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Abstract: Machine learning (ML) has succeeded in improving our daily routines by enabling au-
tomation and improved decision making in a variety of industries such as healthcare, finance, and
transportation, resulting in increased efficiency and production. However, the development and
widespread use of this technology has been significantly hampered by concerns about data privacy,
confidentiality, and sensitivity, particularly in healthcare and finance. The “data hunger” of ML
describes how additional data can increase performance and accuracy, which is why this question
arises. Federated learning (FL) has emerged as a technology that helps solve the privacy problem
by eliminating the need to send data to a primary server and collect it where it is processed and
the model is trained. To maintain privacy and improve model performance, FL shares parameters
rather than data during training, in contrast to the typical ML practice of sending user data during
model development. Although FL is still in its infancy, there are already applications in various
industries such as healthcare, finance, transportation, and others. In addition, 32% of companies
have implemented or plan to implement federated learning in the next 12–24 months, according to
the latest figures from KPMG, which forecasts an increase in investment in this area from USD 107
million in 2020 to USD 538 million in 2025. In this context, this article reviews federated learning,
describes it technically, differentiates it from other technologies, and discusses current FL aggregation
algorithms. It also discusses the use of FL in the diagnosis of cardiovascular disease, diabetes, and
cancer. Finally, the problems hindering progress in this area and future strategies to overcome these
limitations are discussed in detail.

Keywords: federated machine learning; federated learning; privacy preservation; aggregation algorithms;
diseases prediction; cardiovascular diseases; diabetes; cancer; smart wearables; smart health

1. Introduction

Artificial intelligence (AI) is a rapidly advancing technology that is increasingly being
integrated into various industries and aspects of daily life, leading to significant changes
and advancements in the way we live and work. This truth is obvious and can be seen
with one’s own eyes; no evidence is needed to prove it. Ever since Alan Turing, considered
the father of theoretical computer science and artificial intelligence, asked their famous
question, “Can computers think?” [1], artificial intelligence has become a broad field of
research. Despite the fact that AI has been researched for a long time, there is no single
definition for this field. The authors in [2] defined it as a set of tools and techniques that use
principles and devices from various fields such as computation, mathematics, logic, and
biology to address the problems of realizing, modeling, and mimicking human intelligence
and cognitive processes, while the authors in [3] defined it as programs that, in an arbitrary
world, will cope no worse than a human.
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Machine learning (ML), a derivative of AI, allows computers to “learn” from training
data and expand their knowledge over time without being explicitly programmed. Machine
learning algorithms attempt to find patterns in data and learn from them to make their own
predictions. In short, machine learning algorithms and models learn through experience.
Traditionally, a computer program is developed by engineers and given a set of instructions
that enable it to turn incoming data into its intended output. ML, by contrast, designs the
program to learn with little or no human interaction and to expand its knowledge over
time. The remarkable success of ML, as well as its enormous potential in classification
and regression problems and its ability to use both supervised and unsupervised learning
techniques, have made it attractive to researchers in many fields. Later studies revealed the
variety of applications of ML that can be observed in the field such as:

• E-commerce and product recommendations [4,5];
• Image, speech and pattern recognition [4,5];
• User behavior analytics and context-aware smartphone applications [4,5];
• Healthcare services [6–8];
• Traffic prediction and transportation [4,9];
• Internet of Things (IoT) and smart cities [9];
• Cybersecurity and threat intelligence [10];
• Natural language processing and sentiment analysis [11];
• Sustainable agriculture [12];
• Industrial applications [13].

1.1. Machine Learning under The Scope: Challenges

Accurate results in classification or regression are increasingly encouraging the incor-
poration of these techniques into areas of daily life. The feasibility of using AI tools, and in
particular ML, has been demonstrated by the high performance they offer and the possi-
bility of implementing them in different domains. However, ML still suffers from several
challenges that are extensively described and discussed in the literature. However, these
challenges are not classified into a single taxonomy, but grouped according to different
aspects. In this section, the common challenges are presented under a proposed taxonomy
based on data-related, model-related, implementation-related, and other general aspects.
In addition, these challenges are illustrated and summarized in Figure 1 below.

Figure 1. Machine Learning Domain Challenges.

1.1.1. Data Related Challenges

Machine learning algorithms are typically implemented in a known pipeline consisting
of data collection, preprocessing, exploration, model selection, training, evaluation, and
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deployment. Data, which constitute the main component of these algorithms, can present
various challenges, such as [14,15]:

• Data availability and accessibility: to train a model, one must have the necessary
data, which may not be available on the spot or may be available but inaccessible
for various reasons;

• Data locality (data islands): in the real world, data are scattered in different and
unrelated entities called “data islands.” Due to different regulations and laws, data
related to the same subject and available on different data islands cannot be accessed
for use and analysis;

• Data readiness: even if data are available and accessible, several aspects should be
considered, such as:

– Data heterogeneity: available data may have different characteristics or be com-
posed of different forms. For example, health data for the same patient may
be available in different forms, such as medical images, reports, videos, and
structured data. The ability to deal with such heterogeneity is a challenging task;

– Noise and signal artifacts: due to the interaction between data acquisition instru-
ments and other electrical devices, data can be poisoned by noisy attributes that
affect the overall results of ML models;

– Missing data: data collected by measuring devices may be incomplete for
various reasons;

– Classes imbalance: in classification problems, the data collected for one group
may dominate the data collected for other groups, affecting the learning of the
smart model.

• Data volume: is the amount, size, and scope of the data. In the context of ML, size
can be defined either vertically by the number of records or samples in a dataset or
horizontally by the number of features or attributes it contains. Data volume presents
several challenges, such as:

– Course of dimensionality: dimensionality describes the number of features or
attributes that are present in a dataset. Increasing dimensionality can have a
negative impact on model performance;

– Bonferroni principle [16]: the Bonferroni principle states that when searching for
a particular type of event in a given set of data, the probability of finding that
event is high. Therefore, the accuracy of a ML model subject to the Bonferroni
principle may be compromised.

• Feature representation and selection: the performance of ML models heavily depends
on the choice of data representation or features, so selecting the optimal features will
definitely improve the overall model performance.

1.1.2. Models Related Challenges:

In addition to the challenges posed by the data, the models themselves can present
researchers with various problems, such as [17,18]:

• Accuracy and performance: achieving the highest accuracy for ML models remains
the main goal for researchers from various fields, and the highest accuracy will lead to
the highest adoption and integration of this technology;

• Model evaluation: evaluating an ML model can be challenging, especially when
traditional performance metrics such as accuracy, precision, and recall do not reflect a
model’s feasibility;

• Variance and bias: where variance is the variability of the model prediction for a given
data point or a value indicating the spread of our data, and bias is the difference
between the average prediction of our model and the correct value we are trying
to predict. ML models are susceptible to variance and bias, which can affect their
performance, results, and confidence;



Sensors 2023, 23, 2112 4 of 39

• Explainability: some of the ML models, especially deep learning models, are known
by their black box identity. The lack of explanations of how they work can have a
negative impact on trust in these models, even when high accuracies are achieved.

1.1.3. Implementation Related Challenges:

Assuming that the obstacles in the data and models have been overcome, implement-
ing the models of ML can be a challenging task due to various obstacles such as [19,20]:

• Real-time processing: ML models are created and trained with available data. How-
ever, fitting these models to real-time problems presents several challenges;

• Model selection: different models can produce different results even for the same prob-
lems. For example, support vector machines (SVM) and logistic regression (LR) can lead
to different results, even when working with the same data at the same point in time.
Thus, selecting the optimal model and tuning its parameters are not easy tasks;

• Execution time and complexity: due to the complexity of the data or models, multiple
preprocessing steps, and many other reasons, ML models can require enormous
computing power and long execution times.

1.1.4. General Challenges:

Finally, other challenges besides technical aspects can be mentioned in this section,
such as [17,18]:

• User data privacy and confidentiality: which is one of the most critical issues in the
field of ML. Users tend not to share their data for various reasons, which affects the
availability of the data and jeopardizes the entire ML cycle;

• User technology adoption and engagement: due to privacy issues, unclear results,
lack of explanation, and other reasons, users may not accept ML being integrated into
their daily routine, or even accept its results;

• Ethical constraints: various ethical constraints posed by ML have been widely dis-
cussed in the literature, such as control and morality, model ownership, environmental
impact, and many others.

1.2. Privacy Challenge: Federated Machine Learning Motivation

The challenges in machine learning and its derivatives have been thoroughly studied,
and researchers are trying to find answers to all of them without focusing on just one.
Nevertheless, the workflow of ML mainly consists of data acquisition and preprocessing,
feature engineering, model training, model evaluation, and model deployment. The structure
of the workflow reflects the importance of data in ML. The performance of ML models
heavily depends on the availability of data. Although achieving highly accurate models
depends on the technical structure of the models themselves, the cleanliness and readiness
of the data, the optimal feature selection, and many other aspects, it is well known that the
availability of more data to train the models increases their accuracy [14,15]. However, in the
real world, data collection is a big challenge, if not the biggest, in developing ML models for
several reasons, most importantly privacy and confidentiality.

Not only individuals, but also society, governments, and organizations are strengthening
the protection of data privacy and security. In this regard, several regulations and laws were
enacted, such as the European Union’s General Data Protection Regulation (GDPR) [21], China’s
Cyber Security Law of the People’s Republic of China [22], the General Principles of the Civil
Law of the People’s Republic of China [23], the PDPA in Singapore [24], and hundreds of
principles legislated around the world. While these regulations help protect private information,
they pose new challenges to the ML field by making it more difficult to collect data to train
models, which in turn makes it more difficult to improve the accuracy of model performance
and to personalize those models. Consequently, data privacy and confidentiality are not a
stand-alone challenges, but also trigger other challenges for ML, such as data availability,
performance, personalization, and thus trust and acceptance.
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Overcoming Privacy Challenges

The criticality of privacy has been a hot research topic for years, pushing to find
different solutions to protect the information exchanged by subjects. To this end, various
privacy algorithms were proposed, such as encrypting data before exchange through
various algorithms such as differential privacy [25], k-order anonymity [26], homomorphic
encryption [27], and other methods. However, these methods were not able to provide
definitive and unbreakable solutions, as several attacks have been observed in ML such as
the model inversion attack [28] and the membership inference attack [29], which are able to
derive raw data by accessing the model.

