
Citation: Lee, D.; Lee, E.; Hwang, Y.

Lossless Reconstruction of

Convolutional Neural Network for

Channel-Based Network Pruning.

Sensors 2023, 23, 2102. https://

doi.org/10.3390/s23042102

Academic Editors: Simone Bianco,

Marco Buzzelli and Jean Baptiste

Thomas

Received: 31 December 2022

Revised: 6 February 2023

Accepted: 9 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Lossless Reconstruction of Convolutional Neural Network for
Channel-Based Network Pruning
Donghyeon Lee † , Eunho Lee † and Youngbae Hwang *

Department of Control and Robot Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
* Correspondence: ybhwang@cbnu.ac.kr; Tel.: +82-43-261-3641
† These authors contributed equally to this work.

Abstract: Network pruning reduces the number of parameters and computational costs of convolu-
tional neural networks while maintaining high performance. Although existing pruning methods
have achieved excellent results, they do not consider reconstruction after pruning in order to apply the
network to actual devices. This study proposes a reconstruction process for channel-based network
pruning. For lossless reconstruction, we focus on three components of the network: the residual
block, skip connection, and convolution layer. Union operation and index alignment are applied to
the residual block and skip connection, respectively. Furthermore, we reconstruct a compressed con-
volution layer by considering batch normalization. We apply our method to existing channel-based
pruning methods for downstream tasks such as image classification, object detection, and semantic
segmentation. Experimental results show that compressing a large model has a 1.93% higher accuracy
in image classification, 2.2 higher mean Intersection over Union (mIoU) in semantic segmentation,
and 0.054 higher mean Average Precision (mAP) in object detection than well-designed small models.
Moreover, we demonstrate that our method can reduce the actual latency by 8.15× and 5.29× on
Raspberry Pi and Jetson Nano, respectively.

Keywords: network pruning; lossless reconstruction; convolutional neural network

1. Introduction

Deep neural networks (DNNs) have been used in computer vision tasks with signifi-
cant achievements, such as image classification [1–3], object detection [4–8], and semantic
segmentation [9–11]. They are utilized in natural language processing and forecasting as
well [12]. Generally, as the performance of DNNs improves, the number of parameters and
computational complexity increase to deal with greater diversity from various databases.
However, the trade-off between performance and cost renders the application of DNNs to
resource-limited devices challenging.

To mitigate this trade-off, attempts have been made to design networks with high
performance and efficiency. ResNet [2] constructs a deeper network based on a residual
block. Although it achieves good results in image classification, it is computationally
expensive because of the deeper structure. To apply this network on devices with different
resources, various depth models were provided. In object detection, YOLO [6] introduces a
one-stage regression method to enable real-time operations. Nevertheless, owing to the
requirement for high computation, this method cannot be easily applied to resource-limited
devices. Therefore, a smaller model termed tiny-YOLO was designed as well. However,
these methods require delicate manipulation to configure the network and are inflexible in
meeting the costs of various target devices.

Several studies have sought to compress the network while maintaining high per-
formance. Network pruning reduces the cost of resources by eliminating redundant
components from the network. It can be divided into two types, namely, unstructured and
structured pruning. The former compresses the network using weight-level consideration.

Sensors 2023, 23, 2102. https://doi.org/10.3390/s23042102 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042102
https://doi.org/10.3390/s23042102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7428-8228
https://orcid.org/0000-0002-3400-0493
https://doi.org/10.3390/s23042102
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042102?type=check_update&version=1


Sensors 2023, 23, 2102 2 of 17

To eliminate unnecessary elements, weights that have little effect on the results are removed.
Han et al. [13,14] pruned weights with small magnitudes. Dong et al. [15] evaluated the
influence of weights based on changes in weight loss. Instead of using the weights of a
well-learned network, an optimal network can automatically be identified by learning a
model for compression [16]. These methods can save several parameters without reducing
performance. However, special hardware is required to reduce computational costs and
network parameters. Notably, structured pruning removes channel-level elements that
have less effect on performance. Similar to unstructured pruning, a method to prune
channels without affecting the results exists. Several methods determine and eliminate
meaningless filters based on the L1 or L2 norm [17,18]. Another approach uses a geometric
median to reduce redundant channels [19]. Another study directly learned the structure
of a compressed network [20–22], allowing computational complexity to be reduced di-
rectly by reconstructing the network. These methods are highly compatible, as they can
be applied to well-designed models. In particular, structured pruning does not require
special hardware, and as such can be used for devices with different resource budgets.
However, most pruning methods only deal with cutting out redundant components, and
do not consider the reconstruction process.

This study proposes a lossless reconstruction method for channel-based pruning.
Most recent convolutional neural networks (CNNs) are composed of residual blocks,
skip connections, and convolution layers [23–25]. We reconstructed the pruned model
considering these components. In order to design a deeper model, a residual block is used
to avoid a vanishing gradient through identity mapping. As the spatial information of the
feature maps can be damaged during the reconstruction process, a union operation was
applied to preserve spatial information while reconstructing the network. A skip connection
was used to alleviate information loss by transferring low-level features to a deeper layer.
After the pruning process, only a few feature maps containing important information
remained. Index alignment was then used appropriately to transfer the remaining feature
maps. We considered batch normalization to reconstruct the convolution layer without
performance degradation. Batch normalization directly affects the output of the convolution
layers, and as such ought to be handled simultaneously.

In our experiments, we applied the proposed reconstruction method after applying
the existing channel-based pruning method. The results show that the proposed method
effectively reduces both computational complexity and the number of parameters without
impacting performance. Experiments on downstream tasks, such as image classification,
object detection, and semantic segmentation, were conducted in order to demonstrate
the compatibility of our method. We observed that performing compression on a large
model yields better results than compressing a well-designed small model. Moreover, the
inference speed can be accelerated while maintaining performance on various devices. This
indicates that the training time could be significantly reduced by changing the sequence of
the compression process. The contributions of this study are as follows:

• We propose a lossless reconstruction method using a residual block, skip connection,
and batch normalization layers after the pruning algorithm to remove redundant
channels.

• We show that compressing a large model leads to better performance than compressing
a well-designed small network.

• We demonstrate that our method is able to significantly reduce runtime by measuring
the latency on Raspberry Pi and Jetson Nano.

