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Abstract: The application of transfer learning in fault diagnosis has been developed in recent years.
It can use existing data to solve the problem of fault recognition under different working conditions.
Due to the complexity of the equipment and the openness of the working environment in industrial
production, the status of the equipment is changeable, and the collected signals can have new fault
classes. Therefore, the open set recognition ability of the transfer learning method is an urgent
research direction. The existing transfer learning model can have a severe negative transfer problem
when solving the open set problem, resulting in the aliasing of samples in the feature space and the
inability to separate the unknown classes. To solve this problem, we propose a Weighted Domain
Adaptation with Double Classifiers (WDADC) method. Specifically, WDADC designs the weighting
module based on Jensen–Shannon divergence, which can evaluate the similarity between each
sample in the target domain and each class in the source domain. Based on this similarity, a weighted
loss is constructed to promote the positive transfer between shared classes in the two domains to
realize the recognition of shared classes and the separation of unknown classes. In addition, the
structure of double classifiers in WDADC can mitigate the overfitting of the model by maximizing
the discrepancy, which helps extract the domain-invariant and class-separable features of the samples
when the discrepancy between the two domains is large. The model’s performance is verified in
several fault datasets of rotating machinery. The results show that the method is effective in open set
fault diagnosis and superior to the common domain adaptation methods.

Keywords: fault diagnosis; open set domain adaptation; transfer learning; rotating machinery;
deep learning

1. Introduction

In the modern industry, it is critical to keep the equipment running safely and stably [1].
As the integral parts of equipment, rotating components such as bearings and gears are
prone to fault due to the harsh working environment, which will affect the stable operation
of the equipment. Therefore, efficient fault diagnosis methods play an important role in
early fault warning and maintenance [2], which can effectively reduce property losses and
casualties caused by mechanical faults [3].

Traditional signal processing knowledge combined with machine learning methods,
such as the BP neural network and Empirical Mode Decomposition (EMD), can effectively
identify fault types and predict the operation status of components [4–9]. However, the
feature extraction process of these methods seriously relies on professional knowledge and
can easily consume many resources in the era of big data [10]. The emergence of Deep
Learning (DL) can solve the problem of relying on the workforce [11]. The DL model
represented by the Convolution Neural Network (CNN) and Long Short-Term Memory
(LSTM) neural network is used in fault diagnosis, with promising results because of the
powerful feature extraction capabilities [12–18]. Among most research, applying DL to
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a fault diagnosis requires two preconditions: (1) Test samples and samples participating
in model training have the same label space. (2) There are enough labels in the training
samples. However, due to the changes in the working environment of the equipment,
the distribution of samples collected each time is different, and there are few samples
with labels under the same working conditions. Therefore, it is important to realize fault
diagnosis under different operating environments using labeled samples.

As a branch of the Transfer Learning (TL) method emerging in recent years, domain
adaptation provides a new idea for cross-domain fault diagnosis using the concept of
adversarial learning. It can use the existing and available label information to achieve a
cross-domain fault diagnosis by reducing the distribution differences of the features [19,20].
In the current research on cross-domain fault diagnosis, it is mostly assumed that the two
domains contain the same fault category. Under this assumption, the training model can
extract the domain invariant features of the samples to achieve the purpose of cross-domain
fault diagnosis.

However, the equipment status collected in a different environment is unknown,
usually including classes outside the source domain, as shown in Figure 1. The existing
domain adaptation model used in this case can lead to errors in sample alignment in
the feature space and even affect the alignment between known classes under different
conditions. In recent years, scholars have made initial achievements in the research of open
set fault diagnosis, most of which are based on different theories to establish models that
reject unknown samples [21]. However, these methods are prone to the problem of sample
aliasing in the feature space when the discrepancy between the two domains is significant,
resulting in low diagnostic accuracy.
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Figure 1. Difference between closed set and open set settings. (a) Closed set domain adaptation
setting, (b) Open set domain adaptation setting.

To solve the above problems and improve the accuracy of open set fault diagnosis, a
method based on WDADC is proposed. The basic framework of the method is shown in
Figure 2. The role of the feature extractor module is to extract the high-dimensional features
of the processed data, the weighting module assigns weights to samples by calculating
their similarity, and the classification module plays the role of correctly classifying the
samples. Through the interaction between modules, we can accurately identify samples
of the shared classes while separating samples of the non-shared class, thus achieving the
goal of open set fault diagnosis.
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Figure 2. The framework of our method.

The main contributions of this paper are as follows:
(1) For the problem of open set fault diagnosis, we design a weighting module based on

Jensen–Shannon divergence in the adversarial model to evaluate the similarity of samples
between the two domains. The target domain samples are assigned weights according
to the similarity to facilitate alignment between shared class samples and separate the
unknown samples.

