
Citation: Wang, Y.‑Y.; Huang, J.‑R.

Efficient Space–Time Signal

Processing Scheme of Frequency

Synchronization and Positioning for

Sensor Networks. Sensors 2023, 23,

2115. https://doi.org/10.3390/

s23042115

Academic Editors: Andrew Zhang,

Kai Yang and Zhitong Ni

Received: 11 January 2023

Revised: 7 February 2023

Accepted: 10 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

Efficient Space–Time Signal Processing Scheme of Frequency
Synchronization and Positioning for Sensor Networks
Yung‑Yi Wang * and Jian‑Rung Huang

Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering,
Chang‑Gung University, Tao Yuan 33302, Taiwan
* Correspondence: yywang@mail.cgu.edu.tw

Abstract: The orthogonal frequency division multiple access (OFDMA) technique has been widely
employed in sensor networks as the datamodulation scheme. This study presents a one‑dimensional
(1D) space–time signal processing scheme for the joint estimation of direction of arrival (DOA) and
carrier frequency offsets (CFOs) in OFDMA uplink systems. The proposed approach, initiated by a
one‑dimensional ESPRIT algorithm, involves estimating the DOAs of the received signal to identify
subscriber positions. Spatial beamformers are then used to suppressmultiple access interference and
separate each subscriber’s signal from the received signal. The outputs of the spatial beamformer are
decimated to estimate the CFO of each subscriber. Compared with conventional two‑dimensional
parameter estimation algorithms, the proposed one‑dimensional algorithm has a higher estimation
accuracy and significantly lower computational complexity.

Keywords: DOA‑CFO estimation; beamforming; MIMO‑OFDMA

1. Introduction
Orthogonal frequency‑division multiple access (OFDMA) is a multicarrier transmis‑

sion technique that independently modulates subcarriers within frequencies, achieving
prominent performance in combating time‑varying fading channel, reducing latency time,
and increasing throughput of wireless networks. OFDMA has been employed as the air
interface of several wireless connection standards of sensor networks, [1,2].

In OFDMA uplinks, base stations (BSs) have to maintain orthogonality among sub‑
channels [3] through frequency synchronization to avoid multiple access interferences
(MAIs). Additionally, BSs require user position information to facilitate the design of trans‑
mitting or receiving beamformers for improving transmission throughput [4]. To this end,
many two‑dimensional (2D) algorithms have been proposed for the joint estimation of
carrier frequency offsets (CFOs) and direction of arrivals (DOAs) [5–10]. However, most
of these algorithms stack the received signal matrices to form high‑dimensional snapshot
vectors to estimate the two‑dimensional parameters, incurring prohibitive computational
complexity [9,10].

In order to detect the data symbols from the received signal of the OFDMAuplink sys‑
tem, the BSs have to deal with the multiple access interferences (MAIs) caused by
CFOs [11–13]. A MAI suppression algorithm for interleaved OFDMA uplinks was pro‑
posed in [12] by using the CFO estimate at the BS to construct the receiver weight vector
under the minimum mean square error (MMSE) criterion; the resulted filter is referred to
as the 1D‑MMSE filter. In cooperation with the antenna array equipped to the BS, the 1D‑
MMSE filter can be extended to a 2D‑MMSE filter by using the CFO‑DOA estimates of all
active users in the network. Although the 2D‑MMSE have a better performance in the data
detection than the 1D‑MMSE, it suffers a high computational complexity. An iterative in‑
terference cancellation technique was proposed for distributed MIMO systems [13]. The
algorithm can effectively mitigate the MAIs by using the null subspace of the composited
channel matrix.
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The aforementioned two‑dimensional‑based estimation algorithms generally exhibit
a higher accuracy than the one‑dimensional‑based algorithms because the former use a
high dimensional signal vector contributing a higher processing gain than the later. How‑
ever, the main disadvantage of conventional two‑dimensional‑based algorithm is the con‑
siderably high computational complexity inherited from the usage of the high dimensional
signal vectors. The novelty of this study is to use two consecutive 1D‑ESPRIT [11] algo‑
rithms in conjunction with the beamforming process to estimate the DOAs and CFOs of
the multiuser signals, substantially reducing the computational complexity. To this end,
we present a one‑dimensional space–time signal processing scheme to jointly estimate the
DOAs and CFOs of interleaved OFDMAuplink systems. The proposed approach involves
using a 1D‑ESPRIT algorithm to estimate the DOA of each user and then accordingly de‑
composing the received signal into a set of single user signals through a set of spatial beam‑
formers. The output of each spatial beamformer is used to estimate the CFO, which is
automatically paired with the leading DOA of the spatial beamformer. According to the
CFO estimates, the proposed approach compensates for the CFO and then performs data
detection by applying a reduced sized fast Fourier transformation (FFT) on the output of
the spatial beamformer, resulting in a significantly lower computational complexity than
traditional two‑dimensional‑based algorithms [8,12].