The rest of the paper is organized as follows: Section 3 introduces our lossless recon-
struction method; validation of various computer vision tasks, such as image classification,
semantic segmentation, and object detection on various devices, are presented in Section 4;
Section 5 presents a discussion; finally, Section 6 concludes the study.



Sensors 2023, 23, 2102 3 of 17

2. Related Works
2.1. Architecture Search

CNNs have achieved considerable results in computer vision tasks; however, they
require a large resource budget to ensure performance. To alleviate this trade off, re-
search efforts have sought to design efficient models while preserving high performance.
MobileNet [26] decomposes conventional convolution into depth-wise and point-wise
convolution. This effectively approximates convolution, and significantly reduces the
amount of computation required. EfficientNet [23] categorizes the parts that affect the
cost of the network into depth, width, and resolution. Based on these components, it
determines the optimal combination for a network with high performance and good ef-
ficiency. Unlike these methods, which require human effort, Neural Architecture Search
(NAS) [27] discovers the optimal network structure according to the computation cost by
applying reinforcement learning. To reduce the search time, DARTS [28] effectively re-
duces the processing time required to identify an architecture by proposing a differentiable
search method. Rather than discovering the architecture directly from large search spaces,
RegNet [29] designs search spaces and discovers the network structure. However, these
methods are inflexible to the resource requirements of the target device, as they require
considerable effort and cost to determine the optimal network.

2.2. Unstructured Pruning

Studies have been conducted on compressing a designed network in order to bet-
ter correspond to the resource budget of the target device. Network pruning lowers the
computational cost of a network by eliminating insignificant elements. This process can
be categorized into unstructured or structured pruning. The former eliminates mean-
ingless and redundant weights. Several studies have proposed pruning methods that
disconnect unimportant connections [30,31]. Han et al. [13,14] pruned networks based
on the magnitude of the weights and applied a quantization process for further compres-
sion. Net-trim [32] compresses networks by minimizing errors through special convex
optimization. However, this method does not achieve a high compression rate. Further,
Dong et al. [15] reduced the less meaningful weights based on the second derivative of the
loss function. Hu et al. [33] eliminated insignificant weights by analyzing the output of a
large dataset. Molchanov et al. [34] sparsified fully connected and convolution layers using
variational dropout. To automatically reduce network size, AutoPrune [16] is a pruning
method with recoverability that is able to learn the thresholding function and prune the
model simultaneously. Lee and Hwang [35] proposed layer-wise compression by modeling
the weight distribution of each layer using a Gaussian mixture model. Yu et al. [36] solved
the combinatorial extension of (OBS) [31] using tractable formulation. A strong bias was
induced when pruning was performed before or during training. Wimmer et al. [37] intro-
duced interspace pruning to deal with this bias. Although unstructured pruning achieves a
high compression rate, it requires special hardware and data reconstruction methods, such
as a hash map, to reduce the use of actual resources.

2.3. Structured Pruning

Another approach, structured pruning, eliminates less meaningful components from
the channel dimensions. By directly pruning structured elements, the required computation
and number of parameters can be reduced without specialized hardware or extra costs. A
number of pruning methods based on the channel-wise L1 and L2 norms are similar to
unstructured pruning [17,18]. aPoZ [33] identifies unimportant values by considering the
zero rate after the activation function. To address the redundancy of each layer, He et al. [19]
proposed using a geometric median-based pruning method rather than the L1 or L2 norm.
ThiNet [38] prunes the filters of the current layer using the output feature map of the layer.
NISP [39] obtains importance scores by considering the final response layer and formulates
network pruning as a binary integer optimization.



Sensors 2023, 23, 2102 4 of 17

Studies have been conducted to determine the optimal number of channels in each
layer for achieving the best performance. To discover an appropriate structure, a hypernet-
work is used to produce the weights and channels of the network [20,40]. LeGR [21] learns
the global ranking of models using an evolutionary algorithm. To ensure high accuracy,
Gao et al. [22] trained a performance prediction network to guide the pruning process.
Li et al. [41] determined channel configuration using a random search. Shen et al. [42]
pruned channels globally based on magnitude and gradient criteria. Unlike pruning-only
methods, Hou et al. [43] proposed a pruning-and-regrowing method to avoid removing
important channels. These methods can compress a network while ensuring high perfor-
mance. However, they do not consider the potential performance degradation that can
occur during the actual reconstruction process.

3. Methods

Existing channel-based pruning methods are able to compress networks while achiev-
ing high performance. However, the reconstruction process has not been considered
previously. This can cause performance degradation when the network is applied to a
target device. This study proposes a reconstruction process to reduce the actual compu-
tation and number of parameters required without affecting the accuracy. To preserve
performance, we focus on the residual block, skip connection, and convolution layer, which
are the basic components of a CNN. Our overall pruning process is shown in Figure 1.

Figure 1. Pruning process with reconstruction.

3.1. Residual Block

A residual block was introduced into ResNet [2] in order to design a deeper network
consisting of bottleneck layers and shortcut connections. Using the latter, we addressed the
vanishing gradient problem by passing the loss along directly. Moreover, fast convergence
was possible based on residual learning. Therefore, shortcut connections needed to be
considered in order to ensure performance. After the pruning process, feature maps with
zero values were produced by eliminating less meaningful filters, as shown in Figure 2.



Sensors 2023, 23, 2102 5 of 17

Figure 2. Overview of reconstruction method for residual blocks. The blue background represents
feature maps of the residual blocks and the gray background represents the filters of the residual
blocks. Each zero-value filter or feature map is represented in gray. Yellow and green filters represent
the filters remaining after pruning. Yellow and green filters are used during union operations. Dashed
items are those removed after pruning.

As the channel-wise importance of the two layers to be added through the shortcut
connection was not the same, filters with different indices were removed. If channels with
zero value are cut out directly, feature maps with different indices must be added together,
resulting in significant loss. As shown in Figure 2, we instead apply a union operation for
index matching. To minimize performance degradation, the corresponding index should
not be removed from another layer when a specific channel index is retained from one
channel. Adopting a union operation guarantees this property, functioning as a type of
padding and matching the indexes of both layers, allowing lossless reconstruction.