(2) Considering the negative transfer problem in open set fault diagnosis, a weighted
loss function is constructed to update the model in the direction of extracting domain
invariant and class separable features of samples. When the distribution of samples in the
two domains is quite different, the discrepancy between the double classifiers is used to
improve the generalization of the model, and cross-domain open set fault diagnosis can
be realized.

(3) The experiment on several mechanical fault datasets shows that the proposed
method performs better than other domain adaptation methods.

The structural arrangement of this paper is shown as follows. Section 2 outlines
the basic theory of the TL methods. Section 3 presents the proposed method in detail.
Section 4 presents the designed validation experiments and analyzes the experimental
results. Section 5 summarizes the entire paper and plans the future work.

2. Related Work

This section describes the application of TL in fault diagnosis. According to the
different problems to be solved, we divided the application of TL in fault diagnosis into
the closed set and open set. Additionally, according to the different modeling principles,
we further distinguished between the methods. We reviewed each method mentioned, as
shown in Table 1.
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Table 1. The application of TL in fault diagnosis.

Problems Types Papers

Transfer Learning for fault diagnosis
Closed set

Instance-based [22,23]
Mapping-based [24,25]

Model-based [26,27]
Adversary-based [28–31]

Open set Discriminate-based [32–35]
Generation-based [36,37]

2.1. TL Methods Applied to Closed Set Fault Diagnosis

TL broadens the conditions for neural networks to be used in fault diagnosis. Its
goal is to solve the problem that the characteristic information in signals under different
working conditions is different and challenging to be recognized. According to the different
technologies used, the development of TL in fault diagnosis can be divided into the
following types: instance-based, mapping-based, model-based, and adversary-based.

The instance-based TL method assumes many overlaps in the features of the signal
under different states. By weighting the source domain samples to construct a feature
distribution similar to the target domain, the model has a good effect when testing the
target domain samples after training [22,23].

The mapping-based TL method believes there will be some discrepancy between the
two domains. Still, the discrepancy can be eliminated through different mapping methods
in the feature space so that similar samples can be gathered together. Different samples can
be separated from each other to achieve the goal of cross-domain fault diagnosis [24,25].

The model-based TL considers that the shallow part of the network model is less
relevant to the final classification task, and it usually extracts the macro features of the
fault. The labeled samples can be used to train the shallow part of the network model. The
output layer parameters are adjusted by fine-tuning to accurately classify the target domain
samples [26,27].

The idea of adversary-based TL comes from adversarial learning. Through the train-
ing objectives of each module in the model, the features of the samples extracted in the
model can be separated by the classifier without being distinguished by the domain dis-
criminator [28]. As the representative of the adversarial model, the domain adaptation
model expects that the domain invariant and class separable features can be extracted after
training. This method has been widely studied in cross-domain fault diagnosis [29–31].

TL has made good research progress in cross-domain fault diagnosis. Still, the above
methods often default that the data in two domains have the same class, which limits the
practical development of TL in fault diagnosis.

2.2. TL Methods Applied to Open Set Fault Diagnosis

In industrial practice, acquiring fault labels will consume a lot of financial and human
resources. Due to changes in operation and environment, the classes of signals collected in
the equipment are unknown. The use of common TL methods will cause serious aliasing
between non-shared class and shared class samples during feature alignment. Therefore,
cross-domain open set fault diagnosis has become an urgent development direction. The
existing open set fault diagnosis methods are mainly considered from the perspective of
modeling, which is primarily divided into discriminative and generative models [38].

The discriminative models in open set fault diagnosis include the traditional machine
learning-based and deep neural network-based models. The machine learning-based model
establishes a mechanism to reject non-shared samples by setting an empirical threshold of
the machine learning model or analyzing the distribution of abnormal data in combination
with extreme value theory (EVT) to achieve open set fault diagnosis [32,33]. However, this
method has the problem that, once samples are recognized as unknown classes, they cannot
be correctly classified again through training iterations. The deep neural network-based
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model mainly uses the powerful feature extraction capability of DL and solves the inherent
closed set problem caused by the normalization of the Softmax layer in the network [34,35]
to achieve the goal of open set fault diagnosis by identifying samples of non-shared classes.
However, the negative transfer problem caused by the misjudgment of these methods is
the urgent research direction.

The application of generative models in open set fault diagnosis is achieved through
adversarial learning. The generation model generates samples with similar characteristics
to the actual samples by learning the sample characteristics to facilitate the model’s training
and increase the robustness of the model, which can also solve the data imbalance and
small sample problems. Non-instance-based generative models combined with EVT or the
empirical threshold setting can achieve open set fault diagnosis through the adversarial
training of modules [36,37]. This method relies heavily on the validity of the generated
samples, especially the generation of unknown samples needed to strengthen the stability
and reliability further.