2. SystemModel
For an interleaved OFDMA uplink system, the transmit signal of user u can be ex‑

pressed by:

su,n =
1√
N

∑
k∈κu

S̃kej 2π
N nk, u = 1, · · · , U − 1 (1)

whereN is the total number of subcarriers, S̃k is the data symbol modulated at subcarrier k,
and κu = {lL + u}l=0,··· ,N′−1 is the subcarrier index set that the carrier assignment scheme
(CAS) assigns to user u. N′ = N

L is the subcarriers available to each user. To avoid inter
symbol interference, each user’s signal is inserted with a cyclic prefix (CP) in front of the
associated data segment. This study assumes that the BS is equipped with an antenna
array of MR element. After discarding of the CP, the signal vector received at the BS can
be expressed by:

yn =
U−1

∑
u=0

(su,n ⊛ hu,n)ej 2π
N εuna(θu) + zn, (2)

where⊛ denotes the circular convolution operation, hu,n is the channel response coefficient
between user u and the BS, εu is the CFO of user u, a(θu) is the antenna array response vec‑
tor corresponding to DOA θu, and zn is the additive white Gaussian noise (AWGN) vector
with zero mean and the correlation matrix E

{
znzH

n′
}
= N0δn,n′IMR . This study assumes

a uniform linear array (ULA) comprising of MR half‑wavelength‑spaced omnidirectional
antenna elements, and the response vector is given by:

a(θu) =
[
1, ejπ sin θu , · · · , ej(MR−1)π sin θu

]T
(3)

where the superscript T denotes the transpose operation. Substituting Equation (1) into
Equation (2), the receive signal can be rewritten as:

yn =
U−1

∑
u=0

1√
N

N′−1

∑
k=0

Hu,kL+uSu,kej 2π
N (kL+u+εu)n

︸ ︷︷ ︸
xu,n

a(θu) + zn = A(θ)xn + zn, (4)

where Su,k is the data symbol of user, Hu,k =
1√
N ∑N−1

n=0 hu,ne−j 2π
N n is the channel frequency

response, xu,n = 1√
N ∑N′−1

k=0 Hu,kL+uSu,kej 2π
N (kL+u+εu)n denotes the CFO‑distorted received
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signal of user u, and A(θ) =
[
a(θ0) · · · a(θU−1)

]
and xn =

[
x0,n, · · · , xU−1,n

]T de‑
note the spatial response matrix and the received signal vector, respectively. Equation
(4) shows that the interleaved OFDMA modulation renders the received signal a quasi‑
periodic feature in the time domain given by:

xu,n+pN′ =
1√
N

N′−1

∑
k=0

⌣
S u,kej 2π

N (kL+u+εu)(n+pN′) = xu,nej 2π
L ωu p, p = 0, · · · , L − 1 (5)

where ωu = u+ εu is the physical frequency bias of user u, and
⌣
S u,k = Hu,kL+uSu,k denotes

the channel distorted data symbol. Using Equations (4) and (5), we can construct a space–
time receive signal matrix by collecting the time samples

{
yn+pN′

}
p=0,··· ,L−1

, and this is

given by:

Yn =
[
yn yn+N′ · · · yn+(L−1)N′

]
MR×L

=
U−1

∑
u=0

xu,na(θu)uT(ωu) + Zn (6)

where uT(ωu) =
[
1 ej 2π

L ωu · · · ej 2π
L (L−1)ωu

]
is the transpose of the spectral signature

vector of user u. According to Equation (6), conventional two‑dimensional estimation al‑
gorithms (e.g., the 2D ESPRIT [8,9], and the 2D MUSIC algorithm [10]) can be invoked to
estimate the CFOs and the DOAs. To this end, the received signal matrix is stacked into a
vector given by:

˜
yn = vec(Yn) =

U−1

∑
u=0

xu,n
˜
a(θu, ωu) +

˜zn

where
˜
a(θu, ωu) = u(ωu) ⊗ a(θu), with ⊗ being the Kronecker product, is the spatial‑

spectral steering vector of size MRL × 1. Conventional two‑dimensional‑based

algorithms [8–10] then use
˜
yn to calculate the associated autocorrelation matrix and per‑

form eigenvector‑decomposition (EVD) to find the subspace matrix to estimate the as‑
sociated two‑dimensional parameters. The large‑scale signal vectors provide these two‑
dimensional‑based algorithms a high processing gain and thus ensure high precision in
parameter estimation. However, the associated EVD of a high dimensional autocorrela‑
tionmatrix and the possible searching process give rise to a prohibitive high computational
complexity in these two‑dimensional‑based algorithm.

3. The Proposed Method
To mitigate the computational burden, the proposed algorithm executes two one‑

dimensional ESPRIT algorithms [11] in conjunction with spatial beamforming to estimate
theDOAs andCFOs. This study refers the one‑dimensional ESPRIT algorithm for theDOA
and the CFO estimation as the S‑ESPRIT and F‑ESPRIT algorithms, respectively.

3.1. DOA Estimation
According to (3), the correlation matrix of yn is given by:

Ry = E
{
yny

H
n

}
= A(θ)RxAH(θ) (7)

where the superscript H denotes the Hermitian operation, Rx = diag
{

σ2
0 , · · · , σ2

U−1
}
, and

σ2
u = E

{
|xu,n|2

}
is the correlation matrix of xn. For simplicity, we have ignored the noise

term in Equation (7). Through EVD, Ry can be orthogonally diagonalized and is given by:

Ry = EsΛsEH
s + EnΛnEH

n (8)
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where Es = [v1, · · · ,vU ]MR×U denotes the signal subspace matrix formed by the U largest
eigenvectors ofRy, En denotes the noise subspace matrix formed by the rest MR−U eigen‑
vectors, and Λs and Λn are diagonal matrices formed by the eigenvalues corresponding to
the eigenvectors in Es and En, respectively. According to Equations (7) and (8), it reveals
that Es shares the same column space with A(θ), and it can be expressed by:

Es = A(θ)T (9)

where T denotes the associated transformation matrix. The S‑ESPRIT algorithm uses the
shift invariance property of the signal received by theULA to estimate theDOAs. To obtain
the subarray signals, the S‑ESPRIT defines two selection matrices given by:

J1,m =
[
Im−1, 0(m−1)×1

]
(m−1)×m, and J2,m =

[
0(m−1)×1, Im−1

]
(m−1)×m (10)

where Im−1 denotes the identity matrix of size m − 1, and 0(m−1)×1 is a zero vector. Using
the selection matrices, two spatial reponse submatrices are defined by:

A1(θ) = JMR,1A(θ) (11)

A2(θ) = JMR,2A(θ) (12)

Accord to (3), the shift invariance property of a(θu) ensures:

A2(θ) = A1(θ)Ψ (13)

where Ψ = diag
{

ψ0, · · · , ψU−1
}
with ψu = ejπ sin θu . To estimate the DOAs, the S‑

ESPRIT algorithm constructs two submatrices from the Es in Equation (8), given by:

Es,k = JMR,kEs, k = 1, 2. (14)

According to Equation (9), we have:

Es,k = Ak(θ)T, k = 1, 2. (15)

From Equation (13) and Equation (15), it shows that Es,2 = A2(θ)T = A1(θ)ΨT, and
we have:

Es,2E†
s,1 = T−1ΨT (16)

where † denotes the pseudo‑inverse operation. From Equation (16), it is illustrated that
{ψu}u=0,··· ,U−1 are the eigenvalues of Es,2E

†
s,1, and the DOAs can be estimated by:

θ̂u = sin−1
(
arg(ψu)

π

)
, u = 0, · · · , U − 1. (17)