Recently, Google proposed a new concept in the machine learning domain known as
“federated machine learning” or “federated learning” [30]. The main concept behind FL is
to eliminate the exchange of user data between peripherals. FL is a type of collaborative
distributed/decentralized ML privacy-preserving technology where a model is trained
without the need to transfer data from the edges to a central server, but models are sent to
peripherals to be trained on local data, and then sent back to a central aggregation server to
generate the global model without knowing the embedded data.

Federated learning has proven to be a great solution to user privacy issues, opening the
door to collecting more data to train ML models and improve their accuracy and efficiency.
Moreover, FL enables training models with data from different entities known as data islands
and merging the knowledge into a global trained model, which increases the efficiency
of the models. In addition, FL enabled the handling of heterogeneous data scattered in
different data spaces with different characteristics, and facilitated the so-called “learning
transfer” where models can share their knowledge without transferring users’ private data.
Nevertheless, FL is still in its infancy and is still vulnerable to various challenges.

1.3. Machine Learning and Healthcare

The development of information and communication tools, in parallel with the emer-
gence of artificial intelligence and its branches such as ML and DL has produced effective
solutions to health challenges. Moreover, AI is considered the most promising technology
for improving healthcare services, as it can be applied to almost all areas of medicine
and will revolutionize healthcare delivery to patients and populations. This tremendous
contribution is not due to magic, but to AI’s data processing capabilities that surpass those
of humans, especially in terms of its ability to perform large calculations in a short period
of time. Given the promise, initiatives to use AI as a solution to healthcare problems have
recently significantly expanded, with the number of AI healthcare applications exceeding
thousands in the last decade [31,32].

AI is playing an increasingly important role in healthcare and has the potential to revolu-
tionize the way healthcare professionals diagnose, treat, and monitor patients. One of the most
important ways in which AI can be used in healthcare is to analyze large amounts of medical
data. By using machine learning algorithms to identify patterns and trends in these data, AI
can help medical professionals make more accurate diagnoses, predict which patients are at
risk of developing certain diseases, and develop more personalized treatment plans [33]. AI
can also be used to monitor patients’ health and vital signs in real-time, and to alert medical
professionals to potential problems. This can be particularly useful for patients with chronic
conditions who need close monitoring to avoid complications. For example, using AI in smart
wearables, a person’s heart rate and blood pressure can be continuously monitored and the
data analyzed to detect the early signs of cardiovascular diseases (CVDs), as shown in [34]. In
addition, smart wearables equipped with sensors and machine learning algorithms can play
a critical role in detecting and monitoring diabetes by continuously tracking and analyzing
biometric data such as blood glucose levels, heart rate, and activity levels, enabling early detec-
tion and intervention [35]. In addition, the potential of smart wearables and machine learning
models in detecting fatigue in the workplace has been shown to be highly feasible, contributing
to disease prevention [36]. Overall, AI has the potential to significantly improve the quality of
healthcare for patients and make healthcare more efficient and cost-effective. However, it also



Sensors 2023, 23, 2112 6 of 39

raises ethical and legal issues that need to be addressed for the successful implementation of AI
in healthcare.

With healthcare being of critical importance, the performance of ML in healthcare
needs to be enhanced. Increasing this performance requires using the latest techniques and
overcoming any barriers that may impede progress. The barriers to the development of
the use of ML in healthcare are the same for all ML implementations in all diseases and
correspond to the previously described problems. Therefore, potential solutions that can
help promote the use of ML will lead to improved applications in these areas.

1.4. Outline and Main Contributions of This Article

In this article, FL and its use in disease prediction and diagnosis have been studied.
To achieve this goal, this article explores this topic in depth in the following sections. In
Section 2, FL is discussed from various perspectives, including technical perspectives,
aggregation algorithms, and others. Then, in Section 3, the use of Federated learning
technology in detecting and predicting various diseases is presented by listing the state-of-
the-art in each area and discussing the implementations mentioned in the literature. Later,
in Section 4, the challenges that hinder the progress in this field are discussed and therefore
some future perspectives that could help in overcoming these challenges are proposed. In
this context, this article attempts to answer the following questions:

• What is federated machine learning?
• What are the motivations for this technology?
• What are the technical perspectives on which FL is based?
• What taxonomy can be used to classify FL algorithms and techniques?
• What are the differences between FL, traditional ML (including deep learning), dis-

tributed and decentralized ML, and federated database systems?
• What are the existing FL aggregation algorithms and what is the contribution of each?
• What are the available FL frameworks?

The topic of federated learning has been a hot and trending topic in recent years.
As a result, dozens if not hundreds of studies have already addressed this topic, with a
large number of these studies reviewing federated learning. However, none of the articles
proposed an inclusive and full taxonomy for FL, or even compared FL to classical ML,
decentralized ML and federated database systems. Furthermore, the federated aggregation
algorithms were not reviewed with any of the previous studies. Furthermore, the use of FL
in diseases prediction such as CVDs and diabetes were not reviewed. Consequently, this
article proposes several new ideas, contributing to the body of FL knowledge by:

• Proposing a novel and comprehensive taxonomy that classifies FL into the maximum
number of possible categories;

• Establishing clear and precise boundaries to distinguish between FL, traditional ML,
distributed and decentralized ML, and federated database systems;

• Discussing existing aggregation algorithms in FL and evaluation of the contributions
of each to the field;

• Reviewing and discussing the state of the art of FL in diagnosing:

– Cardiovascular disease;
– Diabetes;
– Cancer.

• Presenting the challenges faced by FL and the possible future perspectives that can be
pursued to increase the efficiency of the technology.

2. Federated Learning

Artificial intelligence and its derivatives, such as machine learning and deep learning,
are gaining attraction and confidence in a variety of fields. For example, deep learning
surpassed human performance in the game of Go, where AlphaGo and AlphaGo Zero
achieved superhuman feats by beating the world champions of the game. However,
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the high accuracy achieved by these models required that they be trained on data that
spanned 29 million records [37,38]. This underscores the description of such technologies
as “data hungry,” with the need to improve the accuracy of the models requiring larger
datasets. This is undoubtedly the case not only in gaming, but also in other sectors such
as education, industry, healthcare, and others. Moreover, this is not the only problem that
hinders the development of ML and DL. With the development of ICT tools and especially
mobile networks, data collection has become easier and larger datasets are being obtained.
However, an urgent problem that requires effective solutions is the privacy and security of
data, with the disclosure of information about individuals never being a minor issue and
recently attracting the attention of both governments and researchers [39,40].

2.1. Overview and Definition(s)

The increasing efficiency of artificial intelligence tools is leading them to be used in
various areas of life. However, the challenges faced by these technologies lead researchers
to always look for appropriate solutions, which is why federated learning, or what is
sometimes called federated machine learning, was found.

2.1.1. Data Islands and Privacy Dilemma: Concept behind FL

The ability to collect and analyze large amounts of data has recently made great strides,
especially with the development of communication tools and AI methods. However, data
are collected in what are known as “data islands.” Data islands are defined as foundations,
institutions, individuals, or other entities where data are collected and stored [41,42]. To
improve the performance of AI models, the idea of the centralized server is pursued, with
the common method being to collect data in a centralized repository and perform unified
processing, cleaning, and modeling. For example, a patient’s health data scattered across
different hospitals, clinics, or health centers have the greatest potential when analyzed
together [43]. However, privacy regulations and restrictions, as well as data heterogeneity,
limit the ability to collect and simultaneously analyze such data. Consequently, the search for
solutions to the data islands and privacy dilemma has attracted the attention of researchers
worldwide and was the motivation for the concept of federated learning [44]. In Figure 2,
the concept of data islands is illustrated by showing how medical data may be stored in
different institutions and cannot be shared due to the sensitivity of the health data. Instead,
the parameters are shared with the FL server as shown in the figure.

Figure 2. Data islands concept illustrated by medical entities.



Sensors 2023, 23, 2112 8 of 39

2.1.2. Motivations behind FL Concept

The critical importance of data protection has led to the development of various pro-
tection algorithms aimed at protecting data through encryption or other methods, but they
have failed to provide an inevitable solution against attacks. Moreover, the data annotation
in some fields, such as the medical industry, relies on the knowledge of professionals, re-
sulting in a rarity of valid data that are detrimental to industrial development. Accordingly,
the need to deal with private data or data scattered in islands while maintaining their
privacy is the main motivation behind the concept of federated learning [45]. The fact that
private and confidential data available in scattered sources are more usable for ML models
than those centralized on the server provides FL with the opportunity for collaboration
between these data sources to improve the accuracy of ML models [46]. Because the data
can be analyzed without having to be transferred to a central server, FL helps address
the challenges mentioned earlier. The FL architecture, communication methods, security
mechanisms, and other factors allow the model to be trained on edge devices, the data
islands, by sending them the model itself, rather than collecting and aggregating the data in
a centralized space [47]. In other words, instead of aggregating training data from different
sources, FL enables the training of the shared global model using a central server, while
keeping the data at their main sources of origin [48]. This not only preserves data privacy,
but also reduces data transfer costs by limiting the transfer to only the necessary param-
eters rather than the entire datasets. This also allows dealing with a scalable number of
devices, ranging from ten to ten million [49,50]. All in all, FL is an emerging and promising
technology that helps one solve the ML challenges by preserving data privacy, increasing
the model performance, reducing the data transfer costs, improving scalability, and more.
Therefore, it has the potential to challenge the prevailing ML paradigm [51,52].

2.1.3. FL Definition(s)

Federated learning was originally introduced by Google in 2016, where it was used in
Google Keyboard to predict users’ text input on tens of thousands of Android devices without
transferring data from the devices to central servers [30]. However, the authors in [43] claim
that the term FL was introduced before and that its core idea is distributed deep learning,
such as the privacy-protected deep learning system proposed in [52]. Although it is still
considered a new concept, it is increasingly attracting researchers’ attention, and its definition
can be found in various places in the literature. For example, the authors in [42,45] define
it by explaining how it works, mentioning that federated learning is a type of collaborative
distributed/decentralized machine learning technology where privacy is maintained and a
model is trained without the need to transfer data from the edges to a central server, but instead
weight updates are sent to a central aggregation server to build the global model. A statistical
definition is given in both [41,44], where FL is defined as follows:

“Define N data owners {F1, ...FN}, all of whom wish to train a machine learning model
by consolidating their respective data {D1, ...DN}. A conventional method is to put
all data together and use D = Di ∪ ... ∪ DN to train a model MSUM. A federated
learning system is a learning process in which the data owners collaboratively train
a model MFED, in which process any data owner Fi does not expose its data Di to
others. In addition, the accuracy of MFED, denoted as VFED should be very close to
the performance of MSUM, VSUM. Formally, let δ be a non-negative real number, if
|VFED−VSUM| < δ. We say the federated learning algorithm has δ-accuracy loss.”