3. Proposed Method

Unlike models such as the Domain Adaptation Neural Network (DANN) applied to a
closed set domain adaptation problem, the Open Set Domain Adaptation by Backpropaga-
tion (OSBP) [39] aims to correctly identify the shared class samples in the target domain
and classify the non-shared class samples as unknown classes.

3.1. Problem Description

In open set fault diagnosis, the datasets with label information are defined as the
source domain, while the target domain are the datasets without a label.

{
xs

i , ys
i
}

and{
xt

i , yt
i
}

are the i-th sample and its label in the source and target domains. In the open set
problem, the labels of the source domain are a subset of the labels of the target domain,
the intersection of the two is called the shared class, and the labels are set as M classes,
according to the number of sample classes. In the target domain, the complementary set of
the source domain is called the non-shared class, and the label is set to M + 1.

3.2. OSBP

In OSBP, the model mainly includes a feature extractor and a classifier. The feature
extractor maps the samples to the same feature space. The classifier receives the features
output from the feature extractor and outputs the (M + 1)-dimensional probability through
the Softmax function. The OSBP forms an adversarial relationship between the feature
extractor and the classifier by the Gradient Reversal Layer (GRL) to train the model.
Through continuous training, the feature extractor is optimized to maximize the loss of the
classification, which helps to align the samples between the two domains. The probability
pM+1

xt that the sample is in the non-shared class is compared with the set threshold t by
the output of the classifier. When p < t, the samples are classified as shared classes, and
otherwise, they are classified as non-shared classes. This method aims to construct a
decision boundary between shared class samples and non-shared class samples when the
label of the target domain sample is unknown. The training objectives of the method are
shown as follows:

min
G

Ls − Lt

min
C

Ls + Lt
(1)

where Ls is the classification loss, and Lt is the binary cross-entropy loss of the sample
classification result concerning the threshold t, with t standing at 0.5. From the training
objective, it can be seen that the feature extractor expects to maximize the loss of the
classification so that the probability of a sample being classified as a non-shared class is far
from t. On the other hand, the classifier expects the probability of a sample being classified
as a non-shared class to converge to t. The model parameters are continuously updated by
the backpropagation of loss.
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3.3. Proposed Method

In OSBP, due to non-shared class samples, the corresponding samples in the two
domains are prone to aliasing during feature alignment, resulting in a negative transfer.
Therefore, in WDADC, a weighting module is designed to improve the OSBP. By measuring
the distance of the sample in the feature space, the samples are assigned different weights,
thus promoting the positive transfer between shared classes in the two domains. In
addition, using the discrepancy between different classifiers, the generalization of the
proposed method is improved to achieve an excellent cross-domain open set diagnostic
performance of the model. The training process and model structure of this method are
shown in Figure 3.
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(1) Feature extraction module: the module is denoted by G and consists of four layers
of convolution and two layers of full connection, where each convolutional is connected
with a batch normalization (BN) layer afterward. This module maps the samples to the
same feature space and extracts the high-dimensional features. The features of the samples
are output when going through the feature extraction module, as shown in Formula (2):

Ft
i = G

(
xt

i
)

Fs
i = G

(
xs

i
) (2)

where Fs
i and Ft

i are the high-dimensional features of the i-th source domain and target
domain samples.

For the labeled samples, the cross-entropy loss training model is calculated by the
label information to correctly diagnose the fault, and the loss is shown in Formula (3):

LC =
1
ns

ns

∑
i=1

LCE(Fs
i , ys

i ) (3)

where ns is the number of labeled samples, and LCE is the cross-entropy loss.
(2) Weighting module: The module is denoted by W, and the novelty of this paper

is that we design a weight calculation method based on Jensen–Shannon (JS) divergence,
which assigns different weights to the samples by calculating the distances between the
samples of the two domains in the feature space to promote a positive transfer between
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the shared classes. First, the class centers of the labeled samples in the feature space are
calculated as follows:

Ca =
1
na

na

∑
i=1

Fs
a,i (4)

where Ca is the class center of the a-th class, a ∈ {1, 2, . . . , M}, na is the number of a-th class
samples, and Fs

a,i is the feature of the a-th class samples in the source domain.
Due to the existence of non-shared classes and the differences in working conditions,

the feature distribution between the two domains is not precisely the same. The JS di-
vergence is highly sensitive to the differences between two distributions and has a good
diagnostic performance in different degrees of fault [40], and as a variation of Kullback–
Leibler (KL) divergence, the JS divergence makes improvements over the symmetry and
value domain range, making it more accurate in similarity discriminations. Therefore,
to calculate the similarity between the sample and the class center in the two domains,
JS divergence is used to calculate the method of their differences. In this paper, the dis-
tance between the sample features and the class centers in the two domains is calculated
as follows:

DJS,a(Ca
∣∣Ft

i ) =
1
2

DKL(Ca

∣∣∣∣∣Ca + Ft
i

2
) +

1
2

DKL(Ft
i

∣∣∣∣∣Ca + Ft
i

2
) (5)

where DJS,a(Ca
∣∣Ft

i ) is the JS divergence between the i-th sample feature in the target domain
and the a-th class sample center source domain. DKL represents the KL divergence, which
is calculated as shown in Formula (6):

DKL(M|N ) =
v

∑
i=1

Mi ln(
Mi
Ni

) (6)

where v denotes the dimension of the output of the G module, and Mi and Ni represent the
i-th elements of the vector.

The distance between the sample and each class center in the feature space is calculated,
and the sum of the distances is used as the similarity judging index between the i-th samples
in the two domains, as shown in Formula (7):

Di =
M

∑
a=1

DJS,a(Ca
∣∣Ft

i ) (7)

When Di is smaller, we consider that this target domain sample is more similar to the
source domain. Therefore, Di is normalized to [0, 1], and the difference between 1 and it is
taken as the weights of this target domain sample in the model, as shown in Formula (8):

wi = 1− Di − Dmax

Dmax − Dmin
(8)

where wi is the weight generated by the weighting module for the i-th sample in the
target domain.

(4) Classification module: The classification module is denoted by C, including two
independent classifiers C1 and C2, both consisting of a fully connected layer and a BN layer.
This module receives high-dimensional features from the feature extraction module and
classifies them into M + 1 classes. The loss for each target domain sample is calculated by
binary cross-entropy, as shown in Formula (9):

Li
t = −t ln(pM+1

xt
i

)− (1− t) ln(1− pM+1
xt

i
) (9)

where Li
t is the binary cross-entropy loss of the i-th target domain sample, and pM+1

xt
i

is the

probability that the i-th sample is recognized as a non-shared class.
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The weights obtained from the calculations are added to the optimization process to
obtain the weighted binary cross-entropy loss:

Ld = (
nt

∑
i=1

Li
twi)/(nt

nt

∑
i=1

wi) (10)

where nt is the number of samples in the target domain, and Ld is the total loss.
There is only one classifier in most models, which is prone to overfitting, resulting in

low efficiency in the cross-domain fault diagnosis. In this paper, we use the discrepancy
between double classifiers, generated by the complexity of the model and the initialization
of the parameters, to promote the alignment between cross-domain samples by maximiz-
ing this discrepancy. It can improve the generalization and stability of the model. The
calculation process is as shown in Formula (11):

Ls = −
ns

∑
i=1

(pc1,i ln(pc2,i) + (1− pc1,i) ln(1− pc2,i)) (11)

The training objectives of this method are shown as follows. The adversarial rela-
tionship between classification and feature extraction modules is formed through GRL to
achieve a continuous and stable diagnosis.

min
G

Lc − Ld + Ls

min
C

Lc + Ld − Ls
(12)

4. Experimental Methods

In this section, we designed experiments on multiple datasets of a mechanical fault to
verify the proposed method.

4.1. Datasets Description

(1) Laboratory Gearbox Dataset
As shown in Figure 4a, the laboratory gearbox test rig consists of acceleration sensors,

a braking system, and a gearbox. The state of the gear is divided into the chipped tooth,
root wear, and healthy conditions, and the state of the bearing is divided into the inner
race fault and outer race fault. The sampling frequency is set to 100 kHz, and the different
working conditions are set by adjusting the rotational speed. Six types of status data are
collected under 1200 rpm, 1500 rpm, and 1800 rpm bearing an inner race and gear root
wear compound fault (IR), bearing an inner race and gear-chipped tooth compound fault
(IT), bearing an inner race fault (I), bearing an outer race and gear root wear compound
fault (OR), bearing an outer race and gear chipped tooth compound fault (OT), and bearing
an outer race fault (O).

(2) The CWRU Dataset
As shown in Figure 4b, the Case Western Reserve University (CWRU) test rig consists

of sensors, a motor, and an electronic controller. The bearing damage is a single-point
damage by EDM. The bearing data of its drive end is used for testing. Set the sampling
frequency to 12 kHz and different working conditions by adjusting the load. Four types
of status data are collected under 0 hp, 1 hp, and 2 hp loads: inner race fault, rolling fault,
outer race fault, and healthy conditions.

(3) The IMS dataset
As shown in Figure 4c, the Intelligent Maintenance Systems (IMS) test rig consists of

accelerometers, a motor, bearings, and thermocouples. By applying a longitudinal load to
the bearing, the whole process of bearing from healthy conditions to a fault is recorded. Set
the sampling frequency to 20 kHz, and the speed is 2000 rpm. Four status data are collected,
including the inner race fault, rolling fault, outer race fault, and healthy conditions.