3.2. Interference Suppression and Signal Separation
According to the DOA estimates, the proposed algorithm separates the signal of each

user from the received signal in Equation (2) through a spatial beamformer steered at the
leading DOA θ̂u. The associated beamforming weight vector is designed under the mini‑
mum variance distortionless response (MVDR) criterion given by:

wu = argmin
w

E
{∣∣∣wHyn

∣∣∣2}, s.t. AH
( ^
θ

)
w = eu+1, ∀u = 0, · · · , U − 1 (18)

where eu denotes the elementary vector of size U × 1 that takes 1 as the uth element and

0 elsewhere. The constraint AH
( ^
θ

)
w = eu+1 illustrates that the spatial beamformer of
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user u, which can retain the signal led by a
(
θ̂u
)
and suppress the MAIs from the DOAs

θ̂u′ , ∀u′ ̸= u. Direct manipulations yield:

wu = R−1
y A

( ^
θ

)[
AH

( ^
θ

)
R−1
y A

( ^
θ

)]−1

eu+1. (19)

The output signal of the spatial beamformer is given by:

yu,n = wH
u yn = xu,n + z̃u,n, ∀u = 0, · · · , U − 1 (20)

where z̃u,n denotes the associated output noise. According to Equation (20), the proposed
algorithm can estimate the CFO of user u and automatically pairs the resultant CFO esti‑
mate with the leading DOAs of the associated beqmformer.

Practically, the correlation matrix Ry can be implemented by the sample‑averaged
counterpart given by:

^
Ry =

1
N

N−1

∑
n=0

yny
H
n . (21)

In addition, the inverse of
^
Ry can be implemented byusing the eigenspace counterpart:

R−1
y = EsΛ−1

s EH
s + EnΛ−1

n EH
n (22)

By using Equation (21), the weight vector in Equation (19) can be expressed by:

wu = EsΛ−1
s EH

s A
( ^
θ

)[
AH

( ^
θ

)
EsΛ−1

s EH
s A

( ^
θ

)]−1

eu+1. (23)

3.3. CFO Estimation
In order to estimate the CFOs, the proposed algorithm decimates the output of each

spatial beamformer in Equation (20) and forms the signal vector of user u given by:

ˉ
yu,n =


yu,n

yu,n+N′

...
yu,n+(L−1)N′


L×1

= xu,nu(ωu) +
ˉzu,n, n = 0, · · · , N′ − 1 (24)

where we have used the quasi‑periodic feature in Equation (5), and ˉzu,n is the associated
noise vector. Accordingly, the frequency bias can be estimated through the F‑ESPRIT al‑
gorithm, which is a simplified version of the ESPRIT applying for a single‑user scenario.
The associated correlation matreix for user u is given by:

ˉ
Ru =

1
N′ ∑ N′−1

n=0
ˉ
yu,n

ˉ
y

H

u,n, u = 0, · · · , U − 1 (25)

Table 1 summarizes the F‑ESPRIT algorithm.
According to the physical frequency estimate ω̂u, the CFO of user u can be estimated

by ε̂u = ω̂u − û,, where û is the subcarrier index estimate of user u, which is obtained from
the integer nearest to ω̂u. Because ε̂u is estimated from the output signals of the spatial
beamformer u, it can be automatically paired with the associated leading DOA θ̂u, without
extra pairing processes.
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To decode data, the proposed algorithm uses ω̂u to form the spectral signature vector
u(ω̂u), and then it compensates for the frequency bias in

ˉ
yu,n for frequency synchroniza‑

tion. From Equations (4) and (24), the resulting signal is given by:

x̂u,n = uH(ω̂u)e−j 2π
N ε̂u,n

ˉ
yu,n =

1√
N

N′−1

∑
k=0

⌣
S u,kej 2π

N (kL+u)n + z̃u,n (26)

Table 1. The proposed F‑ESPRIT algorithm for frequency bias estimation.

F‑ESPRIT Algorithm

Step 1: Calculate the correlation matrix of
ˉ
yu,n:

ˉ
Ru = 1

N′ ∑N′−1
n=0

ˉ
yu,n

ˉ
y

H

u,n, ∀u

Step 2: Find the largest eigenvector of
ˉ
Ru, denoting as

˜vu.
Step 3: Construct ˜vu,1 = JL,1

˜vu, and
˜vu,2 = JL,2

˜vu

Step 4: Estimate the physical CFO of user by ω̂u = L
2π arg

{
˜v

H

u,1
˜vu,2

}
.