3.2. Skip Connection

A skip connection transfers low-level features to deeper layers. It is widely used to
improve representation power because it aggregates detailed information in the shallow
layer and global features in the deeper layer. A skip connection concatenates low and high-
level feature maps to transfer information. As shown in Figure 3, the less important filters
are set to zero values during the pruning process, and the feature maps corresponding to
these filter indices have zero values.

Because features with zero values are meaningless when operating on concatenated
feature maps, the filter corresponding to the zero-valued feature maps can be removed as
well. Index alignment is required to accurately remove filters with redundant computation.
As shown in Figure 3, lower-level feature maps are shifted by the number of channels
of higher-level feature maps when concatenating through the skip connection. For index
alignment, the offset is assigned to low-level feature maps to the extent of the shift. Because
the index corresponding to the zero value can be accurately removed, usage of the actual
resource is reduced without performance loss.



Sensors 2023, 23, 2102 6 of 17

Figure 3. Overview of proposed reconstruction method for the skip connection. Gray indicates a
value of zero, while yellow and red represent the remaining filters in the shallower and deeper layers,
respectively. Our method offsets the remaining index of a shallow layer as a filter size of a deeper
layer during the reconstruction stage. Finally, the gray items are eliminated after pruning.

3.3. Batch Normalization

Typically, the convolution layer consists of convolution, activation, and batch normal-
ization. Most pruning methods use the weight of a convolution to determine its importance
and then eliminate the less significant components. However, dealing only with convolu-
tion can cause performance degradation owing to activation or batch normalization. In
particular, batch normalization [44] can solve internal covariance shifts, and has a significant
effect on the network:

µB =
1
m

m

∑
i=1

xi, σ2
B =

1
m

m

∑
i=1

(xi − µB)
2,

x̂i =
xi − µB√

σ2
B + ε

, yi = γx̂i + β,
(1)

where B = {x1, x2, ..., xm} indicates a mini-batch, xi is the ith data in the mini-batch, and γ
and β are the scale and shift, respectively, both of which are trainable parameters. Unlike
the activation function, batch normalization affects the shift and scale transformation of
feature maps. Therefore, it is sensitive to network pruning. Figure 4 shows the effects of
batch normalization. After the pruning process, the less meaningful filters are removed,
and the value of the corresponding feature maps should be zero. However, when batch
normalization is not considered, these feature maps have non-zero values owing to scale
and shift transformations. Because they affect the output of the network, information
loss occurs if they are eliminated during the reconstruction process. To address this
issue, we modified the pruning process by considering batch normalization. As shown in
Figure 4, the proposed method eliminates both unnecessary filters and the corresponding
parameters used for batch normalization in the pruning process. The feature maps retain
values of zero because the scale and shift transformations have no effect. This approach
to pruning enables network compression during the reconstruction process without any
information loss.



Sensors 2023, 23, 2102 7 of 17

Figure 4. Comparison of different methods for dealing with the batch normalization parameters.
Gray and green indicate zero and non-zero values, respectively. The proposed method prunes the
batch normalization parameters to correspond with the pruned filters in the convolution layer.

4. Experiments

We experimentally demonstrated the effectiveness of the proposed lossless recon-
struction method. First, we applied our proposed method to image classification, object
detection, and semantic segmentation in order to show its compatibility for downstream
tasks. Second, we measured the latency and FLOPs (FLoating point OPerations) on several
devices to verify the actual compression. In an ablation study, we show that each of the pro-
posed algorithms is effective for lossless reconstruction. Table 1 lists the hyperparameters
used in the experiments.

Table 1. Hyperparameters of original and pruned models.

Image Classification Semantic Segmentation Object Detection

Original Model Pruned Model Original Model Pruned Model Original Model Pruned Model

batch size 128 128 16 16 16 16
GPU 2 2 1 1 1 1

epoch 200 100 100 50 150 100
optimizer SGD SGD SGD SGD SGD SGD

momentum 0.9 0.9 0.9 0.9 0.9 0.9
weight decay 0.0001 0.0001 0.0001 0.0001 0.0005 0.0005

initial lr 0.1 0.01 0.001 0.001 0.0001 0.0001

lr scheduler divided by 10 divided by 5 divided by 5 divided by 5 cosine annealing cosine annealing
at 90, 140 epochs at 50, 70 epochs at 50, 70 epochs at 25, 40 epochs (0.0001∼0.00001) (0.0001∼0.00001)



Sensors 2023, 23, 2102 8 of 17

4.1. Image Classification

We applied our method to ResNet [2], an image classification network. A residual
block was used to address the vanishing gradient problem that occurs when designing
deeper networks. As the depth of the network increases, the performance improves and
the computation becomes heavier. By controlling depth, networks with different costs can
be designed for application to various devices.

In this experiment, we use ResNet101, ResNet50, ResNet34, and ResNet18. ResNet101
and ResNet50 are designed with 101 and 50 bottleneck blocks, respectively, comprising a
combination of 1 × 1 filters in the first case and a 3 × 3 filter in the second. By constrast,
both ResNet34 and ResNet18 consist of basic blocks of 3 × 3 filters. For training, the
networks use pre-trained models provided by Pytorch. We used SGD (Stochastic Gradient
Descent) with a mini-batch size of 128 running on two GeForce 2080 Ti GPUs. The model
was fine-tuned over 100 epochs starting with a learning rate of 0.01, then dividing it by
five at 50 and 70 epochs. The momentum and weight decay were set to 0.9 and 0.0001,
respectively. For compression, L1, L2 [17,18], and geometric median (GM)-based [19] prun-
ing methods were used. To evaluate the accuracy of the networks, we used the CIFAR10
dataset (https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf) (accessed on
30 December 2022) [45], which consists of 50k/10k training and testing images, respectively,
with ten classes. As presented in Table 2, “Acc.↓(%)” is the difference from the baseline
for ResNet101.

