φτ−1Pk−τ+1|k−τ(Φ
(τ−1))

T
+

τ

∑
j=2

Φτ−jΓQk−τ+j−1ΓTΦ(τ−j)T, τ ≥ 2 (14)
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P(m)
k|k−τ

(m = 1, · · · , τ) in Equation (12) is calculated by:

P(m)
k|k−τ

= −Φτ−1Pk−τ+1|k−τ(Am)
THTKT

k−τ+m(Φ
τ−m)

T
+ B (15)

and the solution steps for P(m)
k|k−τ

(m = 1, · · · , τ) in Algorithm 1 is:

Algorithm 1: Solution steps for P(m)
k|k−τ

Initialize: A1 = In, C0 = In.
Iterate:
for m = 1 : τ

Am+1 = ΦAm −ΦKk−τ+mHAm
end
if τ = 1, B = 0

else τ = 2, m = 2, B = −Φτ−mΓQk−τ+m+1ΓTIT
nHTKT

k−τ+m(Φ
τ−m)

T

else Bm = 0
for m = 3 : τ

h = m− 2, p = m− 2
for ξ = 1 : m− 2
for ∂ = 0 : h− 1
C∂+1 = ΦC∂ −ΦKk−τ+m−h+∂HC∂

end
Bψ

m = −Φτ−m+pΓQk−τ+m−p−1ΓTCT
h HTKT

k−τ+m(Φ
τ−m)

T

h = h− 1, p = p− 1
end
Bm = Bm + Bψ

m
end
B = Bm −Φτ−mΓQk−τ+m+1ΓTIT

nHTKT
k−τ+m(Φ

τ−m)
T

end
P(m)

k|k−τ
= −Φτ−1Pk−τ+1|k−τ(Am)

THTKT
k−τ+m(Φ

τ−m)
T
+ B

Proof. Due to x̂k|k−τ ∈ L(z1, · · · , zk−τ) (L is the linear manifold of z1, · · · , zk−τ) and
x̂k|k ∈ L(z1, · · · , zk) in Equation (5), γk ∈ L(z1, · · · , zk) obeys the Gaussian distribution.

(1) The proof of the mean value of γk. Since x̂k|k−τ and x̂k|k are unbiased,

E{γk} = E{(chol(Px
k,τ))

−1(x̂k|k−τ − x̂k|k)} = E{(chol(Px
k,τ))

−1}(E{x̂k|k−τ} − E{x̂k|k }) = 0 (16)

(2) The proof of the Px
k,τ in Equation (12). Based on the Kalman filter:

x̂k|k = x̂k|k−1 + Kkz̃k|k−1= Φx̂k−1|k−1 + Kkz̃k|k−1= Φ2x̂k−2|k−2 + ΦKk−1z̃k−1|k−2 + Kkz̃k|k−1
= Φτ x̂k−τ|k−τ + Φτ−1Kk−τ+1z̃k−τ+1|k−τ + Φτ−2Kk−τ+2z̃k−τ+2|k−τ+1+ . . . + Kkz̃k|k−1

= x̂k|k−τ +
τ

∑
i=1

Φτ−iKk−τ+iz̃k−τ+i|k−τ+i−1

(17)

estimated error variance matrix Px
k,τ is computed by:

Px
k,τ = E{(x̂k|k−τ − x̂k|k)(x̂k|k−τ − x̂k|k)

T}
= E{[(x̂k|k−τ − xk) + (xk − x̂k|k)][(x̂k|k−τ − xk) + (xk − x̂k|k)]

T}
= Pk|k−τ + Pk|k − E{(x̂k|k−τ − xk)(x̂k|k − xk)

T} − E{(x̂k|k − xk)(x̂k|k−τ − xk)
T}

(18)

From Equations (17) and (18), E{(x̂k|k−τ − xk)(x̂k|k − xk)
T} can be written as:
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E{(x̂k|k−τ − xk)(x̂k|k − xk)
T}

= E{(x̂k|k−τ − xk)(x̂k|k−τ − xk +
τ

∑
i=1

Φτ−iKk−τ+iz̃k−τ+i|k−τ+i−1)
T
}

= Pk|k−τ + E{
τ

∑
i=1

(x̂k|k−τ − xk)[Φ
τ−iKk−τ+i(Hx̃k−τ+i|k−τ+i−1 + vk−τ+i)]