2.2. FL Technical Inspection

The potential for federated learning lies in the architecture upon which it is built. To
understand this structure, it is necessary to study the various aspects of this technology
and its various parts, which will be presented in this section.
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2.2.1. Underlying Architecture

Federated learning is a collaborative decentralized approach of machine learning where
data are analyzed by the model without being transmitted from the edges to the central server,
which acts as an aggregator. This is made possible by the architecture behind this technology.
The technical architecture of FL consists of the three main components: the parties, the manager,
and the communication framework, which are discussed below [41,42,44]:

• Parties: are also referred to as customers, users, or individuals, and are the data owners
and beneficiaries of FL. They are indicated by:

– Hardware specifications such as storage, processing, and power capacities;
– Scalability and stability;
– Data distribution.

• Manager: known as a server or aggregator, is the high-performance central server that
acts as a model aggregator rather than a data collector;

• Communication–computation framework: the computation handles the model train-
ing and the communication handles the exchange of model parameters between
the parties and the manager. Several frameworks were developed to manage the
relationships between different FL entities, which are discussed in detail later;

In the various available frameworks for communication computation, the steps taken
in the application of FL differ but they share a common basic concept which is:

• The parties federally train their own model using their local data without sharing it;
• The global model is updated by the locally trained models;
• The global model is then shared with the different parties/data owners;
• The above steps are repeated until the global model achieves the desired performance.

2.2.2. FL Communication-Computation Frameworks

The different FL communication–computation frameworks are due to the different
centralized concepts. Currently, there are two FL concepts: centralized managers and
decentralized managers. Each of these concepts manages communication between parties
differently, where [46]:

• Centralized design (client-server architecture): in this approach, data flow is often
asymmetric, with the manager aggregating information from the parties and sending
them back to the updated model. In addition, communication between the manager
and the parties can be synchronous or asynchronous;

• Decentralized design (peer-to-peer architecture): In this approach, communication is
performed between the parties themselves without the need for a central manager.
This allows each party to directly update the global parameters.

The above concepts are currently implemented in various FL frameworks which will
be discussed later. Two popular FL architectures are mentioned below: the centralized
federated average (FedAvg) [30] and the decentralized FL framework [53], which are
discussed and explained below as well as shown in Figure 3:

• Federated average learning, which is the basis of FL and is determined in the
following steps:

– The manager sends the model to the parties involved;
– The parties train the received model with their local data;
– The updated models are sent back to the manager;
– The above steps are repeated until the model achieves the desired performance.

• Decentralized federated learning SimFL, where no central manager/server is required.
In this framework, the following steps are applied:

– The parties first update the gradients of their local data;
– Then, the gradients are sent to a selected party;
– Next, the selected party uses its local data and the gradients to update the model;



Sensors 2023, 23, 2112 10 of 39

– Then, the model is sent to all other parties;
– To ensure fairness and to use the data from the different parties, each party is

selected to update the model for approximately the same number of rounds and
the above steps are therefore repeated until the final model is reached.

Figure 3. Communication–computation frameworks.

2.3. Federated Learning Taxonomy

The different ways of applying federated learning have contributed to the creation
of numerous classifications within this technology, which can be considered differently
according to the different subdivision bases or points of view. In light of this, the study
of the literature in FL concludes to subdivide it based on six approaches, which are listed
below and explained in this section:

• Data partitioning;
• Machine learning model;
• Privacy mechanism;
• Communication architecture;
• Scale of federation;
• Motivation of federation.

2.3.1. Data Partitioning

Federated learning provides the ability to train models without the need to collect
data from edge devices. In addition, in the FL environment, a device’s local storage of data
samples (pictures, documents, etc.) is considered its sample space. On the other hand, the
feature space is the collection of characteristics used to characterize the data points, often
expressed as a vector with a large number of dimensions. This set of characteristics may
be put to use in a wide range of classification and regression applications. FL is able to
develop a model that can efficiently aggregate information from the various sample and
feature spaces, which are typically dispersed throughout the parties (clients, users, etc.).
Depending on the data structure and point of view, the samples and features in federated
machine learning (FL) may be seen as rows or columns. Traditional machine learning
uses a table-like data structure with rows representing samples and columns representing
features; in FL, however, the samples are generally dispersed over numerous devices or
locations, leading to a lack of unified data structure. If this is the case, we may think of
the samples as columns and the features as rows, with each feature being shared across
all devices. Finally, the representation is determined by the nature of the issue and the FL
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technique used. Figure 4 below describes the difference between features and samples in
both traditional ML and federated ML.

Figure 4. Samples vs. features in traditional and federated ML.

In this context, the different forms of data partitioning in federated learning environ-
ments form three categories that are described below [41,42,44].

• Horizontal FL: also known as sample-based federated learning, and is the case when
the data on the parties share the same feature space but differ in the samples. In
other words, in horizontal FL partitioning, the datasets are partitioned horizontally
(by parties), and then the part of the data that have the same features but the parties
are not exactly the same is taken out for training. It is therefore characterized by
the following:

– Is the most commonly used data partitioning strategy in implementations of FL;
– Is suitable to increase the sample size;
– Can train the local models using their local data with the same architecture, since

these data share the same feature space;
– Simplifies the update of the global model by averaging all local models.

• Vertical FL: also known as feature-based learning, when the data share the same or
similar sample space (parties) but differ in the feature space (data). In other words,
in vertical FL partitioning, the dataset is split vertically (by features), then part of the
data where the parties are the same but the features are not exactly the same are taken
out for training:

– Which is challenging in terms of implementation;
– Which makes it more complex to update a global model by averaging because

the data may not be similar between parties;
– Which has much more room for improvement to be applied in more complicated

ML approaches.

• Federated transfer learning: this is the case when the datasets scattered between the
parties differ not only in the samples but also in the feature space. In this partitioning
method, the data are not segmented, but the learning is transferred to overcome the
lack of data or tags. Therefore, it is characterized by:

– Being an effective way to protect both data security and user privacy while
breaking the boundaries of data islands;

– Enabling the transfer of knowledge from one domain to another for better
learning outcomes;
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– Offering plenty of room for growth to make it more flexible with different
data structures;

– Triggering the issue of communication efficiency.

Furthermore, Figure 5 below illustrates the three categories of federated machine
learning divided by the type of data.

(a) (b) (c)

Figure 5. (a) Horizontal FL; (b) vertical FL; and (c) federated transfer learning.

In Table 1, the differences between the alternate groups of FL, classified based on the
type of data, are summarized.

Table 1. Differences among FL groups divided by type of data.

Horizontal
Transfer
Learning

Vertical Transfer
Learning

Federated
Transfer
Learning

Data Distribution Similarity Same Different Different
Output/Label Space Similarity Different Same Same
Type of Task Single task Single ask Federated task

2.3.2. Machine Learning Models

Federated learning was created to overcome problems with machine learning algo-
rithms. Therefore, it is of great interest to train a modern ML model for a specific task.
Researchers have worked diligently to develop new models or reinvent existing models to
fit the federated learning architecture. For example, the ML models used in FL include but
are not limited to: [41,42,44]:

• Linear models: support vector machines, linear regression, ridge regression, lasso
regression, among others;

• Decision tree: gradient boosting, decision trees, random forests, among others;
• Neural networks: convolutional neural networks, multi-layer perceptron, deep neural

networks, and others.

2.3.3. Privacy Mechanism

It is clear that the main goal behind the development of FL technology is to protect
the privacy of the data of individuals, organizations, and companies participating in the
machine learning process. The main concept to preserve this privacy is that the parties
involved do not share their data with other entities, but only exchange some model param-
eters. However, these parameters may still reveal sensitive information about the data. FL
was exposed to several attacks that may occur at any stage of the process of FL, including
the inputs, the learning process, and the learned model [54]. In the list below, several attacks
are discussed and detailed based on the model stage targeted by the Machine Learning
attack [46]:

• Inputs: During this phase, malicious parties can perform “data poisoning
attacks” [55–57], in which the labels of the training samples with a particular class are
changed so that the final model performs poorly on that class;
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• Learning process: during this process, parties can perform “model poisoning at-
tacks” [58,59] or Byzantine fault [60,61] to upload some designed model parameters
at the local model level. Such attacks can negatively affect the accuracy of the learning
process due to the poisoned local updates;

• The learned model: once the learned model is published, it is exposed to attacks
such as model inversion attack [28] and membership inference attack [29] and others.
Such attacks can potentially infer raw data by accessing the model. For example, they
can determine whether a particular dataset was used in the training process. Finally,
inference attacks can also be performed in the FL manager learning process, where
the server has access to the parties’ local updates.

To overcome such problems and achieve the goals, various approaches such as model
aggregation, cryptographic methods, and differential privacy are used in Federated Learning
systems. These techniques help avoid the risk of attacks and backdoors and are described
below [41–43]:

• Model aggregation: is one of the most common privacy preserving mechanisms in
FL systems and the main concept behind the FL technique, where the global model
is trained by aggregating the model parameters of all parties without sharing the
original data in the training process;

• Cryptographic methods: In this approach, the parties must encrypt their messages be-
fore sending them to the manager or other parties, work with the encrypted messages,
and decrypt the encrypted output to obtain the final result. In this context, various
algorithms have been used in FL systems, such as:

– Homomorphic encryption [39]: Users can compute and process the encrypted
data without revealing the original data, and at the same time the user decrypted
the processed data with the key, which is exactly the expected result. How-
ever, due to the additional encryption/decryption operations, homomorphic
encryption incurs extremely high computational overhead;

– Secure multiparty computation (SMC) [62]: in this algorithm, the server is guar-
anteed to learn the parties’ inputs only in their entirety. However, SMC does not
provide any confidentiality guarantee for the final model, which is still vulnerable
to inference and model inversion attacks and can also be a reason for additional
computational overhead.

• Differential privacy [63]: is a new definition of privacy in which the final results
of the model are insensitive to the changes of a particular dataset by minimizing
the impact of a single dataset on the computation of the results. This method has
been proven successful for data poisoning attacks, but may not be usable for model
poisoning attacks.