Consequently, the data of user u can be decoded from x̂u,n through a N′ ‑point FFT
given by:

Ŝu,k = dec


1√
N′

N′−1
∑

k=0
x̂u,ne−j 2π

N (kL+u)n

Ĥu,kL+u

 (27)

where Ĥu,kL+u is the associated channel response estimate, which is assumed known to
the BS.

3.4. Computational Complexity
The proposed algorithm requires (NMR + UN′L) flops for the calculation of the sam‑

ple averaged correlation matrices in (21) and (25), 12
(

M3
R + UL3) flops for the determi‑

nation of EVD of the correlation matrices [14], 2M2
R + M2

RU2 flops for the calculation of
the beamforming vector in (23), and UN′ log2 N′ flops for the calculation of the FFT in
Equation (27). Therefore, the complexity of the proposed algorithm is 12

(
M3

R + UL3) +
M2

R
(
U2 + 2

)
+ (NMR + UN′L) + UN′ log2 N′. On using a grid‑size of 10−q, the computa‑

tional complexity of themethods reported in [10]was approximately 12M3
RL3 +(N + 10qπ)

MRL+UN log2 N flops, and that of themethod reported in [8] was 12M3
RL3 + 4

3 (MR − 1)2

(L − 1)2 + NMRL + UN log2 N flops.

4. Results and Discussions
Consider an OFDMA system with the following settings: N = 512,MR = 10, and L = 6.

Independent Rayleigh fading channels were assumed to exist between each user terminal
and the BS. The DOAs and CFOs of the active terminals were randomly selected from the
interval |θu| < π

2 , and |εu| < 0.5, ∀u. The noise power N0 was adjusted to achieve the
required signal‑to‑noise power ratio (SNR).

Figure 1 illustrates the root mean square errors (RMSEs) of the DOA and CFO esti‑
mates of the proposed algorithm, the 2D‑ESPRIT algorithm [9], and the 2D‑MUSIC algo‑
rithm [10]. Figure 1a shows that, in addition to having a significantly lower computational
complexity, the proposed algorithm possesses a RMSE that is comparable with that of the
2D‑MUSIC algorithm for DOA estimation as the SNR increases. The proposed exhibits a
marginally lower error than the 2D‑ESPRIT algorithm for CFO estimation, as illustrated in
Figure 1b.
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(b) the RMSEs of the CFO estimates.

According to the DOA andCFO estimates obtained in Figure 1, Figure 2 illustrates the
comparisons of the symbol error rates (SERs) of the proposed 1D MAI suppression, min‑
imum mean square error (MMSE) [12], and 2D‑MMSE (ST‑MMSE) algorithms [12] under
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the assumption of known channel response. The number of subcarriers (N) was assumed
to be 128 and 512 for assessing the performance of MAI suppression with respect to differ‑
ent OFDMA symbol sizes. For both values of N, the proposed algorithm has lower SERs
than the other two methods because the proposed constrained optimization strategy in
(18) effectively eliminates MAIs according to the DOA estimates. The two conventional
MMSE‑based algorithms require a sufficiently large number of stacked snapshot vectors
to reduce the estimation error of the associate covariancematrix. Therefore, the SERs of the
conventionalMMSE‑based algorithms decreasewhen the number of subcarriers decreases,
as shown in Figure 2.
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Figure 3 presents a comparison of the computational complexity of the proposed al‑
gorithm with that of the two‑dimensional‑based algorithms in [8,10]. The scale factor of
the 2D‑MUSIC algorithm is q = 4. The number of antennas is in the range from MR = 4
to MR = 20, and the number of subcarriers N = 512. Both conventional two‑dimensional‑
based algorithms, [9,10], use a high dimensional array vector for the parameter estima‑
tion, resulting in high computational complexity as discussed. Figure 3 demonstrates that
the proposed one‑dimensional‑based algorithm has a substantially lower complexity than
that of the other two algorithms. We thus conclude that, in addition to having improved
performance in data detection (as indicated in Figure 2), the proposed algorithm is more
computationally efficient than are the conventional two‑dimensional‑based algorithms.
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