T}

+E{(x̂k|k−τ − xk)[Φ
τ−2Kk−τ+2(Hx̃k−τ+2|k−τ+1 + vk−τ+2)]

T}
+ . . . + E{(x̂k|k−τ − xk)[Kk(Hx̃k|k−1 + vk)]

T}= Pk|k−τ + P(1)
k|k−τ

+ P(2)
k|k−τ

+ · · ·+ P(τ)
k|k−τ

(19)

since wk−i is white noise and independent of vk−τ+i, P(1)
k|k−τ

, P(2)
k|k−τ

, P(3)
k|k−τ

in Equation
(19) are respectively calculated as:

P(1)
k|k−τ

= E{(x̂k|k−τ − xk)[Φ
τ−1Kk−τ+1(Hx̃k−τ+1|k−τ + vk−τ+1)]

T}
= E{[Φτ−1(x̂k−τ+1|k−τ − xk−τ+1)− L(wk−τ+1 . . . wk−1)][Φ

τ−1Kk−τ+1(Hx̃k−τ+1|k−τ + vk−τ+1)]
T}

= −Φτ−1Pk−τ+1|k−τHTKT
k−τ+1

(
Φτ−1)T

(20)

P(2)
k|k−τ

= E{(x̂k|k−τ − xk)[Φ
τ−2Kk−τ+2(Hx̃k−τ+2|k−τ+1 + vk−τ+2)]

T}
= E{[Φτ−1(x̂k−τ+1|k−τ − xk−τ+1)− L(wk−τ+1 · · ·wk−1)][Φ

τ−2Kk−τ+2(Hx̃k−τ+2|k−τ+1 + vk−τ+2)]
T}

= −Φτ−1Pk−τ+1|k−τ(In −Kk−τ+1H)T
ΦTHTKT

k−τ+2(Φ
τ−2)

T −Φτ−2ΓQk−τ+1ΓTHTKT
k−τ+2(Φ

τ−2)
T

(21)

P(3)
k|k−τ

= E{(x̂k|k−τ − xk)[Φ
τ−3Kk−τ+3(Hx̃k−τ+3|k−τ+2 + vk−τ+3)]

T}
= E{[Φτ−1(x̂k−τ+1|k−τ − xk−τ+1)− L(wk−τ+1 · · ·wk−1)][Φ

τ−3Kk−τ+3(Hx̃k−τ+3|k−τ+2 + vk−τ+3)]
T}

= −Φτ−1Pk−τ+1|k−τ [Φ
2(In −Kk−τ+1H)−ΦKk−τ+2HΦ(In −Kk−τ+1H)]

THTKT
k−τ+3(Φ

τ−3)
T

−Φτ−2ΓQk−τ+1ΓT(In −Kk−τ+2H)T
ΦTHTKT

k−τ+3(Φ
τ−3)

T−Φτ−3ΓQk−τ+2ΓTHTKT
k−τ+3(Φ

τ−3)
T

= −Φτ−1Pk−τ+1|k−τ(A3)
THTKT

k−τ+3(Φ
τ−3)

T −Φτ−2ΓQk−τ+1ΓT(In −Kk−τ+2H)T
ΦTHTKT

k−τ+3(Φ
τ−3)

T

−Φτ−3ΓQk−τ+2ΓTHTKT
k−τ+3(Φ

τ−3)
T

(22)

From Equations (20)–(22), the solution rules can be summarized as Equation (15).
Similarly, E{(x̂k|k − xk)(x̂k|k−τ − xk)

T} is defined by:

E{(x̂k|k − xk)(x̂k|k−τ − xk)
T} = Pk|k−τ +

(
P(1)

k|k−τ

)T
+
(

P(2)
k|k−τ

)T
+ · · ·+

(
P(τ)

k|k−τ

)T
(23)

In summary, the error variance matrix in Equation (18) can be calculated as Equation (12).
(3) The proof of Pk|k−τ in Equation (14), from Equation (1):

xk = Φτ−1xk−τ+1 +
τ

∑
i=2

Φτ−iΓwk−τ+i−1, τ ≥ 2 (24)

since wk is white noise and independent of vk, the Equation (11) is yielded. Based
on Pk|k−τ = E{(xk − x̂k|k−τ)(xk − x̂k|k−τ)