(4) The centrifugal pump dataset
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As shown in Figure 4d, the overhung impeller centrifugal pump dataset is collected in
the industrial scene. The sampling frequency is set to 32.8 kHz, and the data of bearing
healthy conditions, inner race fault, outer race fault, and rolling fault are collected under
745 rpm and 1485 rpm. The signal contains more interference components than the data
collected in the laboratory and the public dataset.
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4.2. Experiment Settings for Transfer Tasks
4.2.1. The Transfer Tasks between the Same Equipment

For the laboratory gearbox dataset, to avoid the deviation of the experimental results
caused by the fault types, the shared and non-shared classes are switched when different
transfer tasks are set according to the rotational speed, as shown in Table 2. The labels are
set to 0, 1, and 2, according to the order in the shared class in the table. The remaining data
are the non-shared part, and the label is set to 3.

Table 2. The transfer task settings in the lab gearbox dataset.

Task Source Target Shared Class

a1 1800 1500 IR, IT, I
a2 1500 1800 IR, IT, I
a3 1800 1200 IR, OT, I
a4 1200 1800 IR, OT, I
a5 1500 1200 OT, IT, I
a6 1200 1500 OT, IT, I

For the bearing dataset of CWRU, the inner race fault, rolling fault, and healthy
conditions data are set as the shared class, and the labels are set as 0, 1, and 2 in turn. The
outer race fault data is the non-shared part, and the label is set as 3. The tasks according to
the load settings are shown in Table 3.
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Table 3. The transfer task settings in the CWRU dataset.

Task Source Target Task Source Target

b1 0 1 b4 2 1
b2 1 0 b5 0 2
b3 1 2 b6 2 0

In the laboratory gearbox dataset experiments, the source domain contains 4500 sam-
ples, 1500 of each class. In the target domain, the number of samples per class in the shared
part is 1000 and 500 samples per class in the non-shared part, totaling 4500, and the samples
in the shared class in the target domain account for 66.67% of the total samples. In the
experiments on the bearing dataset of CWRU, the source domain contains 3000 samples,
750 of each class, and 750 samples per class in the target domain, totaling 3000, and the
samples in the shared class account for 75% of the total samples.

4.2.2. The Transfer Tasks between the Different Equipment

For the conditions of different equipment, the CWRU and the IMS datasets are used to
verify the diagnostic effect of the proposed model. It can be found from the introduction
that the test rigs for collecting the two datasets are different in terms of load, speed, etc.
Select the IMS dataset and the CWRU dataset with a 3 hp load to set the transfer tasks. The
shared classes are the rolling fault, outer race fault, and health conditions. Set the labels to
0, 1, and 2 in order. Set the inner race fault to only exist in the target domain, and set the
label to 3. The two domains, respectively, contain 3000 samples, including 1000 samples of
each class in the source domain and 750 samples of each class in the target domain.

4.3. Data Preprocessing

At present, most of the samples for the fault diagnosis of equipment use time domain
vibration signals, or arrange time domain one-dimensional vibration signals into matrices
and convert them into two-dimensional images. However, due to the complex work
environment of the equipment, the collected vibration signal is usually greatly interfered
with by external vibration sources, which is easy to show as nonstationary, and a single
time domain cannot fully express the relationship between the collected signal and the
fault. Therefore, in this paper, the time–frequency image jointly represented by the time
domain and frequency domain is selected as the input of the model, which can contain
more fault information.

The common time–frequency analysis includes short-time Fourier transform (STFT)
and a wavelet analysis. One of the distinctions between the two methods is the basis
function. The basis function of STFT is a sine signal. The original signal is constructed by
the superposition of sine signals of different frequencies. In the wavelet analysis, the basis
function has a lot of selectivity and can perform scale transformation, which can effectively
avoid the problem of time domain resolution in STFT.

In all the transfer tasks in this paper, we transform the time domain vibration signal
into time–frequency images through a wavelet analysis. First, the collected vibration signals
are normalized to [0, 1] to reduce the impact of the abnormal values. Then, the overlapping
sampling is carried out when the overlapping amount is 600, and the length of each
sample is 1024. After the time–frequency image of the one-dimensional vibration signal
is generated by the wavelet analysis, the time–frequency image is grayed to reduce the
redundant information in the sample and speed up the calculation efficiency of the model.

For the model parameters, according to the experience of intelligent diagnosis, the
number of epochs is set to 400, the batch size is 16, the model is optimized using Stochastic
Gradient Descent (SGD), the momentum is 0.9, the learning rate is 0.001, and the sample
input size is 3 ∗ 32.
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4.4. Competitors

To prove the performance of the proposed model, some domain adaptation methods
are used for experimental comparison.