2.3.4. Methods for Resolving Heterogeneity

The different equipment of the parties involved in the FL system and the diversity of
the data stored in them can have a negative impact on the efficiency of the overall learning
process. To solve the problems caused by this heterogeneity, four types of distractions are
used in FL implementations [41]:

• Asynchronous communication: the synchronous scheme can be easily disrupted by
the diversity of devices. Therefore, asynchronous communication can help resolve
this diversity;

• Device sampling: limiting the use of a party/device to only the necessary iterations,
not necessarily participating in every single iteration;

• Fault-tolerant mechanism: in an environment with multiple working participants,
the failure of one participant can affect the performance of the entire environment. A
fault-tolerant mechanism helps prevent the entire system from collapsing if one of the
parties fails;

• Model heterogeneity: is used to resolve data heterogeneity and includes three strategies:
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– Each individual party has its own model;
– A global model that is suitable for all parties;
– Relevant learning models for tasks.

2.3.5. Communication Architecture

Following the various client/server approaches taken in FL systems, there are two
main categories in communication architecture, which are [46]:

• Centralized design: this assumes the existence of a central server that aggregates the
local models trained by the parties and sends them back for updating. Communication
between the manager and the local parties can be synchronous or asynchronous;

• Decentralized design: in this approach, communication is between the parties, and each
can directly update the global model without the need for a central aggregation manager.

2.3.6. Scale of Federation

Federated learning can be classified into two groups based on the scale of federation,
namely: cross-silo FLS and cross-device FLS [42,46]. These two approaches differ in the
number of parties and the amount of data stored in each party, where [64]:

• Cross-silo FL: this approach is used when the participating parties are fewer in number,
have relatively large amounts of data, have relatively high computational power,
and are available for all rounds of learning. This approach is best suited when the
participants are organizations or computers;

• Cross-Device FL: in contrast, the number of parties involved in the learning process is
relatively large, they have a small amount of data, and are equipped with relatively low
computing power. This approach is best suited when the participants are mobile devices.

2.3.7. Federation Motivation

Finally, the reasons for using FL systems can be categorized as follows [46]:

• Regulations: where laws restrict the sharing of private information between different
companies, such as the GDPR, Chinese laws, or PDPA or other laws;

• Incentives: where FL is motivated by a desire to develop services.

The various categories of federated learning that may be obtained from grouping vari-
ous points of view are outlined below in Table 2 along with a summary of the advantages
associated with each category.

2.4. Federated Learning: Borderlines

Federated learning is the result of the accumulation of technological improvements in
machine learning. Motivated by privacy preservation, inspired by the concept of distributed
computing, and executed by advanced communication technologies, FL has become an
efficient and feasible technology. In this section, we highlight the limitations of FL systems
to differentiate them from traditional and previous ML technologies.

2.4.1. FL vs. Classic ML

Both FL and classical ML aim to optimize the learning goal. However, they differ in the
architecture of their models. Since the classical ML can be implemented in both centralized
and distributed approaches, this section compares FL only with the centralized classical ML,
while the comparison with the distributed ML is performed in the next section. Centralized
classical ML is the concept where data characterized by the same features are collected
from different users on a central server where they are then processed and analyzed. In
this context, the two concepts are compared using [47]:

• Motivation: classical ML focuses on the learning goal, while FL focuses on both the
learning goal and privacy;
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• Data identity: in classical ML, user data are described as independently and identically
distributed (IID), while in FL, it is possible to deal with unbalanced non-IID data
coming from different parties, be it individuals or institutions;

• Centralization: in the classical ML, all data and computations are centralized around
one server, while FL provides both centralized and distributed server architecture;

• Data access: in the classic ML, the central server has full access to the user data, while
this is not the case in FL;

• Communication and data transfer: in classic ML, all the user data are fully transmit-
ted to the central server, while in FL, only minimal parameters or trained models
are exchanged.

Table 2. Summarized Taxonomy for Federated Learning Systems.

Taxonomy Category Structure Advantages

Data partitioning

Horizontal FL Different parties and similar
data features Holds larger variety of parties

Vertical FL Similar parties and different
data features

Holds larger variety of
data features

Federated transfer learning Different parties and different data
features

Holds larger variety of parties and
data features

Machine learning models

Linear models Linear regression, ride regression,
lasso regression Ease of implementation

Decision tree gradient boosting, decision trees,
random forests

Accurate, stable, and can map
non-linear relationships

Neural networks - Learning capabilities, highly robust
and fault-tolerant

Privacy mechanisms

Model aggregation Central manager learns by aggregating
the locally trained model Avoid transmitting original data

Cryptographic methods

Using encryption algorithms such as
homomorphic encryption and secure

multi party computation (SMC) to
encrypt the messages exchanged

among parties

Enables the calculation and processing
of encrypted data

Differential privacy
Reducing the impact of a single data

record on the calculation of the global
model

Reduce the effect of data
poisoning attacks

Methods for solving heterogeneity

Asynchronous communication
sampling To resolve the heterogeneity of parties

Solve the problem of communication
delays and avoid simultaneous

training with heterogeneity of parties

Fault-tolerant mechanism To resolve the failure of parties Prevent whole system from collapsing
if one of the parties failed

Heterogeneous model To resolve the heterogeneity of data Resolve the issue of models diversity

Communication architecture

Centralized design Architecture controlled by a central
aggregation manager/server Reduces communication cost

Decentralized design
Communication performed among
parties without the existence of a

central manager/server
Reduces the risk of backdoor attacks

Scale of federation

Cross-silo FL
Parties are less in number, hold large
amounts of data and equipped with

high computation power
Fits for FL among institutions

Cross-device FL
Parties are high in number, hold less

amount of data and equipped with less
computation power

Fits for FL among individuals

Motivation of federation

Regulations Motivated by laws such as GDPR
and others

Incentives Motivated by desire of updating
some services

Enhancing ML services

2.4.2. FL vs. Distributed and Decentralized ML

The architecture of the FL system is based on the concept of distributed computing.
Therefore, FL is considered a collaborative distributed learning technology. On the other
hand, distributed classical ML is the concept that collects data characterized by the same
features from different users on more than one central server where they are processed and
analyzed. Thus, the concept of distributed classical ML is to distribute the data analysis
tasks to multiple servers instead of just one. Thus, it can be said that distributed classical
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ML models are trained using the same methodology as centralized ML models, except
that they are trained separately on multiple servers. In this context, the two concepts are
compared using [41–43]:

• Motivation: in distributed classical ML, the main goal is to accelerate the processing
phase, while in FL, both privacy and processing phases are targeted;

• Data identity: in the distributed classical ML, the data are described as IID records,
while in FL, it is unbalanced non-IID records due to heterogeneity;

• Centralization: in the distributed classical ML, no central server is included in the
architecture, while in FL, both centralization and distribution are provided;

• Data access: in the distributed classic ML, the data are distributed among several
servers, but the global model still has access to the user data and, moreover, some
servers can have access to all the data of a user at a given time;

• Communication and data transmission: in distributed classical ML, all user data are
transmitted to the network of servers, while in FL, only minimal parameters or trained
models are exchanged.

2.4.3. FL vs. Federated Database System

Federated database systems (FDSs) [65] are systems that are able to combine multiple
database entities and manage them as one overall system. This concept was proposed to
achieve integration between multiple independent databases. Moreover, it can manage
heterogeneous databases distributed among different storage units. Moreover, FDS focuses
on basic operations such as insert, delete, update, and other database operations. In this
context, the two concepts are compared using [44,65]:

• Motivation: in FDBS, the main goal is to perform database operations over diverse
and independent databases, while the main goal of FL is to process heterogeneous
and independent databases to learn from data;

• Data identity: both can support non-IID databases;
• Centralization: both support the decentralization of database storage, but in FDBS,

the processing is handled by a central server;
• Data access: in FDBS, unlike FL, the processing server has access to all data;
• Communication and data transfer: in FDBS all data are transferred in contrast to FL.

The boundaries between federated ML and classical machine learning, distributed and
decentralized machine learning, and the federated database are shown in Figure 6 below.

Figure 6. Borderlines between FL, ML, decentralized ML and federated DB.
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2.5. FL Aggregation Algorithms: State of the Art

The first implementation of federated learning was proposed by Google to train Android
keyboards to predict text input [30]. Despite its success in training machine learning models
without the need to collect user data, the performance of FedAVG is poorly understood and
encounters a number of problems and drawbacks, as discussed in [66]. These drawbacks can
be summarized below:

• Performance issues:

– Suffering from ‘client-drift’ and convergence;
– Tuning difficulty;
– High communication and computation cost;
– Significant variability in systems characteristics on each network device;
– Existence of non-identically distributed data across the network;
– Heterogeneity of devices, users and network channels;
– Sensitivity to local models;
– Scalability issues.

• Security and privacy issues: FL is still under the risk of several breaching attacks
such as:

– Poisoning attacks;
– Inference attacks;
– Backdoor attacks.

Therefore, there was a great need to improve the performance of the federated learn-
ing FedAvg aggregation algorithm to overcome its drawbacks. In this context, several
implementations have been carried out in the last 5 years. Given the diversity of chal-
lenges in this area, researchers are continuously investing in developing or improving FL
aggregation algorithms. To this end, there are twenty-seven aggregation algorithms in the
literature to date. These algorithms are listed in Table 3 below. An in-depth analysis of
these algorithms can summarize the areas to which they contribute in the following list,
which is also detailed in the table:

• Improving model aggregation;
• Reducing convergence;
• Handling heterogeneity;
• Enhancing security;
• Reducing communication and computations cost;
• Handling users’ failures (fault tolerance);
• Boosting learning quality;
• Supporting scalability, personalization, and generalization.

Table 3. Contributions of existing FL aggregation algorithms.
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[30] 2017 FedAVG
[66] 2017 -
[67] 2019 RFA
[68] 2020 SCAFFOLD
[69] 2020 FedOPT

FedADAGAR
FedYOGI
FedADAM

[70] 2020 FedBoost
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[71] 2020 FedProx
[72] 2020 FedMA
[73] 2020 -
[74] 2020 -
[75] 2020 -
[76] 2020 LAQ
[77] 2020 SAFA
[78] 2021 FedDist
[79] 2021 FEDHQ
[80] 2021 FAIR
[81] 2021 FedPSO
[82] 2021 LEGATO
[83] 2021 MHAT
[84] 2021 -
[85] 2021 -
[86] 2021 SEAR
[87] 2021 Turbo-Aggregate
[88] 2022 EPPDA
[89] 2022 FedBuff
[90] 2022 HeteroSAg
[91] 2022 LightSecAgg

However, the achievements of previous federated learning aggregation algorithms
have mainly focused on the aggregation itself or on reducing communication costs. The
other contribution areas have been less studied. For example, among the 27 algorithms
mentioned, 15 targeted global model aggregation and 12 targeted communication cost
reduction, while only three targeted learning quality improvement and only one targeted
personalization. This distribution is shown in the diagram in Figure 7 below.