T}, Equation (11) and Equation (24), the
Equation (14) is yielded. The remaining equations are easily obtained by the Kalman
filter and prediction. �

Considering that the test statistic γk obeys the standard Gaussian distribution, un-
der the selected level of significance α, the trigger threshold will be given by using the
hypothesis test that satisfies the Gaussian distribution [23,24].
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Corollary 1. Under the selected significance level α, set original hypothesis H0: x̂k|k−τ 6= x̂k|k, and
antithetic hypothesis H1: x̂k|k−τ = x̂k|k. γk,i is the ith element of γk, if the observed value satisfies∣∣γk,i

∣∣ ≤ Zα/2, i = 1, 2, . . . , n (25)

then reject H0 (non-trigger communication), otherwise accept H0 (trigger communication). Zα/2 is
the α/2 quantile of the standard Gaussian distribution.

Remark 1: Selecting the original hypothesis H0 : x̂k|k−τ 6= x̂k|k as the trigger event, the purpose is
to protect the trigger event H0; thus, priority is given to ensuring the estimation accuracy of the
receiving center. On the contrary, if the original hypothesis is the event H1: x̂k|k−τ = x̂k|k, this is to
protect the event H1, so as to give priority to saving the communication of smart nodes. Usually,
1− α is very small, which means that the probability of the following error events Ak,i (Ak,i is the
trigger event caused by the ith element of the state vector at time k, i = 1 · · · n) is low:

P{Ak,i} = P{
∣∣γk,i

∣∣ ≤ Zα/2
∣∣x̂k|k−τ 6= x̂k|k} = 1− α (26)

2.2. Kalman Filter Algorithm Based on Event-Triggered Mechanism

Since indiscriminate filter calculations and trigger judgments of smart nodes are
described in Section 2.1, only the algorithm of the receiving center is introduced in this
section. In the receiving center, the Kalman filter algorithm based on the event-triggered
mechanism (ET-KF) can be expressed as:

x̂k = skx̂k|k + (1− sk)x̂k|k−τk
, k = 1, 2, · · · (27)

or recursively calculated as:

x̂k = skx̂k|k + (1− sk)Φx̂k−1, k = 1, 2, · · · (28)

where x̂k is the final estimate of ET-KF in the receiving center at time k, k− τk is the last
trigger time before time k, sk is the trigger state of smart sensor nodes at time k; i.e., sk = 1
means that the transmission event is triggered and the receiving center receives the filter
x̂k|k of smart sensor nodes, and sk = 0 means that the transmission event is not triggered
and the receiving center will predict, that is

sk =

{
0, ∀

∣∣γk,i
∣∣ ≤ Zα/2, i = 1, · · · , n

1, otherwise
(29)

Therefore, the flow chart of ET-KF is shown in Figure 1.
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3. Performance Analysis of the ET-KF

From Equation (26), the probability P{Ak,i} of the trigger event is α, and the event
Ak,i is determined by |γk|i, which is the linear combination of measurements z0∼k. When
rank(zk) = r ≤ n, it means that there are n− r events that are completely related to other
events. Note that the event-triggered statistic γk obeys the standard Gaussian distribution
(for events subject to normal distribution, linear independence is equivalent to mutual
independence), that is, E{γk,iγk,j} = 0, i 6= j and E{γk,iγk,i} = 1, then the probability
P{Ak,i Ak,j} = 0, i 6= j. Selecting r linearly unrelated events Ak,1, Ak,2 . . . Ak,r, according to
the trigger mechanism in (27)–(29), the event-triggered probability can be calculated by:

p = P{Ak,1 ∪ Ak,2 ∪ . . . ∪ Ak,r} = 1− P{Ak,1 Ak,2 . . . Ak,r}
= 1− P{Ak,1}P{Ak,2} . . . P{Ak,r} = 1− (1− α)r (30)

Therefore, P{sk = 1} = p, P{sk = 0} = 1− p. The estimated error variance Pk|k of the
ET-KF in the receiving center is given by the following theorem.