First, we compare ResNet50 with the compressed ResNet101 comprising bottleneck
blocks. In order to conduct a fair comparison, we compressed ResNet101 by 40% to achieve
FLOPs comparable to those of ResNet50. Table 2 shows that the actual resources are
reduced by the proposed reconstruction process. With similar costs, the accuracy loss
of the compressed network is 0.04%, whereas the smaller model has a performance gap
of 0.63% compared with the baseline. The training loss and ROC curve of the pruned
ResNet101 are shown in Figure 5. For a fair comparison with ResNet34, which consists of
basic blocks, ResNet101 and ResNet50 were compressed with compression rates of 0.45
and 0.1, respectively. The results show that the networks compressed with ResNet101 and
ResNet50 have performance losses of 0.14% and 0.15% from baseline, respectively, whereas
the one compressed with ResNet34 has an accuracy difference of 0.83%. Compressing
ResNet50 increases the performance. This shows that network pruning has a dropout effect
and can help with generalization. Finally, we compare the smallest network, ResNet18, with
the other compressed networks. To obtain the same resources, ResNet101, ResNet50, and
ResNet34 were compressed to 0.7, 0.5, and 0.5, respectively. Table 2 shows that ResNet18
has a performance gap of 2.53% from the larger model, whereas the other networks have
less performance loss.

Figure 5. (a) Training loss for ResNet101 pruned at 40% using L1, L2, and GM methods and (b) the
ROC curve per class for the best ResNet101 pruned by the L1 method.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


Sensors 2023, 23, 2102 9 of 17

This experiment shows that compressing a large model produces better performance
than using a small network to reduce the computational cost and number of parameters.
Moreover, the performance gap between the large and compressed models is not significant,
indicating that the pruning method can remove only redundant channels while maintaining
the capacity of the model. However, in the case of GM-based compression, performance
degradation increases as the compression rate increases. This shows that the number
of redundant channels is small and that meaningful channels can be removed at high
compression rates. As actual resources can be reduced using the proposed method, they
can be adaptively applied to the target device.

Table 2. Compression results of pruning ResNet on CIFAR-10. The “CR” column indicates the
network compression ratio used for pruning, while “Method” denotes the network pruning criterion.
In particular, the GM method denotes the criterion introduced in [19]. “Acc.↓ (%)” is the accuracy
drop from the baseline model, with smaller values being better.

Model CR Method FLOPs(M) Params(M) Acc. (%) Acc.↓ (%)

ResNet101 - - 1269.58 44.54 93.30 0.00- baseline

ResNet101
0.4 L1 621.86 21.86 93.26 0.04
0.4 L2 621.78 21.89 93.20 0.10
0.4 GM 633.40 23.39 93.06 0.24

ResNet50 - - 661.00 25.54 92.67 0.63

ResNet101 - - 1269.58 44.54 93.30 0.00- baseline

ResNet101
0.45 L1 553.16 19.49 92.92 0.38
0.45 L2 553.7 19.54 93.16 0.14
0.45 GM 564.55 21.11 90.02 2.98

ResNet50 - - 661.00 25.54 92.67 0.63

ResNet50
0.1 L1 571.66 22.17 93.15 0.15
0.1 L2 571.62 22.16 93.11 0.19
0.1 GM 573.54 22.45 93.11 0.19

ResNet34 - - 585.31 21.78 92.47 0.83

ResNet101 - - 1269.58 44.54 93.30 0.00- baseline

ResNet101
0.7 L1 257.7 9.20 92.30 1.00
0.7 L2 259.7 9.24 92.47 0.83
0.7 GM 264.3 10.76 89.92 3.38

ResNet50
0.5 L1 267.48 10.48 92.61 0.69
0.5 L2 269.02 10.47 92.70 0.60
0.5 GM 275.22 11.88 92.52 0.78

ResNet34 - - 585.31 21.78 92.47 0.83

ResNet34
0.5 L1 281.42 10.33 92.13 1.17
0.5 L2 280.86 10.23 91.72 1.58
0.5 GM 286.12 10.73 91.14 2.16

ResNet18 - - 282.71 11.68 90.77 2.53

4.2. Semantic Segmentation

Our method was applied to semantic segmentation by compressing a Fully Convo-
lutional Network (FCN) [46] from Pytorch. The spatial information used to performs
pixel-wise classification is crucial for image segmentation. The FCN replaces fully con-
nected layers, which cause deterioration of spatial information, with convolutional layers.
This network is divided into feature extraction using residual blocks and upsampling for



Sensors 2023, 23, 2102 10 of 17

pixel-wise classification. In order to preserve the spatial information, we apply our method
only to feature extraction .

To train the large network, we used the Pascal VOC dataset (http://host.robots.ox.
ac.uk/pascal/VOC/) (accessed on 30 December 2022) [47], which has twenty classes and
11,530 training/validation images. Starting with pre-trained FCN models provided by
Pytorch, we fine-tuned the models for 100 epochs using the per-pixel multinomial logistic
loss and validated them with the standard metric of mean pixel intersection over union.
We used an SGD with a mini-batch size of 16 running on a GeForce 2080 Ti GPU. The
model started with a learning rate of 0.01, which was divided it by five at 60 and 80 epochs.
The weight decay and momentum were set as 0.0001 and 0.9, respectively. To evaluate
the network performance, we used two metrics, namely, the global accuracy and mean
intersection over union (mIoU), defined in the FCN [46] as follows:

GAcc =
∑i nii

∑i ti
, (2)

mIoU =
(1/ncl)∑i nii

(ti + ∑j nji − nii)
(3)

where nij is the number of pixels of class i predicted to belong to class j, ti = ∑j nij is the
total number of pixels of class i, and ncl is the number of classes.

We compressed a large model, FCN-ResNet101, to show the effectiveness of the
proposed reconstruction. L1, L2, and GM-based pruning methods were used, and the
compression rate was set to 0.3 in order to achieve similar FLOPs with FCN-ResNet50.
For comparison, FCN-ResNet50, a smaller model with low resource usage, was trained
using the same settings as the large model. Table 3 shows that the FLOPS and number
of parameters decrease when applying our method. The model performs the best when
compressed with L2-based pruning, with a performance loss of 0.64 for GAcc and 1.9
for mIoU. The results show that the pruning networks based on L1 and L2 have similar
GAcc and mIoU results, while the GM-based method performs significantly worse. As
the methods based on L1 and L2 cut out channels with small norms, the loss of spatial
information is small. However, because GM-based pruning compresses the network based
on redundancy, the norms of the removed channels can be considerable. This causes
a relatively large loss of spatial information compared to pruning based on L1 and L2.
Next, we compare the well-designed small model and the compressed network. With the
exception of the GM-based method, Table 3 shows that the compressed network achieves
higher GAcc and mIoU with similar resources as the smaller FCN-ResNet50 model. In the
small model, the feature extractor consists of ResNet50, which has a shallower depth than
the large model. Therefore, the capacity of the network is small. These result show that
compressing a large model with high capacity can result in perform better than using a
well-designed smaller network with low capacity.