Figure 7. Aggregation algorithms count per contribution area.

Analysis of the distribution of implementations per contribution domain shows that the
state of the art in federated learning algorithms has produced a number of robust aggregation
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algorithms that are also acceptable from the point of view of reduced communication costs.
However, from a security point of view, all the presented implementations focused on only
one type of attack, namely the Byzantine attack. Other attacks have not been extensively
covered in the literature, raising the question of how robust the available methods are against
attacks such as reversal attacks, which are the main concern of FL, where attackers can detect
users’ private data based on the local trained model exchanged within the network. In
addition, few efforts have been made to improve the learning quality of the models from
FL, which in turn raises the question of the extent to which the accuracy of the traditional
algorithms from ML is comparable to that of the models from FL. Finally, personalization
has only been investigated in a single study, as shown in the table and chart.

2.6. FL Available Frameworks/Platforms

Despite its novelty, federated learning has been a popular topic in the research commu-
nity. The increasing interest in this field assisted in having several frameworks or platforms
that implement FL. Some of those frameworks are [65,92,93]:

• Tensorflow federated (TFF) algorithm [94]: an open source framework for experiment-
ing with FL that enables developers to experiment with novel FL algorithms as well
as simulating existing ones on their data;

• Federated AI technology enabler (FATE) [95]: relies on homomorphic encryption and
supports a range of FL architectures and secure computation algorithms including
logistic regression, tree-based algorithms, neural networks and transfer learning;

• PySyft [96]: developed by OpenMined and decouples private data from model training
using federated learning, differential privacy and multiparty computation;

• Tensor/IO [97]: a lightweight cross-platform library for on-device machine learning,
bringing the power of TensorFlow and TensorFlow Lite to iOS, Android, and React
native applications;

• Tensorflow encrypted: provides an interface similar to that of TensorFlow and aims to
make the technology readily available without requiring the user to be an expert in
ML, cryptography, distributed systems, and high-performance computing;

• CoMind: built on top of TensorFlow and provides high-level APIs for implementing
FL and FedAvg specifically;

• Horovod: based on the open message passing interface (MPI) and works on top of
popular deep learning frameworks, such as TensorFlow and PyTorch;

• LEAF benchmark: is a modular benchmarking framework for machine learning in
federated settings, with applications in FL, multi-task learning, meta-learning, and
on-device learning aiming to capture the reality, obstacles, and intricacies of practical
FL environments.

2.7. Training and Evaluation of Federated Learning Algorithms

FL is known as a privacy-preserving technology, where the data are not transferred
to nor collected at a central server to allow model training. However, when training a
federated machine learning model, updates are aggregated from multiple decentralized
nodes: each node trains a local model on its own data and then shares the model updates
with other nodes, allowing the global model to converge towards a stable solution while
protecting the privacy and security of the individual data points. Additionally, there exist,
in fact, norms and standards that may be used to evaluate federated machine learning
algorithms. However, due to the fact that federated machine learning is still a relatively
new field, these norms and standards are still in the process of developing. These norms
include, but are not limited to [30,94–97]:

• Model accuracy: in the case of FL, model accuracy is a frequent parameter used to
assess performance. Precision, recall, F1-score, and area under the curve (AUC) are
various ways in which a model’s efficacy may be evaluated;

• Communication overhead: since communication delays might have a negative effect
on the efficiency of a federated machine learning system, it is crucial to keep this
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in mind. The length of time spent communicating, the number of times messages
need to be sent back and forth, and the overall quantity of data communicated are all
indicators of communication overhead;

• Convergence speed: the speed with which a model reaches a stable solution is known
as its convergence speed. Since the models in federated machine learning need to be
trained across numerous participants, this is a crucial factor to take into account;

• Privacy: since the data are being shared across several parties, privacy and security
are crucial concerns in federated machine learning. Examples of privacy and security
standards include data encryption, differential privacy, and safe multiparty computing.

These are some of the norms and standards that are used to assess federated machine
learning algorithms. However, given that the area of study is still developing, new norms
and standards may appear as the technology progresses.

3. Federated Learning in Action

Federated machine learning is emerging as a privacy-friendly technology that is
expected to boost the performance of machine learning algorithms by enabling more
data analytics. The ability to analyze more data or even instances with heterogeneous
architectures will help increase the accuracy of smart models and thus increase their
adoption in various domains. This is already demonstrated in the literature where FL
is already being used in various domains such as healthcare, transportation, Internet of
Things, and others [43,50,51].

3.1. FL: Areas of Implementation

Federated learning was initially used to improve the text prediction service for An-
droid Google keyboards. However, its success and efficiency motivated its implementation
in other domains. As an innovative modeling mechanism that allows training a global
model with heterogeneous data from different parties without compromising user data
privacy and security, FL has demonstrated its feasibility for training models that classic
ML models do not allow due to factors such as intellectual property rights, privacy regu-
lations, data confidentiality, statistical heterogeneity, and others. In addition, several FL
implementations have been performed in different domains such as:

• Smart healthcare: due to the sensitive nature of healthcare data, FL is a promising
solution to improve the ML healthcare service while maintaining privacy [51,98];

• Smart retail: the ability to gather knowledge from different institutions enables the
smart retail sector to thrive by analyzing data scattered on different islands [43];

• Transportation: FL helps improve autonomous driving decisions by training vehicles
with data from different geographic locations that enable accurate learning [43,99];

• Natural language processing (NLP): with the ability to handle heterogeneous data, FL
is a good choice to improve the performance of NLP models [43,100];

• Finance: the banking sector is one of the biggest beneficiaries of FL, where the data of
customers scattered in different institutions can be analyzed to assess credit risk [43,50].

3.2. Federated Learning and Disease Prediction

In addition, federated learning has the potential to play an important role in healthcare by
enabling the training of models using distributed and decentralized health data [51,93,98]. This
can help protect patient privacy while enabling the creation of more accurate and personalized
models and the analysis of more data, as long as privacy is maintained. Federated ML can also
enable the training of models with data that are difficult to obtain and consolidate, such as data
from under-served or rural areas. In addition, ML can help eliminate healthcare data islands by
enabling data sharing and analysis across multiple organizations. In addition, FL has increased
its efficiency in learning from data that are distributed across multiple sites and cannot be
combined into a single dataset, or when data reside in multiple clinical systems [101]. In
summary, FL can significantly improve the quality of healthcare by making it more data-driven
and personalized [93,98,101].
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3.2.1. Federated ML and Cardiovascular Diseases: State-of-the-Art

Cardiovascular diseases, which comprise the deadliest diseases, claimed 18.6 million
lives worldwide in 2019, accounting for 32% of global mortality. For this reason, researchers
in the field of machine learning have been addressing the issue of cardiovascular diseases
and trying to find more feasible solutions that can help in predicting these diseases to
reduce their deadly impact. Several implementations have been performed in the literature
to predict CVDs or heart-related information, whether using smart wearables equipped
with smart machine learning models [34] or using only machine learning models as shown
in [102].

However, with the advent of federated learning, it became possible to analyze data
from diverse and heterogeneous sources, supporting the accuracy and feasibility of ap-
plying FL algorithms in cardiology. Consequently, FL has been considered in several
implementations in the treatment of heart disease. For example, the authors in [103] were
the first to apply FL in the field of cardiovascular disease. They analyzed various electronic
health records (EHRs) to predict the hospitalizations of patients with heart disease in a
given year based on their medical history described in the EHRs. To this end, they devel-
oped a federated optimization scheme (cPDS) to solve the sparse support vector machine
(sSVM) problem and used the Boston Medical Center electronic health records to train
and test their model. In addition to maintaining privacy, their model proved to scale well,
and its performance was measured by the area under curve (AUC), which reached as high
as 0.78.

In addition, the authors implemented a regression model in [104] to predict heart rate
using federated learning. They used Polar smartwatches to collect their own data, which
were analyzed using FL sequential Bayesian and empirical Bayes-based hierarchical Bayesian
models. The former model was proposed to work based on a centralized FL architecture,
while the latter provides an alternative decentralized but more scalable method from the
perspective of a hierarchical Bayes model. They succeeded in creating a privacy-friendly and
scalable model that predicted heart rate with high accuracy. Similarly, in [105], the authors
implemented a time-series-to-time-series generative adversarial network (T2T-GAN), which is
a centralized FL model based on LSTM, to predict blood pressure. Their study was performed
using the “Cuff-Less Blood Pressure” estimation, an open source dataset available in the Kaggle
datastore [106] for training and the “College of Queensland vital signs dataset” [107] for testing.
In addition to the novelty of their model, they were able to maintain privacy and predict blood
pressure with high accuracy.

In addition, the study [108] was performed to predict the presence of cardiovascular
disease. With the goal of developing a personalized privacy-preserving model and reduc-
ing the difference between global and local data, a novel feature alignment model was
developed to predict the presence of various cardiac arrhythmias. They analyzed electro-
cardiography (ECG) recordings from their privately collected data and their classification
model achieved 87.85% accuracy. Similarly, in [109], the authors created a classification
model to predict the cardiovascular risks. They analyzed the Nursing Electronic Learning
Laboratory (NeLL) EHR data using a sequential pattern mining (SPM)-based framework.
They created both centralized and decentralized models that could predict risk with high
accuracy while protecting patient privacy.

In the same context, [110] proposed a cardiovascular arrhythmia prediction model
based on federated learning. The authors built a centralized federated transfer learning and
explainable 1D convolutional neural network (CNN) trained with the MIT-BIH arrhythmia
database [111]. They succeeded in preserving privacy, increasing explainability, reducing
communication costs, and creating a personalized model with up to 98.9% arrhythmia
prediction accuracy.

Finally, in [112], the authors developed a 3D CNN for predicting hypertrophic cardiomy-
opathy with FL. Their centralized FL model was trained with the M&M [113] and ACDC
challenges [114] datasets consisting of cardiovascular magnetic resonance images. Their
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model preserved privacy and achieved a performance of 0.89 AUC. The following Table 4
summarizes and presents the federated learning implementations performed with FL.