Theorem 2. The estimation error variance Pk of the ET-KF in the receiving center can be
calculated as:

(1) If the system in Equations (1) and (2) has a steady state, that is, Pk has a steady state value
¯
P, then Pk can be calculated by the following Riccati equation:

∑ = p
¯
P + (1− p)Φ ∑ ΦT + (1− p)ΦΓQk−1ΓT + (1− p)ΓQk−1ΓTΦT + (1− p)ΓQk−1ΓT (31)

where
lim
k→∞

Pk = ∑ (32)

(2) If the system is a time-varying system, Pk can be approximately calculated as:

Pk ≈ pPk|k + (1− p)pPk|k−1 (33)

Proof. If the system has a steady state estimation and Pk|k has a stationary value
¯
P, then

based on Equation (28), Pk can be calculated as:

Pk = E{x̃kx̃T
k } = E{(xk − x̂k)(·)T}= E{

(
sk(xk − x̂k|k) + (1− sk)(xk −Φx̂k−1)

)
(·)T}

= E{
(

sk(xk − x̂k|k) + (1− sk)(Φxk−1 + Γwk−1 −Φx̂k−1)
)
(·)T}

= E{
(

skx̃k|k + (1− sk)(Φx̃k−1 + Γwk−1)
)
(·)T}

(34)

where ‘(·)’ means the same as the previous formula. Since sk obeys the Bernoulli distribution,

E{sk(1− sk)x̃k|k(Φx̃k−1)
T} = 0 (35)

Considering that wk is white noise, from Equation (35) and E{s2
k = 1} = p,

E{(1− sk)
2} = 1− p, there are:

Pk = E{s2
k x̃k|kx̃T

k|k}+ E{(1− sk)
2
Φx̃k−1x̃T

k−1ΦT}+ E{(1− sk)
2
ΦΓwk−1wT

k−1ΓT}
+E{(1− sk)

2
Γwk−1wT

k−1ΓTΦT}+ E{(1− sk)
2
Γwk−1wT

k−1ΓT}
= pPk|k + (1− p)ΦPk−1ΦT + (1− p)ΦΓQk−1ΓT + (1− p)ΓQk−1ΓTΦT + (1− p)ΓQk−1ΓT

(36)

the limit value exists in Riccati Equation (36):

lim
k→∞

Pk = ∑ (37)
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where ∑ is the solution of the following steady-state Riccati Equation:

∑ = p
¯
P + (1− p)Φ ∑ ΦT + (1− p)ΦΓQk−1ΓT + (1− p)ΓQk−1ΓTΦT + (1− p)ΓQk−1ΓT (38)

If the system is a time-varying system, from Equation (28):

x̂k = skx̂k|k + (1− sk)Φ[sk−1x̂k−1|k−1 + (1− sk−1)Φx̂k−2]

= skx̂k|k + (1− sk)sk−1x̂k|k−1 + (1− sk)(1− sk−1)Φ
2x̂k−2

(39)

the error at time k is:

x̃k = xk − x̂k = sk(xk − x̂k|k) + (1− sk)sk−1(xk − x̂k|k−1) + (1− sk)(1− sk−1)(xk −Φ2x̂k−2)

= skx̃k|k + (1− sk)sk−1x̃k|k−1 + (1− sk)(1− sk−1)(xk −Φ2x̂k−2)
(40)

since
E{sk(1− sk)sk−1x̃k|k(x̃k|k−1)

T} = 0

E{(1− sk)
2sk−1(1− sk−1)x̃k|k−1(xk −Φ2x̂k−2)

T} = 0

E{sk(1− sk)(1− sk−1)x̃k|kx̃k|k(xk −Φ2x̂k−2)
T} = 0

(41)

Pk can written as:

Pk = E{x̃kx̃T
k } = E{s2

k x̃k|kx̃T
k|k}+ E{(1− sk)

2s2
k−1x̃k|k−1x̃T

k|k−1}
+E{(1− sk)

2(1− sk−1)
2(xk −Φ2x̂k−2)(·)T}

= pPk|k + (1− p)pPk|k−1 + (1− p)2E{(xk −Φ2x̂k−2)(·)T}
(42)

since (1− p) is usually very small (p = 1− (1− α)r), the third term of Equation (42) is
omitted, and there are:

Pk ≈ pPk|k + (1− p)pPk|k−1 (43)

�

Remark 2. The estimation error variance Pk in the receiving center under the event-triggered
threshold Zα/2 is given in Theorem 2. That is, under the condition that the system has a steady-state
filter, Pk can be computed by Equation (31) and Equation (32);on the contrary, the approximate
calculation is (33). In addition, for a system with steady-state estimation, we can set the threshold
reasonably according to the desired theoretical accuracy Pk. It can be seen from Equations (6) to (13)
and (31) to (33) that the final estimation accuracy Pk is not only related to the trigger rate, but also
directly proportional to the system noise statistics Qk and measurement noise statistics Rk.