Table 3. Comparison results of pruning FCN on Pascal VOC. “GAcc” indicates global accuracy; “GAcc

↓” and “mIoU ↓” are dropped from the baseline model, with smaller values being better; “CR” and
“Method” have the same meaning as in Table 2.

Model CR Method FLOPs(G) Params(M) GAcc GAcc ↓ mIoU mIoU ↓

FCN_ResNet101 - - 397.86 54.31 94.87 0.00 75.1 0.00- baseline

FCN_ResNet101
0.3 L1 260.4 35.57 94.12 0.75 72.8 2.3
0.3 L2 260.72 35.61 94.23 0.64 73.2 1.9
0.3 GM 276.42 37.78 92.69 2.18 66.6 8.5

FCN_ResNet50 - - 260.93 35.32 93.66 1.21 71.0 4.1

4.3. Object Detection

We applied the proposed method to YOLOv3 [48], which is a single-stage object detec-
tion network. To compress the network, we implemented our reconstruction method on

http://host.robots.ox.ac.uk/pascal/VOC/
http://host.robots.ox.ac.uk/pascal/VOC/


Sensors 2023, 23, 2102 11 of 17

the Darknet-53 feature extractor. Darknet-53, proposed in YOLO [6], is faster and has better
performance compared to earlier backbone networks such as ResNet. Because our recon-
struction method consists of residual blocks, skip connections, and batch normalization, it
can be applied effectively in this scenario. For training and evaluation, we used the Pascal
Visual Object Classes dataset [47], which comprises 11,000 images and 27,000 annotated
objects in twenty classes. To measure performance, we used the mean average precision
(mAP), defined as follows:

Recalls =
TP

(TP + FN)
, Precisions =

TP
(TP + FP)

, (4)

AP =
k=n−1

∑
k=0

[Recalls(k)− Recalls(k + 1)] · Precisions(k) (5)

mAP is calculated using a graph of the Precision–Recall (PR) curve based on the
threshold. Using this curve, precision and recall are obtained by the confusion matrix,
which consists of the True Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN) between the precision class and actual class relationship. Recall and
precision are represented using Equation (4) depending on the IoU threshold. Using this
feature, we produce the PR curve for the AP using Equation (5), where n is the number of
thresholds; then, the average AP for each class is used to obtain the mAP.

Although YOLOv3 is significantly less expensive than other object detection networks,
it nonetheless incurs high costs when used in resource-limited devices. For use with such
devices, YOLOv3-tiny was designed with a shallower structure than the original model.
We compressed the large model and compared it with the YOLOv3-tiny model. To train
YOLOv3-tiny, we used the same setting as for the original model. The compression rate
was selected as 90% in order to ensure similar FLOPs as YOLOv3-tiny, and the pruned
model was retrained over 100 epochs. In these experiments, we adopted the L1, L2, and
GM-based pruning methods to remove unnecessary channels.

Table 4 shows the resources and mAP of the compressed network and the YOLOv3-
tiny model. After applying our method, the actual FLOPs and parameters of the network
are significantly reduced, resulting in performance degradation of about 0.12. Unlike in
semantic segmentation, there is little performance difference between the pruning methods.
Compared with YOLOv3-tiny, the compressed network shows higher performance with
fewer resources. YOLOv3-tiny is designed as a shallow network to reduce costs, and has
a small capacity. However, a network that compresses a large model through pruning
methods maintains a high-capacity configuration and removes only redundant components.
Therefore, compressed networks can achieve better performance than well-designed small
models, as shown in Table 4.

Table 4. Comparison of YOLOv3 on Pascal VOC. “mAP ↓” is mAP drop from baseline model, with
smaller values being better; “CR” and “Method” have the same meaning as in Table 2.

Model CR Method FLOPs (G) Params (M) mAP mAP ↓

YOLOv3 - - 65.658 61.626 0.545 0.000- baseline

YOLOv3
0.9 L1 3.229 2.455 0.421 0.124
0.9 L2 3.252 2.485 0.424 0.121
0.9 GM 3.248 2.484 0.423 0.122

YOLOv3-tiny - - 5.518 8.714 0.370 0.175

4.4. Latency

There are many downstream tasks in which the run time is critical. For instance, in
autonomous driving, information must be processed in real-time using a deep learning
network. High-resource devices are required to ensure real-time performance. However,
these devices are usually expensive, and cannot be applied to services or products. Instead
of using these high-cost devices, a real-time task has been adopted on low-cost devices



Sensors 2023, 23, 2102 12 of 17

using efficient methods [49]. To demonstrate the application of real-time operation on
both low-end and high-end devices, we measured the inference time after compressing
the network.

In these experiments, YOLOv3, which is a real-time object detection network, was
used as the large model. We compressed the network to 50%, 70%, and 90%, then compared
it to YOLOv3-tiny. The networks were applied to Raspberry Pi4 and Jetson Nano, both of
which are low-cost devices, and an RTX 2080 Ti GPU, which is a high-end device. While
the Raspberry Pi 4 uses a quad-core ARM CPU, it does not have CUDA cores to support
parallel operation of multiple neural networks for applications such as image classification,
object detection, and segmentation. The Jetson Nano, another low-cost device, has CUDA
cores and a quad-core ARM CPU. Therefore, it can process faster than Raspberry Pi 4.