Table 4. Federated machine learning implementations in CVDs prediction.

Ref Year Type Parameter
Studied

Predicted
outcome

Model FL
Architecture

Contribution Dataset Used Performance

[103] 2018 Classification Electronic
health
records

Hospitalization
for CVD
patients

Federated optimization
scheme (cPDS) for solving
sparse support vector
machine

Scalability
Privacy

Electronic heart
records from the
Boston Medical
Center

Best 0.78 AUC

[104] 2020 Regression Heart rate Heart rate Federated ;earning based
on sequential Bayesian
method (FD Seq Bayes)

Empirical Bayes-
based hierarchical
Bayesian method (FD
HBayes-EB)

Centralized
Decentralized

Privacy
Scalability

Private -

[105] 2021 Regression Blood
pressure

Blood
pressure

Time-series-to-time-series
generative adversarial
network (T2T-GAN)
(based on LSTM)

Centralized Novelty
Privacy

Cuff-Less blood
pressure estimation
[106]
University of
Queensland vital
signs dataset [107]

Mean error of
2.95 mmHg
and a standard
deviation of 19.33
mmHg

[108] 2021 Classification ECG Arrythmias Customized alignment
Model

Centralized Personalization
Privacy

Private Accuracy: 87.85%

[109] 2021 Classification Electronic
health
records

Cardiovascular
risk

Sequential pattern mining
(SPM) Based Framework

Centralized
Decentralized

Privacy Nursing Electronic
Learning Laboratory
(NeLL)

-

[110] 2022 Classification ECG Arrythmias 1D-convolutional neural
Networks

Centralized Privacy
Explainability
Communication
cost reduc-
tion
Personalization

MIT-BIH arrhythmia
Database [111]

Accuracy: 98:9%

[112] 2022 Classification Cardiovascular
magnetic
resonance
images

Hypertrophic
cardiomy-
opathy

3D-convolutional neural
networks

Centralized Privacy M&M challenge [113]
ACDC challenge [114]

Best 0.89 AUC

3.2.2. Federated ML and Diabetes: State-of-the-Art

In addition to its role in predicting cardiovascular diseases, federated learning has
also been used in diabetes detection. According to recent figures from the World Health
Organization (WHO), diabetes affects approximately 422 million people worldwide, most
of whom live in low and middle-income countries, and 1.5 million deaths are directly
attributable to it each year. Most frustrating, however, is the fact that both the incidence and
prevalence of diabetes have substantially increased in recent decades [115]. The criticality
of these diseases and the increase in their numbers require innovative solutions to help
manage these situations. In this context, several implementations of federated learning
have already been carried out.

Additionally, in [116], the authors evaluated the effectiveness of federated neural
network-based retinal microvasculature segmentation and classification of referable dia-
betic retinopathy (RDR) using optical coherence tomography (OCT) and OCT angiography
(OCTA). For this purpose, several datasets were used, including SFU prototype swept-
source OCTA, RTVue XR Avanti (OptoVue, Inc.), Angioplex (Carl Zeiss Meditec), and PLEX
Elite 9000 (Carl Zeiss Meditec). The obtained results show that FL achieves comparable
performance to conventional DL models while maintaining data confidentiality.

In addition, the authors of [117] developed a decentralized, privacy-protected, FL
algorithm to identify individuals at high risk of developing diabetes-related problems. In
their experiments, they trained and evaluated models using the “Health Facts EMR Data”
dataset from Cerner. The results showed that FL can be used not only to maintain privacy but
also to address issues such as class-imbalance when using real-world clinical data. In addition,
FL showed similar performance to the gold standard of centralized learning, and the use of
class-balancing strategies improved performance across all cohorts. In addition, in [118], the
authors proposed the use of deep learning models for the diagnosis of diabetes, also known
as the Diabetes Management Control System (DMCS). The system can predict patients’
glucose levels at each evaluation time point, while the classification model was designed to
identify anomalous data points using a convolutional neural network (CNN) and a multilayer
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perceptron model (MLP). Considering the sensitive nature of patient physiological data
contained in the datasets, the authors developed independent learning (IL) and federated
learning to protect the privacy of user data. However, the dataset used to train and evaluate
the proposed models was generated by a simulator. The results of their study show that the
FL method has a higher retrieval rate (≥98.69%) than the IL method (≤97.87%). In addition,
the FL-CNN model performed better than the MLP model with a recall value of 99.24%
compared to 98.69% for the former and the latter, respectively.

Furthermore, in [119], the authors investigated the privacy threat of gradient inversion
attacks to reconstruct identifiable retinal fundus images during diabetic retinopathy classifi-
cation training with federated learning. Despite the fact that the primary goal of the research
is privacy-related, the authors conducted their evaluation using the fine-grained annotated
diabetic retinopathy (FGADR) dataset [120], which allows for the advanced exploration of DR
diagnosis. The results show that the reconstructed images matched the respective baseline
images with an accuracy level of 72.0%. In addition, the authors proposed an FL-based model
for predicting diabetes in [121]. The experimental results showed that federated learning helps
to overcome data isolation phenomenon, also known as data islands, between healthcare insti-
tutes, and successfully collects patient data from different facilities, which can not only improve
the accuracy of the trained model but also successfully protect patient privacy. Furthermore,
in [122], the authors investigated the use of federated learning to detect diabetic retinopathy
and non-DR images. To this end, they created three models, including standard, FedAVG, and
FedProx, and evaluated their models with five publicly available diabetic retinopathy datasets,
including EyePACS [123], Messidor [124], IDRID [125], APTOS [126], and College of Auckland
(UoA) [127]. The three models achieved accuracies of 92.19%, 90.07%, and 85.81%, respectively.

The aforementioned implementations of federated learning in the detection of diabetes.
In FL, the model can be developed using data from different healthcare facilities without
requiring a facility to provide its entire dataset, improving the generalizability of the model
while maintaining data confidentiality. The state of the art in the use of federated learning
in diabetes discussed in this section is summarized in Table 5:

Table 5. Federated machine learning implementations in diabetes prediction.

Ref Model Data Used Performance

[116] FL deep neural network SFU prototype swept-source OCTA
RTVue XR Avanti (OptoVue, Inc.)
Angioplex (Carl Zeiss Meditec)
PLEX Elite 9000 (Carl Zeiss Meditec)

Performance is comparable to con-
ventional DL models

[117] Not identified Health Facts EMR Data dataset from Cerner Performance is similar to the gold
standard of centralized learning

[118] FL convolutional neural network (CNN)
FL multilayer perceptron (MLP)

Generated by simulator FL-CNN recall: 99.24%
FL-MLP recall: 98.69% performed
better than traditional DL

[119] Not identified Fine-Grained Annotated Diabetic Retinopathy
(FGADR) dataset [120]

Accuracy: 72%

[121] Not identified Private data collected from different healthcare facili-
ties

-

[122] Standard FL FedAVG FedProx EyePACS [123]
Messidor [124]
IDRID [125]
APTOS [126]
University of Auckland (UoA) [127]

Standard FL Accuracy: 92.19%
FedAVG Accuracy: 90.07%
FedProx Accuracy: 85.81%

3.2.3. Federated ML and Cancer: State-of-the-Art

Differently speaking, cancer, which is the disease characterized by the uncontrolled
multiplication and spread of aberrant cells throughout the body, is of particular interest
to federated learning researchers. This disease is known to be a leading cause of death
worldwide, responsible for approximately 10 million deaths in 2020, accounting for 16%
of total mortality [128] that year. Therefore, there is an increasing interest in finding
technological assistance solutions for the diagnosis and prediction of cancer.

In this context, Alexander Chowdhury et al. [129] conducted a comprehensive litera-
ture review to identify the latest applications of federated learning for cancer research and
clinical oncology analysis. Their study came up with several positive results that contribute
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to the understanding of the use of federated learning in cancer diagnosis. Their results
showed that many studies have been conducted in this area, but only 56% of them were
focused on cancer research, while the others used cancer datasets to benchmark a general
method. The studies dedicated to cancer research are listed in Table 6 below:

Table 6. Federated machine learning implementations in cancer prediction.

Ref Disease Data Used Performance

[130] Brain tumor Brain MRI Segmentation Kaggle
dataset [131]

FL results outperform the baseline but classical ML models competed with their results

[132] Brain tumor BraTS dataset [133] Dice = 0.86 for both FL and ML scenarios

[134] Brain tumor BraTS dataset [133] FL performance is similar to ML models

[135] Brain tumor Private data Dice=0.86 for both FL and ML scenarios

[136] Skin cancer ISIC 2018 dataset [137] Accuracy = 91% for both FL and ML scenarios

[138] Skin cancer ISIC 2019 Dermoscopy dataset [137] Accuracy: 89% which outperformed previous implementations

[139] Breast cancer Private data from 7 different institutions FL perform 6.3% on average better than classical ML

[140] Breast cancer Obtained from Netherlands Cancer Registry
(NCR)

Not available

[141] Prostate cancer Private data FL model exhibited superior performance and generalizability to the ML models

[142] Lung cancer Private data from 8 institutes across 5 coun-
tries

Not available

[143] Pancreatic cancer Data from hospitals in Japan and Taiwan FL models have higher generalizability than ML models

[144] Thyroid cancer Private data from 6 institutions DL models outperformed FL models

[145] Anal cancer Private data from 3 institutions Not available

3.3. Discussion

Federated learning is a method for training ML models using decentralized data
residing on different devices or systems as opposed to a central server. In the field of
disease diagnosis, FL could be used to train models on a huge, distributed dataset of
patient data from different hospitals or clinics. This method allows information and
knowledge to be shared between facilities while protecting the privacy and security of
patient data. Using a larger, more diverse dataset also allows for more accurate and
robust models. However, implementations of federated learning for disease prediction,
particularly cardiovascular disease, diabetes, and cancer, can be discussed from several
perspectives, which are discussed in more detail in this section.

3.3.1. Models Performance: Competition between FL and ML

In classical ML, data collection is the first step in the execution of the known pipeline.
It is also known that the accuracy of a trained ML model can be improved by collecting
additional data. Therefore, it is agreed in theory that the accuracy of FL models will surpass
that of traditional ML models because FL can access more data due to its nature.