4. Simulation Examples

Scenario 1.(Event-triggered steady-state Kalman filter.) Consider the following planar
tracking system:

xk =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

xk +


0.5T2 0

T 0
0 0.5T2

0 T

wk, k = 1, · · · , l (44)

where xk =
[
xk

.
xkyk

.
yk
]T is the state of target movement, xk, yk,

.
xk and

.
yk are the positions

and velocities of the target in x-axis and y-axis, respectively. The measurement equation of
the system is:

zk =

[
1 0 0 0
0 0 1 0

]
xk + vk, k = 1, · · · , l (45)
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The estimation performance is mean square error (MSE) [25,26]:

MSEk =
1
k

k

∑
t=0

1
N

N

∑
j=1

(xj
t − x̂j

t)
2
, k = 1, · · · , l (46)

where xj
t and x̂j

t are the true states and their estimations of the jth Monte Carlo experiment
at time t.

In the simulation, the working period is T = 0.5 s and the length of work is
l = 200 steps, the variance of processing noise is Q = diag(0.2 m2/s4, 0.2 m2/s4), and
the variance of measurement noise is R = diag(0.4 m2/s4, 0.4 m2/s4), the initial state is
x0 = [10 m, 1 m/s, 10 m, 1 m/s]T. A total of 200 Monte Carlo experiments are carried out.
Because the measurement Equation (45) is a two-dimensional system and only the positions
on the x-axis and y-axis are measured, according to Equation (26), the theoretical trigger
probability is p = 1− (1− α)2. Here, α = 0.98, 0.8, 0.6, 0.4 are chosen for comparison; that
is, the thresholds are 0.05, 0.25, 0.52, and 0.84; and the theoretical trigger rates are 0.9996,
0.96, 0.84, and 0.64. For the threshold Zα/2, the theoretical trigger probability and the actual
trigger frequency are shown in Table 1. The theoretical trigger probability is consistent with
the result of the actual trigger frequency, which verifies the correctness of Theorem 1 and
Corollary 1. It shows that, when the proposed trigger mechanism is used, the actual trigger
frequency can be predicted, and communication resources can be adjusted in advance to
reduce the possibility of network congestion.

Table 1. Comparison of trigger frequency in the steady-state system for different α.

α 0.98 0.8 0.6 0.4

Threshold Zα/2 0.05 0.25 0.52 0.84
Theoretical trigger probability 0.9996 0.96 0.84 0.64

Actual trigger frequency 99.5% 96% 83.5% 63%

The error covariance Pk calculated by Equation (31) and MSEk obtained by Equation
(46) are shown in Table 2. It can be seen that the theoretical accuracy (diagonal elements
of error covariance matrix Pk) is close to MSEk obtained in actual work, which verifies the
correctness of theorem 2 under the steady-state situation. When adopting the proposed
trigger mechanism, the proposed ET-KF accuracy can be pre-calculated, and then the most
suitable trigger frequency can be obtained by a reasonable trigger threshold.

Table 2. The error covariance of the steady-state ET-KF algorithm and MSEi.

Pk,1 MSE200,1 Pk,2 MSE200,2 Pk,3 MSE200,3 Pk,4 MSE200,4

α = 0.98 0.1795 0.1790 0.1450 0.1544 0.1795 0.1816 0.1450 0.1345
α = 0.80 0.1848 0.1792 0.1450 0.1548 0.1848 0.1807 0.1450 0.1342
α = 0.60 0.2084 0.1835 0.1450 0.1594 0.2084 0.1849 0.1450 0.1365
α = 0.40 0.2614 0.1988 0.1450 0.1662 0.2614 0.1850 0.1450 0.1362