Table 5 shows that real-time operation is possible for all models on the RTX 2080 Ti.
On the Jetson Nano, the large model has a latency of 0.5347, while on the Raspberry Pi 4 it
has a large inference time of 5.0755. After the network is compressed using the proposed re-
construction method, the actual latency tends to decrease as the compression rate increases.
Despite being applied to low-resource devices, the run times of the 90% compressed model
are 0.1009 and 0.6227 on Jetson Nano and Raspberry Pi 4, respectively. Moreover, we
compared a well-designed small network with the compressed network. As shown in
Table 5, the compressed network shows better performance than the smaller YOLOv3-tiny
network. However, the latency is slightly higher, at 0.0203 for the Raspberry Pi 4 and
0.0188 for the Jetson Nano. Due to preserving their depth-based structure, compressed
models require more time to read and write to memory. These results show that the actual
run time can be reduced by reconstructing the compressed network using our method.
Moreover, the network compressed using our proposed method has higher performance
than a well-designed small network on all of the devices used in the experiments.

Table 5. Latency comparison between YOLOv3 and YOLOv3-tiny on various devices. Here, “Latency”
is calculated as the average processing time on CIFAR-10 evaluation images.

Device Model CR mAP FLOPs (G) Latency (s)

Raspberry Pi 4 8GB
YOLOv3

- 0.545 65.658 5.0755
0.5 0.543 14.671 1.5771
0.7 0.536 10.019 1.1880
0.9 0.423 3.248 0.6227

YOLOv3-tiny - 0.370 5.518 0.6024

Jetson Nano B01 4GB
YOLOv3

- 0.545 65.658 0.5347
0.5 0.543 14.671 0.1647
0.7 0.538 10.019 0.1236
0.9 0.423 3.248 0.1009

YOLOv3-tiny - 0.370 5.518 0.0821

RTX 2080 Ti
YOLOv3

- 0.545 65.658 0.0076
0.5 0.543 14.671 0.0030
0.7 0.538 10.019 0.0024
0.9 0.423 3.248 0.0016

YOLOv3-tiny - 0.370 5.518 0.0013

Additionally, we compared our method with a previous work [40] on the CIFAR10
dataset. The results shown in Table 6 demonstrate that our reconstruction process can
accelerate pruned models. Furthermore, while maintaining similar latency, the pruned
model using the L2 method shows better improvement in terms of the Top-1 Error (%)
compared to the DHP-38.

4.5. Ablation Study

In this section, we describe various experiments conducted to demonstrate the influ-
ence of the proposed method on lossless reconstruction. First, we present the effectiveness
of the union operation applied to the residual block. Then, we demonstrate that pruning
with consideration batch normalization allows for reconstruction without performance
loss. ResNet50 with the CIFAR10 dataset was used as the baseline for the experiment,
and the training settings were the same as thosedescribed in Section 4.1. To measure



Sensors 2023, 23, 2102 13 of 17

performance, we evaluated fine-tuning accuracy by retraining after compression and com-
paring the accuracy results before and after reconstruction. This experiment shows that
efficient training can be realized by applying the proposed reconstruction method to the
pruning process.

Table 6. Comparison of pruned ResNet50 with previously introduced pruned ResNet50 in DHP [40]
running on CPU (Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz). “FLOPs Ratio (%)” is the ratio of
FLOPs in a pruned model to a dense model. “Top-1 Error (%)” shows the dense model’s Top-1 Error
(%), the pruned model’s Top-1 Error (%), and the difference between them. “Latency (ms)” has the
same meaning as in Table 5. “Before reconstruction” refers to the latency when using the pruning
process only, without reconstruction. “After reconstruction” refers to the latency after the use of our
reconstruction process.

Model Method FLOPs Ratio (%) Top-1 Error (%)
Latency (ms)

Before Reconstruction After Reconstruction

ResNet50

L1 40.27 7.33→ 7.39 (+0.06) 5.467
L2 40.50 7.33→ 7.30 (−0.03) 8.647 5.484

GM 41.31 7.33→ 7.48 (+0.15) 5.676

DHP-38 [40] 39.07 7.05→ 7.06 (+0.01) 5.333

4.5.1. Applying Union Operation in Residual Block

Significant loss can occur when filter indices are different during this addition; thus,
the indices of the filters that produce these two feature maps should be matched. Two
operations can be used, namely, union and intersection. Table 7 shows the results of the
compressed model with a 0.5 compression rate when applying each operation. Here,
“OR” and “AND” respectively indicate the union and intersection operations. The results
show that the intersection operation causes significant accuracy loss between the fine-
tuning accuracy and reconstruction accuracy, whereas the union operation has a lossless
reconstruction result. For the intersection operation, the filter is not removed and the filters
of the two layers remain. Notably, information can be lost because the channels in the two
layers do not have the same importance in the pruning process. However, in the union
operation, even if only one of the filters remains in the deeper or shallow layer, the filter is
not removed. As this operation maintains all important channels in both layers, information
is preserved and lossless reconstruction is possible when parameters are removed.

Table 7. Comparison between union and intersection operations applied to reconstruction. In the
“Operation” column, “AND” means reconstructing residual blocks with the intersection operation,
while “OR” means reconstructing residual blocks with the union operation. The “Finetune Acc”
column denotes the accuracy after retraining the pruned model, “Reconstruction Acc” denotes the
accuracy after reconstruction of the fine-tuned model, and “Acc Loss” indicates the accuracy drop
between “Finetune Acc” and “Reconstruction Acc”, with smaller values being better.

Model Method CR Operation Finetune Acc Reconstruction Acc Acc Loss

ResNet50

L1 0.5 AND 92.82% 10.02% 82.80%
L1 0.5 OR 92.82% 92.82% 0.00%
L2 0.5 AND 92.70% 10.02% 82.68%
L2 0.5 OR 92.70% 92.70% 0.00%

GM 0.5 AND 92.80% 9.99% 82.81%
GM 0.5 OR 92.80% 92.80% 0.00%

4.5.2. Influence of Pruning Batch Normalization Layer

In Section 3.3, we described an experiment examining the impact of reconstruction
considering batch normalization. For this experiment, the network was compressed at
a compression rate of 0.5, then the pruning results with and without considering batch
normalization were compared. As shown in Table 8, the fine-tuning accuracies of both
networks are nearly identical. However, in the case of pruning that does not consider batch
normalization, performance degradation occurs after reconstruction. The scale and shift



Sensors 2023, 23, 2102 14 of 17

transformations of batch normalization affect the output of the network, because they can
produce non-zero feature maps. When filters are removed during the reconstruction process,
non-zero feature maps are removed as well, resulting in information loss and performance
degradation. However, when pruning is performed considering batch normalization, the
feature maps of the pruned channel maintain values of zero. Because no information is lost
by removing them, the performance is maintained after the reconstruction process.