(1) Deep correlation alignment (CORAL): This method reduces the difference in feature
distribution by aligning the statistical features of the two domains in the feature space.

(2) DANN: As a typical domain adaptation neural network, this method correctly
recognizes test samples through continuous adversaries between the feature extractor and
domain classifier in training.

(3) OSBP: As the base model before improvement, this method has the function of
separating the non-shared samples while the shared samples are recognized in the feature
sample space.

(4) OpenMax: As a typical method to solve the open set problem, it uses the EVT
to fit the Weibull distribution with known samples to build a model that can reject un-
known samples.

(5) A new adversarial network with multiple auxiliary classifiers (ANMAC): This
method uses multiple auxiliary classifiers to evaluate the weight of each sample and sets a
soft threshold to establish a model for open set recognition [21].

4.5. Experimental Results and Analysis of the Same Equipment
4.5.1. Experimental Results

The diagnostic results of the laboratory gearbox dataset diagnostic task are shown
in Table 4 and Figure 5. The average accuracy of DANN, CORAL, OpenMax, ANMAC,
OSBP, and the proposed method is 65.81%, 64.34%, 82.49%, 92.34%, 85.62%, and 96.01%,
respectively. The proposed method is superior to the comparison methods in all diagnostic
tasks. Specifically, the average accuracy of the traditional domain adaptation models
DANN and CORAL is about 65%, which is close to the proportion of shared class samples
in the target domain. It can be predicted that the two methods cannot separate unknown
class samples. For OpenMax, using EVT can separate some unknown class samples, but the
domain adaptation problem cannot be solved well, resulting in a low accuracy. ANMAC
achieved more than 90% accuracy in all diagnostic tasks, reducing the side effects of the
fixed threshold in OSBP, and dramatically improved the accuracy compared with OSBP.
However, the volatility of the soft threshold can reduce the model’s performance, making
the accuracy unable to be further enhanced. The proposed method assigns weights to
the samples, promoting a positive transfer between shared class samples and keeping
non-shared class samples away by calculating the similarity, solving the problem of cross-
domain open set fault diagnosis.

Table 4. Diagnostic results in the lab gearbox dataset (accuracy (%) ± standard deviation).

Task DANN CORAL OpenMax ANMAC OSBP Proposed

a1 66.31 ± 0.17 64.93 ± 0.33 85.67 ± 0.79 92.87 ± 0.35 85.62 ± 0.75 97.02 ± 0.34
a2 64.93 ± 0.51 61.60 ± 0.79 83.27 ± 0.83 90.13 ± 0.34 86.67 ± 0.31 92.33 ± 0.53
a3 66.18 ± 0.33 65.76 ± 0.42 80.80 ± 0.34 91.73 ± 0.26 86.76 ± 0.58 96.49 ± 0.21
a4 65.31 ± 0.38 63.44 ± 0.67 81.87 ± 0.51 94.07 ± 0.87 88.07 ± 0.69 97.16 ± 0.07
a5 66.35 ± 0.25 65.36 ± 0.43 83.27 ± 0.87 93.31 ± 0.09 82.71 ± 0.52 96.20 ± 0.13
a6 65.76 ± 0.23 64.96 ± 0.57 80.07 ± 0.21 91.93 ± 0.87 83.91 ± 0.39 96.87 ± 0.30

AVG 65.81 64.34 82.49 92.34 85.62 96.01

The classification results of the diagnostic tasks in the CWRU dataset are shown in
Table 5 and Figure 6. The average accuracy of DANN, CORAL, OpenMax, ANMAC,
OSBP, and the proposed method is 75.00%, 74.51%, 91.35%, 97.58%, 89.94%, and 98.53%,
respectively. Similar to the diagnosis results in the laboratory gearbox dataset, the accuracy
of DANN and CORAL is close to the proportion of shared samples in the target domain,
and they cannot play a role in the open set fault diagnosis. Due to the apparent fault
features of the signals and the slight differences under different working conditions in this
dataset, the accuracy of OpenMax was dramatically improved, reaching more than 90%.
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Similarly, the reduction of the fluctuation of the soft threshold also improved the accuracy
of ANMAC. The proposed method is superior to the comparison methods in all diagnostic
tasks, and the low standard deviation proves that it has good diagnostic stability.
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4.5.2. Feature Visualization and Confusion Matrix