Pk,i(i = 1, · · · , n) and MSE200,i is the i, i diagonal element in the error covariance matrix Pk
of the ET-KF, and MSE200,i is the i element of MSE200 for the ET-KF.
Scenario 2. (Event-triggered time-varying Kalman filter.) Consider the planar tracking sys-
tem in Equation (44) and Equation (45), where x0 = [10 m 1 m/s 10 m 1 m/s] is the initial
state, Qk = diag(0.2 + 0.2 sin(2πk/100)m2/s4, 0.2 + 0.2 sin(2πk/100)m2/s4) is process-
ing noise variance, Rk = diag(0.3 + 0.5 sin(2πk/100)m2/s4 , 0.3 + 0.5 sin(2πk/100)m2/s4)
is measurement noise variance. The performance of the system is measured by the accumu-
lated mean square error (AMSE) [27–29]:
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AMSEk =
k

∑
t=1

1
N

N

∑
j=1

(xj
t − x̂j

t)
T
(xj

t − x̂j
t) (47)

where xj
t and x̂j

t are the true states and their estimations of the jth Monte Carlo experiment at
time t. Corresponding to AMSE, the theoretical estimation accuracy is measured by ΣtrPk:

ΣtrPk =
k

∑
t=1

1
N

N

∑
j=1

tr(Pj
t) (48)

where tr(Pj
t) is the trace of the estimated error covariance matrix at time t of the jth Monte

Carlo experiment.
In Table 3, it is shown that for time-varying systems, the theoretical trigger frequency

is close to the actual trigger frequency, which verifies the correctness of Theorem 1 and
Corollary 1.

Table 3. Comparison of trigger frequency in the time-varying system under different α values.

α 0.98 0.8 0.6 0.4

Threshold Zα/2 0.05 0.25 0.52 0.84
Theoretical trigger probability 0.9996 0.96 0.84 0.64

Actual trigger frequency 99.5% 95.5% 82% 65%

In Figure 2, with a different α, the comparison curves of AMSE of ET-KF are shown.
It can be seen that the smaller α is, the greater the threshold Zα/2 is, the lower the trigger
rate is, and the worse the accuracy AMSE is. Comparison curves between the theoretical
approximate estimation accuracy ΣtrPk (the sum of trace of Pk) calculated by (33) and the
AMSE obtained by the experiment with α = 0.60 are shown in Figure 3. It can be seen that
the theoretical estimation accuracy is close to the AMSE obtained by the experiment, which
verifies the correctness of Theorem 2 under the time-varying situation. The AMSEs in
Figures 2 and 3 rise in a straight line, which means that the corresponding MSEs are stable.

In Table 4 and Figure 4, ET-KF is compared with the event trigger of innovation
standardization (IS-KF) [14], a dynamic event trigger constructed by the linear change
in the rate of change (LC-KF) [22]. From Table 4, under the same trigger rate (80%), the
AMSE200 (AMSE at step 200) of the proposed trigger mechanism is lower than the other
two trigger mechanisms. Figure 4 shows the comparison curve of AMSE at different
steps, as the number of steps increases, the AMSE value gap based on different trigger
mechanisms becomes larger. Among them, the AMSE value of the ETKF mechanism is
the smallest and the estimation accuracy is the highest, which verifies the correctness of
the conclusion.
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5. Conclusions

In estimation, for linear systems, an event-triggered Kalman filter (ET-KF) is proposed
in this paper. The main work is as follows:

1. The event-triggered statistic is constructed, which proves that the statistic obeys
the standard Gaussian distribution, according to the event-triggered statistic and
hypothesis test of the Gaussian distribution, the significance of the event-triggered
threshold is given, and then an event-triggered estimation mechanism is designed.

2. Based on the event-triggered threshold and mechanism proposed in this paper, the
theoretical trigger frequency under different thresholds and the estimation accuracy
of event-triggered systems are analyzed. The proposed ET-KF can accurately set the
event trigger frequency in advance. For linear systems with steady-state estimation,
the estimation accuracy can be obtained by the Riccati equation accurately, and the
trigger threshold can be set according to the accuracy. For linear time-varying systems
without steady-state estimation, the approximate estimation accuracy can be obtained.

3. The proposed trigger mechanism has higher estimation accuracy at the same trigger
rate, and the trigger setting is reasonable.
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