Table 8. Results of ResNet50 with a compression rate of 0.5 on the CIFAR10 dataset. In the “Batch
norm” column, “X” indicates pruning of the batch normalization layer corresponding with the
convolution layer. The “Finetune Acc” column denotes accuracy after retraining the pruned model,
while the “Finetune Acc”, “Reconstruction Acc”, and “Acc Loss” columns have the same meaning as
in Table 7.

Model Method CR Batch norm. Finetune Acc Reconstruction Acc Acc Loss

ResNet50

L1 0.5 X 92.53% 92.53% 0.00%
L1 0.5 92.45% 89.32% 3.13%

L2 0.5 X 92.72% 92.72% 0.00%
L2 0.5 92.71% 88.27% 4.44%

GM 0.5 X 92.42% 92.42% 0.00%
GM 0.5 92.51% 55.17% 37.34%

4.5.3. Influence of Compression Process

The pruning process is divided into two steps, namely, removing less important com-
ponents and retraining to recover performance. However, because the actual reconstruction
is not performed, the time consumption in the retraining step is significant. To address
this issue, we prune the channels and retrain them following the proposed reconstruction
method. For the experiment, ResNet34 with the CIFAR10 dataset is used as a baseline. The
networks were compressed with compression rates of 0.4, 0.6, and 0.8 and retrained over
100 epochs. In Figure 6, the blue line represents the result of applying the reconstruction
process after retraining and the red line represents the result of applying the proposed
reconstruction before retraining. The results show that the best performance is similar for
all compression rates. However, the time consumption in the retraining step is significantly
reduced, especially at the compression rate of 0.8, with time savings of about three times
the required time. This experiment shows that the proposed method can effectively reduce
the required time by accelerating the network training time.

Figure 6. Comparison of training time required during the pruning–reconstruction–fine tuning
process (red line) and pruning–fine tuning–reconstruction process (blue line) using pruned ResNet34
on the CIFAR-10 database; (a–c) refer to models with compression rates of 0.4, 0.6, and 0.8, respectively.
The training time and accuracy were recorded over ten epochs. The data labels show the best accuracy
of each model.

5. Discussion

In this study, we have introduced a method for lossless reconstruction after pruning
to reduce practical run time. We have demonstrated the effectiveness of our method by



Sensors 2023, 23, 2102 15 of 17

measuring the resulting latency on several devices. Our experimental results demonstrate
that our method is important for acceleration when researching pruning criteria.

5.1. Strengths

Previous studies on structured pruning have focused on determining redundant
filters. However, here we address the reconstruction of networks to eliminate meaningless
components of the network and accelerate the latency, which is shown to be effective on
both the Raspberry Pi and Jetson Nano.

5.2. Weaknesses and Limitations

Because our method is conducted following the pruning process, the resulting ac-
celeration in terms of latency depends on the heuristic compression ratio. Therefore, an
appropriate compression rate needs to be chosen in order to significantly reduce latency.
Our approach results in pruned networks composed of convolution layers, skip connections,
and residual blocks without any loss. Although there are many other types of modules
used in networks, these limitations do not apply to them.

6. Conclusions

In this study, we propose a lossless reconstruction process to reduce actual network
resource usage. We used residual blocks, skip connections, and convolution layers, which
are the usual basic components of CNNs, to compress the network. We adopted the union
operation to deal with shortcut connections in the residual blocks and used index alignment
to reconstruct the skip connections. Moreover, batch normalization was considered to
prune the convolution layer. In our experiments, we show that the proposed method is
compatible with various downstream tasks by applying it to ResNet, FCN, and YOLOv3.
Our results show that compressing a large model produces better results than a well-
designed small model with the same resources. In addition, we measured the actual
latency on various devices to show that real-time operation is possible even on resource-
limited devices. Through an ablation study, we validated the consideration of each element
for reconstructing the network without performance degradation. Future works should
focus on pruning networks while considering reconstruction for other tasks, such as face
recognition and pose estimation, which require fast inference times. In addition to reducing
the time needed to fine-tune pruned networks, it should be possible to decrease the entire
training time, including when training large networks, to achieve compressed networks.

Author Contributions: Conceptualization, Y.H.; methodology, D.L., E.L. and Y.H.; software, D.L.; val-
idation, D.L., E.L. and Y.H.; writing—original draft preparation, D.L., E.L. and Y.H.; writing—review
and editing, D.L, E.L. and Y.H.; visualization, D.L.; supervision, Y.H.; project administration,
Y.H.; funding acquisition, Y.H.; All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Institute of Information and Communications Technology
Planning and Evaluation (IITP) (No. 2022-0-00970 and No. 2020-0-01077).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
2. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
3. Dai, Z.; Liu, H.; Le, Q.V.; Tan, M. Coatnet: Marrying convolution and attention for all data sizes. Adv. Neural Inf. Process. Syst.

2021, 34, 3965–3977.



Sensors 2023, 23, 2102 16 of 17

4. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile,
7–13 December 2015; pp. 1440–1448.

5. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 21–37.

6. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

7. Feng, S.; Fan, Y.; Tang, Y.; Cheng, H.; Zhao, C.; Zhu, Y.; Cheng, C. A Change Detection Method Based on Multi-Scale Adaptive
Convolution Kernel Network and Multimodal Conditional Random Field for Multi-Temporal Multispectral Images. Remote Sens.
2022, 14, 5368. [CrossRef]

8. Zhang, H.; Li, F.; Liu, S.; Zhang, L.; Su, H.; Zhu, J.; Ni, L.M.; Shum, H.Y. Dino: Detr with improved denoising anchor boxes for
end-to-end object detection. arXiv 2022, arXiv:2203.03605.

9. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

10. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the In-
ternational Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

11. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv 2016, arXiv:1606.02147.

12. Saini, V.K.; Kumar, R.; Mathur, A.; Saxena, A. Short term forecasting based on hourly wind speed data using deep learning
algorithms. In Proceedings of the 2020 3rd International Conference on Emerging Technologies in Computer Engineering:
Machine Learning and Internet of Things (ICETCE), Jaipur, India, 7–8 February 2020; pp. 1–6.

13. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. In Proceedings of the
Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 28.

14. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

15. Dong, X.; Chen, S.; Pan, S. Learning to prune deep neural networks via layer-wise optimal brain surgeon. In Proceedings of the
Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.

16. Xiao, X.; Wang, Z.; Rajasekaran, S. Autoprune: Automatic network pruning by regularizing auxiliary parameters. In Proceedings
of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, CA, USA, 8–14 December 2019;
Volume 32.

17. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
18. Ye, J.; Lu, X.; Lin, Z.; Wang, J.Z. Rethinking the smaller-norm-less-informative assumption in channel pruning of convolution

layers. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
19. He, Y.; Liu, P.; Wang, Z.; Hu, Z.; Yang, Y. Filter pruning via geometric median for deep convolutional neural networks acceleration.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 4340–4349.

20. Liu, Z.; Mu, H.; Zhang, X.; Guo, Z.; Yang, X.; Cheng, K.T.; Sun, J. Metapruning: Meta learning for automatic neural network
channel pruning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea,
27 October–2 November 2019; pp. 3296–3305.

21. Chin, T.W.; Ding, R.; Zhang, C.; Marculescu, D. Towards efficient model compression via learned global ranking. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1518–1528.

22. Gao, S.; Huang, F.; Cai, W.; Huang, H. Network pruning via performance maximization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 9270–9280.

23. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

24. Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H.; Shao, L. Multi-Stage Progressive Image Restoration. In
Proceedings of the CVPR, Online, 19–25 June 2021.

25. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986.

26. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

27. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. In Proceedings of the International Conference on
Learning Representations, Toulon, France, 24–26 April 2017.

28. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv 2018, arXiv:1806.09055.
29. Radosavovic, I.; Kosaraju, R.P.; Girshick, R.; He, K.; Dollár, P. Designing network design spaces. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10428–10436.
30. LeCun, Y.; Denker, J.; Solla, S. Optimal brain damage. In Proceedings of the Advances in Neural Information Processing Systems,

NIPS Conference, Denver, CO, USA, 27–30 November 1989; Volume 2.

http://doi.org/10.3390/rs14215368
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704


Sensors 2023, 23, 2102 17 of 17

31. Hassibi, B.; Stork, D. Second order derivatives for network pruning: Optimal brain surgeon. In Proceedings of the Advances in
Neural Information Processing Systems, Denver, CO, USA, 30 November–3 December 1992; Volume 5.

32. Aghasi, A.; Abdi, A.; Nguyen, N.; Romberg, J. Net-trim: Convex pruning of deep neural networks with performance guarantee.
In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.

33. Hu, H.; Peng, R.; Tai, Y.W.; Tang, C.K. Network trimming: A data-driven neuron pruning approach towards efficient deep
architectures. arXiv 2016, arXiv:1607.03250.

34. Molchanov, D.; Ashukha, A.; Vetrov, D. Variational dropout sparsifies deep neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 2498–2507.

35. Lee, E.; Hwang, Y. Layer-Wise Network Compression Using Gaussian Mixture Model. Electronics 2021, 10, 72. [CrossRef]
36. Yu, X.; Serra, T.; Ramalingam, S.; Zhe, S. The Combinatorial Brain Surgeon: Pruning Weights That Cancel One Another in Neural

Networks. In Proceedings of the 39th International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022;
Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S., Eds.; Proceedings of Machine Learning Research; 2022;
Volume 162, pp. 25668–25683.

37. Wimmer, P.; Mehnert, J.; Condurache, A. Interspace Pruning: Using Adaptive Filter Representations To Improve Training of
Sparse CNNs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans,
LA, USA, 18–24 June 2022; pp. 12527–12537.

38. Luo, J.H.; Wu, J.; Lin, W. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5058–5066.

39. Yu, R.; Li, A.; Chen, C.F.; Lai, J.H.; Morariu, V.I.; Han, X.; Gao, M.; Lin, C.Y.; Davis, L.S. Nisp: Pruning networks using neuron
importance score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–23 June 2018; pp. 9194–9203.

40. Li, Y.; Gu, S.; Zhang, K.; Van Gool, L.; Timofte, R. Dhp: Differentiable meta pruning via hypernetworks. In Proceedings of the
European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany; Springer: Glasgow, UK, 2020; pp. 608–624.

41. Li, Y.; Adamczewski, K.; Li, W.; Gu, S.; Timofte, R.; Van Gool, L. Revisiting Random Channel Pruning for Neural Network
Compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA,
USA, 18–24 June 2022; pp. 191–201.

42. Shen, M.; Molchanov, P.; Yin, H.; Alvarez, J.M. When to prune? a policy towards early structural pruning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 12247–12256.

43. Hou, Z.; Qin, M.; Sun, F.; Ma, X.; Yuan, K.; Xu, Y.; Chen, Y.K.; Jin, R.; Xie, Y.; Kung, S.Y. CHEX: CHannel EXploration for
CNN Model Compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
New Orleans, LA, USA, 18–24 June 2022; pp. 12287–12298.

44. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International conference on machine learning, PMLR, Lille, France, 7–9 July 2015; pp. 448–456.

45. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2009.
46. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
47. Everingham, M.; Eslami, S.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes challenge: A

retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]
48. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
49. Curtin, B.H.; Matthews, S.J. Deep learning for inexpensive image classification of wildlife on the Raspberry Pi. In Proceedings of

the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York,
NY, USA, 10–12 October 2019; pp. 0082–0087.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics10010072
http://dx.doi.org/10.1007/s11263-014-0733-5

	Introduction
	Related Works
	Architecture Search
	Unstructured Pruning
	Structured Pruning

	Methods
	Residual Block
	Skip Connection
	Batch Normalization

	Experiments
	Image Classification
	Semantic Segmentation
	Object Detection
	Latency
	Ablation Study
	Applying Union Operation in Residual Block
	Influence of Pruning Batch Normalization Layer
	Influence of Compression Process


	Discussion
	Strengths
	Weaknesses and Limitations

	Conclusions
	References