In this context, the prediction results presented in Table 4 using FL show the high
feasibility and accuracy. For example, the models in [110] achieved 98.9% accuracy in de-
tecting cardiac arrhythmias, whereas the models in [108] had 87.85% accuracy. In addition,
both models in [103,112] had area under the curve values of 0.78 and 0.89, respectively.
However, these results are not better than any classical ML models used to predict CVDs.
Even though the results of [110] are relatively high, a comparison between other imple-
mentations and classical implementations shows that the accuracy of the classical ML is
higher. For example, the machine learning models proposed in [102] achieved over 91%
accuracy in predicting CVDs 12 months before their onset. These results outperform all FL
implementations in Table 4 except [110].

On the other hand, the FL implementations in diabetes diagnosis showed relatively
high performance values, with the authors in [118] recording an accuracy of 99.24%, which
is better than the traditional ML models used in this field, as explained by the authors.
Moreover, in [116,117], the authors stated that the results obtained were comparable to
those obtained with traditional DL models. However, the results in [119] are not as high as
those obtained with other implementations, with an accuracy of 72%, which is lower than
the results obtained with conventional ML models, as shown in [35].
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Furthermore, the results presented in Table 6 were inconsistent in comparing the perfor-
mance between FL and the classical ML and DL models. In this regard, the results obtained
in [132,134,136,136] proved that the FL and ML models (including the classical ML and DL)
have the same performance. However, the results obtained in [130,138,139,141] proved that
the FL models outperform the earlier implementations of ML. In contrast, the authors of
the results in [144] clearly stated that the models of DL outperform the models of FL, in
contrast to the results in [143] where the authors stated that the models of FL have higher
generalizability than the models of ML, but not higher accuracy.

In summary, although FL may theoretically have higher performance in machine
learning, the results obtained are not yet sufficient to prove this hypothesis in the field of
disease prediction. The FL implementations in this field are very accurate and feasible, but
in some cases, the models of ML are still able to provide higher accuracy even if privacy is
not preserved.

3.3.2. Real World vs. Research Implementations

Federated ML was proposed by Google in 2016 [30]. Although FL is still in its infancy,
it has found widespread application in research, particularly in disease prediction.

However, most of the implementations performed, whether these were for cardiovas-
cular diseases, diabetes, or cancer prediction, have been implemented as research studies
rather than production methods. Moreover, most of these implementations are performed
with publicly available data rather than using clinical or real-world data. For example,
in the case of cardiovascular disease prediction, only [103] used real-world data from
healthcare institutions and in the study in [104], real-world data from 10 individuals were
used, whereas the others used either publicly available datasets or unspecified private data.
In addition, none of these implementations were carried through to production readiness,
but were conducted only as research studies.

In addition, the models for diabetes detection based on FL only used [121] data from
a laboratory, whereas [118] used a dataset generated from a simulator and used other
publicly available datasets. In addition, none of these implementations were taken to
production maturity; all were conducted as research studies only. In contrast, for cancer
detection, the studies in [139,142–145] used data from laboratories, whereas others used
publicly available datasets, with the exception of [135,141], which used their own data
without explaining their source. Similarly to the cardiovascular disease and diabetes cases,
all studies were only research studies that were not production projects and were not made
commercially available for further use. These findings support the fact that FL is still in its
infancy and further efforts are needed to move into production phases with FL.

3.3.3. Dedication to Disease Diagnosis

The implementations of federated machine learning that have been performed in the
field of predicting diseases such as cardiovascular disease, diabetes, and cancer have not
all directly been for diagnosing diseases. For example, in the prediction of cardiovascular
diseases, all of the studies listed in Table 4 were aimed at proving privacy-preservation
concepts. In addition, the studies in [103,104] attempted to solve scalability problems
using CVDs, while [108] attempted to solve personalization nodes using FL, and [110] ad-
dressed explainability, where reducing communication costs contributed to both privacy
and personalization. In this context, only [109] addressed the disease itself, without
targeting other FL-related topics, because it used a dataset from a clinical laboratory.

In contrast, the diabetes FL-based implementations summarized in 3 were all devoted
to the disease itself, without targeting other FL-related topics. The same is true for the
studies listed in Table 4, as this table only includes FL-based models dealing with cancer,
whereas the authors in [129] mentioned dozens of articles proposing some FL-based models
trained with cancers but focusing on FL-related topics.

FL-based models are therefore able to analyze data from different institutions that are
not connected or related in the real world, using specific disease datasets while targeting
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other FL-related ideas such as scalability, communication costs, personalization, and so
on. This may potentially help increase the efficiency and accuracy of intelligent models in
predicting disease by giving them access to more data, while also helping to advance the
field itself, clearly a win–win scenario for machine learning and health scientists.

3.3.4. Use of Smart Wearables

Smart wearables are known to provide people with continuous, long-term, and real-
time monitoring. For example, fitness trackers and smartwatches have the potential to
play an important role in the early detection and management of various diseases such as
cardiovascular disease [34], diabetes [35], or even fatigue detection in the workplace, as
shown in [36]. These tools can continuously monitor health data, such as the heart rate,
and provide data that can help identify potential health problems. They also allow data to
be collected outside of traditional healthcare settings, such as doctors’ offices and hospitals,
so that a larger number of patients can be cared for over longer periods of time. Overall,
the use of smart wearables can lead to the earlier diagnosis and treatment of diseases,
improving outcomes and reducing healthcare costs.

The importance of smart wearables stems from their specifications, which have re-
sulted from improvements in information and communication technologies (ICTs), the
Internet of Things (IoT), and artificial intelligence. Smart wearables, as seen in [34–36], can
be known as:

• Non-invasive: do not penetrate the skin to collect data;
• Compact: should not be bulky or large so as not to interfere with life activities;
• Affordable: to increase its acceptance;
• Rugged: to withstand harsh operating conditions such as light scratches or shocks;
• Easy to use: should have an intuitive interface;
• Durable power source: able to operate for a long period of time.

Despite the potential and usefulness of using smart wearables for disease detec-
tion using federated machine learning models, only one study ([104]) has employed a
smart wearable to predict the onset of cardiovascular disease using data collected from a
smartwatch for continuous, long-term, and real-time monitoring. In the other studies on
cardiovascular disease, diabetes, or cancer, the use of smartwatches was not considered in
the research. Therefore, there is still a great opportunity to merge smart wearables with the
field of federated machine learning to enable private and secure model training without
sharing confidential data.

3.3.5. Limitations in the Use of FL for Disease Prediction

In this sense, the use of federated machine learning in the detection and prediction
of CVDs, diabetes and cancer is still in its early stages. In addition to the fact that not
all FL implementations beat classical ML models, very rare real-world examples in this
context can be obtained. In addition, it is also rarely seen that FL researchers used smart
wearables in their experiments. All these details are mentioned in Table 7 below, which
summarizes the results discussed in this section to provide a complete overview of how
implementations based on FL have contributed to different concepts. Moreover, other
limitations and challenges that are obtained in the field of FL and its implementations in
disease prediction are mentioned in Section 4.1 below.
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Table 7. Federated machine learning implementations in CVDs prediction.

Ref Disease FL Beats ML
(Performance)

Real-World
Implementation

Disease-
Oriented Wearable

[103]

CVDs

No No No No
[104] No Yes No Yes
[105] No No No No
[108] No No No No
[109] No No Yes No
[110] Yes No No No
[112] No No No No

[116]

Diabetes

Yes No Yes No
[117] Same No Yes No
[118] Yes No Yes No
[119] No No Yes No
[121] Not available No Yes No
[122] Yes No Yes No

[130]

Cancer

Yes No Yes No
[132] Same No Yes No
[134] Same No Yes No
[135] Same No Yes No
[136] Same No Yes No
[138] Yes No Yes No
[139] Yes No Yes No
[140] Not available No Yes No
[141] Yes No Yes No
[142] Not available No Yes No
[143] No No Yes No
[144] No No Yes No
[145] Not available No Yes No

4. FL in Disease Prediction: Challenges and Future Perspectives

Federated learning, the new and emerging technology, is promising and has already
proven its efficiency in improving ML algorithms without compromising privacy. However,
this technology still faces many challenges that require further research, which requires
further development and improvement in this technology so that it can be further imple-
mented in real-world scenarios. These challenges require further future work to bring this
technology to a higher level so that it becomes more flexible and useful, contributing to its
adoption in different areas of life. This section discusses these challenges and identifies the
corresponding future perspectives needed to overcome obstacles and develop FL. These
challenges demand further future work to bring this technology to a higher level to make it
more flexible and useful, contributing to its adoption in different areas of life. This section
discusses these challenges and identifies the corresponding future perspectives needed to
overcome obstacles and develop FL.

4.1. Challenges

Federated learning is still in its early stages and still faces some obstacles. However,
there is no unified classification of these challenges in the literature, and they can be
considered differently depending on their nature, causes, and possible solutions. In
this section, the challenges have been studied in detail and classified into three main
categories [41,43,45,46,48,49,65,146,147]:

• Data source-related challenges (parties embedded in FL):

– Structural heterogeneity;
– Statistical heterogeneity;
– Data specifications—amount and readiness.
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• Learning process-related challenges:

– Privacy;
– High communication cost;
– Aggregation techniques;
– Personalization techniques;
– Evaluation complexity.

• Other vulnerability-related challenges:

– Federated fairness;
– Application areas.

4.1.1. Data Source-Related Challenges

? Structural heterogeneity: This is also referred to as system heterogeneity. Since
federated learning mainly aims to deal with data scattered in different islands, called
parties, these parties may differ in terms of network state, storage space, performance,
and the processing capabilities of the devices containing the parties’ data. Therefore,
due to network failures, not all devices may be ready and online at each processing
iteration, which is known as device failure. On the other hand, devices with better-
processing capabilities train faster than other devices, resulting in unbalanced training
times. Therefore, device failure and unbalanced training times can cause some devices
to lag behind the global model if they are still training with outdated parameters, with
these devices being referred to as laggards.

? Statistical heterogeneity: Due to the differences between FL embedded parties, the
data generated and collected are generally not independently and identically dis-
tributed (non-IID). Moreover, the data sizes of the different parties can be very differ-
ent, resulting in an unbalanced distribution. This definitely increases the complexity
in terms of analysis, modeling and evaluation.

? Data specifications—amount and readiness: In classical machine learning and deep
learning, the amount of training data is one of the factors affecting the performance
of the models, where large amounts of data can increase the accuracy of the learned
model. However, in a distributed environment, the amount of data on each party
is not the same, and it may be insufficient for local training on some parties, which
therefore affects the accuracy. In addition, heterogeneous data on the parties may
require different preprocessing steps, where some parties can process some missing
data while others do not.