Take the diagnosis task a1 in the laboratory gearbox dataset as an example, and
randomly select some samples for feature visualization through the t-SNE algorithm, as
shown in Figure 7. The confusion matrix of the diagnosis results is shown in Figure 8.
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It can be found that the traditional domain adaptation methods DANN and Deep
CORAL can well align each shared class in the feature extractor’s mapping space, and
the recognition accuracy is close to 100%. However, the non-shared part in the target
domain is confused with other classes, and the recognition accuracy is 0, as the models
cannot recognize non-shared class samples. In OpenMax, the shared class samples can be
well aligned, the diagnostic accuracy reaches more than 90%, and the samples can be well
aligned in the feature space. However, the non-shared class samples have severe aliasing,
reducing the overall accuracy. In OSBP, there is a tendency for non-shared samples to be
separated. However, due to the settings of the fixed threshold, the model has a negative
transfer problem, resulting in the wrong domain alignment of the shared class samples.
ANMAC alleviates the problems in OSBP. The recognition accuracy of the shared samples is
close to 90%, but there is still room for improvement. In the proposed method, the positive
transfer between the shared classes is promoted by the weighting module. The results show
that the shared classes can be aligned in the feature space, and the recognition accuracy is
over 96%. Additionally, the non-shared samples can be separated well, the confusion with
the shared class samples is significantly reduced, and the recognition accuracy is close to
100%, proving the proposed method’s advantages in cross-domain open set fault diagnosis.

4.6. Experimental Results and Analysis of the Different Equipment

The diagnostic accuracy of this method and the comparison method in different
equipment is shown in Table 6. The average accuracy rates of DANN, CORAL, OpenMax,
ANMAC, OSBP, and the proposed method in the two diagnostic tasks were 43%, 37.6%,
43.4%, 67%, 60.5% and 80.2%, respectively. Specifically, due to the significant differences
of the signals collected by different equipment, the performances of traditional domain
adaptation methods DANN and CORAL in open set fault diagnosis are abysmal, and
due to the existence of non-shared samples, many samples are aliased in the feature
space alignment, resulting in a low diagnostic accuracy. As a typical method for open set
recognition, OpenMax has a significant decrease in recognition accuracy due to the large
differences between the two domains. OSBP and ANMAC have some effects on the open
set diagnosis of different equipment, but they cannot provide stable and efficient diagnosis
results. The proposed method not only promotes the alignment of each class in the shared
class and the separation of non-shared samples but also uses the differences between the
two classifiers to improve the model’s generalization effectively. The average diagnostic
accuracy of the task can reach about 80%, which is superior to all comparable models,
providing the possibility of feature transfer between different equipment.

Table 6. Diagnosis results in the different equipment (accuracy (%) ± standard deviation).

Task DANN CORAL OpenMax ANMAC OSBP Proposed

IMS→ CWRU 45.93 ± 2.30 38.33 ± 1.66 47.54 ± 3.03 69.87 ± 1.91 65.50 ± 1.30 80.53 ± 1.02
CWRU→ IMS 40.03 ± 2.35 36.83 ± 1.85 39.33 ± 1.54 64.15 ± 1.33 58.40 ± 1.74 79.93 ± 0.91

AVG 42.98 37.58 43.44 67.01 60.45 80.23

The feature visualization of the random sample and the confusion matrix of the
diagnostic results in the transfer task IMS→ CWRU are shown in Figure 9. Since the IMS is
a life cycle dataset, the samples contain rich feature information, which makes the diagnosis
accuracy of the IMS as the source domain relatively high. In the sharing part, most samples
can accurately align the corresponding classes in the source domain, with an accuracy rate
of about 85%. Only the sample in the health condition and the inner race fault sample as a
non-shared class have a significant overlap, which provides feasibility for open set fault
diagnosis between different equipment.
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4.7. Test on Adaptability

All of the above experimental data are from laboratories or public datasets, the inter-
ference in the signal is minor, and the fault features are significant. However, in the actual
industry, the signal collected by sensors often has large interference, such as noise and other
sound sources. The dataset of the overhung impeller centrifugal pump is used to verify
the robustness and generalization of the proposed method. The dataset is collected under
industrial scenes, and the signal contains large interference. The equipment shown in
Figure 4d selects the rolling fault as the non-shared class in the two domains. The transfer
task c1 takes the data under 743 rpm working conditions as the source domain and the
743 rpm data in the transfer task c2 as the target domain.

The diagnostic results of all the methods in the two diagnosis tasks are shown in
Table 7. The average accuracy of DANN, CORAL, OpenMax, ANMAC, OSBP, and the
proposed method are 74.93%, 72.87%, 76.24%, 91.13%, 83.07%, and 96.07%, respectively.
Obviously, due to the interference in the signal, the diagnostic accuracy of all the methods
decreased to a certain extent, and from the standard deviation, the stability of the diagnosis
fluctuated. The method proposed in this paper still achieved the highest diagnostic accuracy
among all the diagnostic models, and the standard deviation was low, indicating that the
method had good robustness and generalization. The feature visualization of the random
sample and the confusion matrix of the diagnostic results in the transfer task c1 are shown
in Figure 10. It can be seen that, in the feature space, a small number of samples have severe
feature aliasing. Still, most of the samples can align well with the corresponding classes,
indicating that the method can realize the transfer of fault features during large interference.