4.1.2. Learning Process-Related Challenges

? Privacy: Despite the fact that federated learning aims to building smart models that
do not collect user data, it is still vulnerable to data leakage caused by attacks. This
is possible because of the transmission of gradients and partial parameters, whether
this is between parties and manager in the centralized architecture or between parties
themselves in the decentralized architecture. Those parameters are under the risk of
cracking on three levels: the inputs, learning process, or learned model, as previously
discussed. Usually, attacks are performed by adversaries ranging from malicious
clients in a party to a malicious party which only has black-box access to the model.
The types of attacks can be summarized into the following groups [54]:

• Poisoning attacks: these are conducted by injecting noise into the FL system, and are
also split into two categories:

– Data poisoning attacks: these are the most common attacks against ML models
and can be either targeted toward a specific class or non-targeted. In a targeted
attack, the noisy records of a specific target class are injected into local data so
that the learned model will act badly on this class;

– Model poisoning attacks: these are similar to data poisoning attacks, where the
adversary tries to poison the local models instead of the local data.
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• Inference attacks: in some scenarios, it is possible to infer, conclude, or restore the
party local data from the model updates during the learning process;

• Backdoor attacks: secure averaging allows parties to be anonymous during the model
update process. Using the same functionality, a party or group of parties can introduce
backdoor functionality in in FL global model. Then, a malicious entity can use the
backdoor to mislabel certain tasks such as choosing a specific label for a data instance
with specific characteristics. For sure, the proportion of the compromised devices and
FL model capacity affects in the intensity of such attacks.

? High communication cost: this is induced by the huge number of involved devices,
encryption and privacy preserving computations, local models and parameter-exchange
batches. In addition, it is known that the life cycle of modern data is short and that the
speed of iterative updating of data is fast, because the most important advantage is time-
liness. Therefore, the cost of communication is a difficult topic that is worth studying;

? Aggregation techniques: in centralized federated learning, the local models are ag-
gregated into a global model at the central server. Due to the variety of amounts of
data at each party, different results of local models, communication bottlenecks and
other challenges, the method behind aggregating the global model is a challenging
topic. In addition, most of the existing aggregation algorithms target the aggregation
itself, communication/computation cost reduction or heterogeneity the most, while
other topics such as personalization and scalability are less investigated;

? Personalization: According to [148], there is a gap between the accuracy of local and
global models, which impose personalization as a challenging topic in FL. However,
there are no clear metrics to evaluate the performance of personalization techniques,
which should be a hot topic for further research;

? Evaluation complexity: In classical ML and DL, the models are evaluated by defined
metrics such as accuracy, communication cost, computation speed, among others. In
contrast, the evaluation of an FL system will add more parameters to be evaluated
such as privacy, additional communication cost, and robustness against attacks.

4.1.3. Other Vulnerabilities

? Federated fairness: fairness is an emerging area of ML, investigating how to confirm
that the results of a model do not depend on sensitive attributes in a way that is
considered unfair. FL creates new problems for researchers regarding fairness and
requires a greater focus on improving the fairness of existing algorithms. At present,
it is unclear whether existing fairness methods and frameworks that have been shown
to be effective in ML will also be effective in FL;

? Application areas: federated learning has mainly been applied to supervised learning
algorithms. Therefore, when using FL in domains that require data exploration, such
as reinforcement learning, unsupervised learning, semi-supervised learning, and
others, some challenges may arise;

? User adoption: one of the main obstacles to integrating federated machine learning
into disease diagnosis is user acceptance, adoption, and participation. Although FL is
known as a privacy-friendly technology, FL is still new and has mixed user adoption
due to privacy concerns, discomfort, ethics, and other contextual factors.

Therefore, these difficulties give rise to the study questions below. In addition, these
questions are illustrated in Figure 8 below (the initialism RQ in the list below and in the
figure refers to the term “research question”):

• RQ1: Heterogeneity has a negative impact on the performance of a federated learning
system. What are the solutions to deal with diversity?

• RQ2: Real-world data are noisy and usually not suitable for analysis by intelligent
models. How can peripheral data be processed before these are used for model training?

• RQ3: Federated machine learning is vulnerable to security breaches and attacks. What
mechanisms are in place to strengthen these algorithms against malicious entities?
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• RQ4: The additional computations and sharing of models incur additional commu-
nication and computational costs in the FL system. What techniques can be used to
manage the increasing costs?

• RQ5: The available aggregation algorithms consider aggregation, reduction in com-
munication and computational costs, and privacy the most, while other issues such as
personalization and scalability are the least considered. What further steps need to be
taken to improve the performance of FL’s aggregation algorithms?

Figure 8. Research questions arising from analyzing the usage of FL in disease prediction.

4.2. Future Perspectives

Federated learning technology is still in its infancy, and there is much room for
improvement and enhancement that can increase its efficiency and feasibility. Based on the
literature review and investigation of the major challenges in this area, the following future
prospects can be identified in FL [41,43,45,46,48,49,65,146,149]:

? Managing heterogeneity: Heterogeneity in federated learning systems can result
from both data and hardware, which is known as statistical or structural heterogeneity.
To overcome heterogeneity, federated learning researchers may consider the following:

• Structural heterogeneity:

– Fault tolerance: FL considers the impact of low participation in the training pro-
cess to resist device failures by storing user updates in a trusted cache architecture
to mitigate their unreliable impact on the global model;

– Resource allocation: to solve resource scarcity, most of the previous work is
devoted to properly allocating resources to heterogeneous devices.

• Statistical heterogeneity:

– Data clustering: separating independent data into multiple clusters, then pro-
cessing FL on each cluster, which is not suitable for training bulk data due to
conversion overhead;

– Modify local training mode: put cross-entropy loss into the transfer process and
assign different local update times to each party in each processing iteration;

– Meta learning [150]: Improve training on non-IID data by creating a small subset
of data that are shared among all edge devices.

? Privacy preservation enhancement: even though the main goal of FL is to preserve
privacy by sharing the trained model between entities instead of raw data, the privacy
preservation concept needs further enhancement, especially towards:
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• Enhancing security mechanisms: by proposing new robust and feasible security
mechanisms that are protected against data attacks and cracking;

• Verifying the returned model: most privacy preserving methods (FL) assume that the
clients are reasonably honest. Although this is in line with training rules, curiosity in
acquiring private data remains. Therefore, the returned model should be checked to
determine whether it can be considered non-malicious.

? Communication optimization: due to the system and structural heterogeneity, as
well as the decentralized nature of FL, the research area of the communication cost
reduction is a hot topic to attend to. There are plenty things to be considered in this
area, such as:

• Gradient aggregation: it is worthwhile to introduce adaptive weighting for each party
or an ML method to learn how to aggregate these gradients in an efficient way;

• Handle heterogeneity: efficiently handling heterogeneous data and devices will defi-
nitely reduce communication rounds;

• Novel models of asynchrony: in the environment of FL, there is a large variety of
devices where the synchronous scheme can be easily disrupted. Therefore, it is better
to use an asynchronous scheme that can handle this diversity, solve the communication
delay problem, and avoid concurrent training with heterogeneous devices; Therefore,
the development of asynchronous FL platforms is a possible area of study;

• One-/few-shot learning: to minimize communication costs, reducing the number
of learning rounds could be a viable solution. Some researchers are exploring the
possibility of training the local models with only one iteration and updating the global
model accordingly.

? Performance optimization: The trade-off between communication, performance, and
privacy is an active research area in FL. Performance optimization can be achieved
using various approaches, such as:

• Incentive mechanism: to encourage parties’ participation in the training process in
a feasible way, it is important to encourage high-quality users to contribute to the
process by granting them some rewards, while neglecting or rejecting untrustworthy
users because the inconsistent quality of data provided by users;

• Handle party dropouts: as one of the biggest challenges in networks with a large
number of devices, handling dropouts will reduce communication costs, especially
related to delayed parties;

• Personalization: improving FL personalization is much needed by users and has
far-reaching applications. Many involved data holders will prefer to receive more
personalized models to better meet their needs.

? Toward unsupervised learning: unsupervised data are a large part of the data avail-
able in real life, and unsupervised learning is an area of great interest around the
world. Therefore, it is of great efficiency to move towards unsupervised learning
models with FL;

? Production of FL: due to its novelty and lack of popularity, FL still needs to be put
into production so that it can gain trust and be used in more areas of life;

? Benchmarks: since the technology is still in its infancy, there is a large window of
opportunity for benchmarking to define its future by ensuring that it is based on
real-world circumstances, assumptions and datasets.

For this reason, we can summarize the prospects on the following emerging research
topics. Moreover, these research topics are shown in Figure 9 as follows (the symbol TR in
the list below and in Figure refers to the term “trending research topic”):

• TR1: Fault tolerance, resource allocation, data clustering, modifying local training
models, and meta learning help handle heterogeneity;

• TR2: Preprocessing of data at peripherals to enhance their readiness may boost the
overall model accuracy;
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• TR3: More security perspectives are needed to strengthen FL against attacks;
• TR4: More communication/computation cost reduction is needed to boost the perfor-

mance of FL algorithms;
• TR5: more perspectives are needed to be taken into consideration in aggregation

algorithms such as privacy, personalization, and scalability.

Figure 9. Research topics that may serve as solutions to the challenges in the domain.

Figure 10 below summarizes the challenges–future solutions relationship and illustrates
how future views may act as potential solutions in the domain, all of which can assist in en-
hancing research on the use of federated machine learning in disease diagnosis and prediction.

Figure 10. Challenges–future solutions chart.

5. Conclusions

It is hoped that the federated ML will solve the privacy problems of ML. It is attractive
because it allows models to be trained without revealing sensitive information. Several
aggregation strategies for FL knowledge have been proposed, although the field is still
in its infancy. There are several examples of the application of this technology in various
industries, including healthcare, banking, and others. As explained in this article, it has been
used in healthcare as a diagnostic tool for a number of diseases, including cardiovascular
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disease, diabetes, and cancer. Federated machine learning has achieved some successes so
far, but still faces challenges such as the diversity of data and devices in the FL network,
the possibility of security breaches and attacks, and the high cost of computation and
communication. To help future researchers understand where we are now with this
technology and what they need to take the following steps, this article presents a number
of future directions that could be pursued to address these obstacles and improve the
efficiency of this technology.
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