Table 7. Diagnosis results in the centrifugal pump dataset (accuracy (%) ± standard deviation).

Task DANN CORAL OpenMax ANMAC OSBP Proposed

c1 75.00 ± 0 72.53 ± 1.08 72.87 ± 1.68 90.13 ± 1.79 82.67 ± 1.41 95.13 ± 0.88
c2 74.86 ± 0.32 73.2 ± 1.17 79.61 ± 3.94 92.13 ± 1.07 83.46 ± 0.81 97.00 ± 0.54

AVG 74.93 72.87 76.24 91.13 83.07 96.07
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4.8. The Limitations and Scope

From the above experimental results, the proposed method performs well in the open
set fault diagnosis of rotating machinery. To evaluate the efficiency of the proposed method,
Table 8 lists the average training times and model parameters of all the methods under the
same conditions. The training time is the average time required for each epoch, and the
parameter count is the parameter size required for building the model. As can be seen from
the results in the table, since the main network model of all the methods is the same, the
difference between the parameter count and the parameter size is small. In terms of training
time, the CORAL and OpenMax algorithms have advantages. Other algorithms spend
more time in training due to the use of adversarial learning. For the proposed method, due
to the calculation of the similarity between the class center and the samples in the feature
space, the training takes the most time, which is the limitation of the proposed method and
one of the future research directions.

Table 8. The analysis of the complexity and computation time.

Method Training Time (s) Parameter Count Params Size (MB)

DANN 3.49 660,742 2.52
CORAL 2.11 660,136 2.52

OpenMax 2.27 660,136 2.52
ANMAC 4.28 669,183 2.55

OSBP 2.79 660,540 2.52
Proposed 4.52 660,944 2.52

Regarding the application scope, the CORAL and DANN algorithms play an excellent
role in closed set fault diagnosis. However, neither of these two methods can recognize
unknown samples. OpenMax, ANMAC, and OSBP can realize open set fault diagnosis,
but the accuracy needs to be improved. The proposed method improves the recognition
accuracy in open set fault diagnosis, and the time spent is worthwhile from the results.

5. Conclusions and Prospects

In this paper, a cross-domain open set fault diagnosis method based on WDADC
was proposed. This method makes the time-frequency image of the signal as the input of
model and extracts the features of the sample. Then, a weighting module is designed to
assign larger weights to samples with a higher similarity, and a weighted cross-entropy loss
function is constructed to promote a positive transfer between the classes of shared samples
to achieve a continuous fault diagnosis. In addition, to improve the diagnostic effect of the
model on different equipment, double classifiers are designed to enhance the generalization
of the model. The experimental results showed that WDADC has advantages in open set
fault diagnosis. Under different working conditions of the gearbox, the average accuracy
of the proposed method is more than 95%, about 30% higher than the traditional domain
adaptation method and over 10% higher than the typical method for open set recognition.
More importantly, the experiment has verified the feasibility of the proposed method
in feature transfer between different equipment. As shown in the results, the proposed
method still has an average accuracy of more than 80% in the transfer tasks between the
different equipment, which is 35%, 40%, 35%, 10%, and 15% higher than that of DANN,
CORAL, OpenMax, ANMAC, and OSBP. This shows that the proposed method can be
extended to different equipment fault diagnoses.

The proposed method achieves the open set fault diagnosis performance well in these
datasets. However, in industrial practice, the collected datasets may have the problem of
imbalance, which will significantly affect the diagnosis results of the model. This will be a
future research direction.
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Nomenclature

C Classification module
Ca Class center of the a-th class
Di Distance between the sample and class center
DJS Jensen–Shannon divergence
DKL Kullback–Leibler divergence
Ft

i Features of the i-th target domain sample
Fs

i Features of the i-th source domain sample
G Feature extraction module
LCE the cross-entropy loss
Ld the total loss
Ls Discrepancy loss of classifiers
Li

t the binary cross-entropy loss of the i-th target domain sample
M Number of fault classes in the source domain
ns Number of labeled samples
nt Number of unlabeled samples
na Number of a-th class samples
pM+1

xt
i

Probability that the i-th sample is recognized as a non-shared class.

pc1 Probability distribution of classifier 1’s output
pc2 Probability distribution of classifier 2’s output
t Threshold
v Dimension of the Feature extraction module’s output
W Weighting module
wi Weight of the i-th sample
xs

i The i-th sample in the source domain
xt

i The i-th sample in the target domain
ys

i Label of the i-th sample in the source domain
yt

i Label of the i-th sample in the target domain
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