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Abstract: With the rapid development of communication technology as well as a rapid rise in the
usage of electronic devices, a growth of concerns over unintentional electromagnetic interference
emitted by these devices has been witnessed. Pioneer researchers have deeply studied the relationship
between the shielding effectiveness and a few mixed design parameters for cementitious composites
incoporating carbon fibres by conducting physical experiments. This paper, therefore, aims to develop
and propose a series of prediction models for the shielding effectiveness of cementitious composites
involving carbon fibres using frequency and mixed design parameters, such as the water-to-cement
ratio, fibre content, sand-to-cement ratio and aspect ratio of the fibres. A multi-variable non-linear
regression model and a backpropagation neural network (BPNN) model were developed to meet
the different accuracy requirements as well as the complexity requirements. The results showed that
the regression model reached an R2 of 0.88 with a root mean squared error (RMSE) of 2.3 dB for the
testing set while the BPNN model had an R2 of 0.96 with an RMSE of 2.64 dB. Both models exhibited
a sufficient prediction accuracy, and the results also supported that both the regression and the BPNN
model are reasonable for such estimation.
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1. Introduction

Electromagnetic waves (EMWs) are radiation that are found in the atmosphere in
various forms, such as natural light, ultraviolet radiation, radio waves, etc., in the electro-
magnetic spectrum [1]. They can be generated in the atmosphere by natural occurrences
such as lightning or by manmade instruments such as electronics [2]. While most of the
waves are created for communication purposes, such as radio waves, some are generated
as by-products from these electronic devices and other common devices, such as mobile
phones and microwave ovens, etc. This has led to electromagnetic pollution because these
waves can ionise the air and induce eddy currents which can cause interference with
the functionality of other devices [2]. In the modern world where most operations are
dependent on computers and logic systems, an interference of a few volts can disrupt the
operation or even cause permanent damage [3] to devices or systems. Previous research by
the military has shown that EMI can be caused intentionally in warfare to hack information
or even damage critical devices [4]. Apart from these, studies have shown that, at a higher
intensity level, EMWs do have negative impacts on pregnant women, foetuses and infants,
etc., and prolonged exposure can also cause cancer and other heart-related issues [5].

Most of the early research into EMI and the required amount of the shielding effective-
ness (SE) of buildings has been done by the military since they were the most vulnerable
to intentional EMI. Apart from military use, since mobile phones and other electronics
have gained popularity and become ubiquitous, civil buildings are now also required to
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provide necessary shielding against EMI [2] to minimise or avoid these negative effects.
Traditionally, to provide adequate SE, metals, including copper, steel and aluminium, have
been used in the past in hospitals against magnetic resonance imaging (MRI) radiation.
However, it also should be noted that these materials are bulky, prone to corrosion and
require constant maintenance, which can incur extra costs [1,2]. This, therefore, has led to
an increased amount of research into developing innovative construction materials that
can provide adequate SE for buildings.

As aforementioned, metals have been commonly used to shield against EMI, but
their drawbacks are also obvious, such as being vulnerable to corrosion and having high
specific weights, etc. [2]. Moreover, with the increasing demand of high-rise buildings
and the modernisation of electronics, buildings require more lightweight, flexible and
corrosion-resistant structures. This, therefore, reflects the increasing demand for advanced
construction materials with adequate shielding properties. Publications over the past
few decades have proposed materials such as polymers, wood-based, modified metallic
materials, or cementitious composites to serve the need of the SE since theoretical analysis
into the material’s shielding properties has proven that the electrical conductivity and the
permeability of the material are critical for shielding effects [6]. Cementitious materials
naturally exhibit a slight conductivity due to the ion transfer within the free water in
the mixture. Accordingly, studies into developing innovative cement-based construction
materials incorporating conductive fillers, which can increase the electrical conductivity
and provide sufficient shielding properties, has become burgeoning.

Carbon fibres (CFs) are one of the representatives of such fillers that can be used to
enhance the shielding properties of cementitious composites. Its effects and the overall
performance of the cementitious composites incorporating CFs have been broadly inves-
tigated by pioneer researchers. Some studies have also identified that one of the main
advantages of CFs over other fillers, such as carbon nanotubes, steel fibres, etc., is its
cost-effectiveness [2]. Apart from cement-based composites, a group of researchers have
also attempted including CFs with different sizes into geopolymer composites and studied
the overall shielding properties of such CF-reinforced geopolymers [7]. The study tested
the shielding properties of the composites incorporating CFs with lengths of 3, 6 and 12 mm
at weight percentages of 0.1%, 0.3%, 0.5% and 0.7% from 30 MHz to 1.5 GHz and reported
that increasing either the length or the content of the fibres contributed to the improvement
of the overall SE of the composites. However, the growth of the improvement showed a
descending trend, meaning there would be a saturation limit of increasing the SE. However,
some researchers are also concerned that the sole conductive additive may not provide
sufficient improvement to the SE to meet the industrial standard requirements, and have
introduced a series of second additives that have been reported to have potential to further
increase the SE. Wanasinghe et al. studied the overall shielding properties of the composites
incorporating different types and contents of carbon nanofibres, with varied fractions of
zinc oxide and activated carbon powder combined with 12 mm unsized carbon fibres
following the standard of ASTM D4935-18 [8]. Their results revealed that the inclusion
of the activated carbon powder showed the most significant improvement in electrical
conductivity as well as the overall SE among all the types of additives. However, the
authors also reported an issue of increasing ACP content up to 2%, in which the mixes
became crumbled and unworkable [8].

2. Research Significance

With the growing awareness of the importance of material shielding properties, plenty
of researchers have been exploring the behaviour and mechanisms of the EMI shielding
properties of the composites subjected to external electromagnetic waves through either
conducting physical experiments or performing numerical modelling. To estimate the SE
of cementitious composites or concretes, one of the commonly used models is the Debye
model, which was first introduced by Peter Deby in 1929 [9] and is used to describe the
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frequency behaviour of the permittivity of the materials. Its frequency-dependent complex
relative permittivity obeys Equation (1) [10]:

ε̂r(ω) = ε′r(ω)− jε′′r (ω)
= ε∞ + ∆ε

1+jωτ

= ε∞ + ∆ε
1+ω2τ2 − j ωτ∆ε

1+ω2τ2

(1)

where ω is the frequency ranging from zero to infinity; ∆ε = εstatic − ε∞ is the difference
between the values of the real part of the complex relative permittivity at a low and high fre-
quency, respectively, and τ is the relaxation time. Researchers then extended and developed
plenty of frequency-dependent models such as the Cole–Cole equation, the Jonscher model,
etc. [10–12]. However, it should be noted that, apart from the frequency, both of these
models require relaxation time, which is required to be measured directly or determined
indirectly. Based on this, this study aimed to study the relationship between the SE of
concrete and cementitious composites by direct measurement and mixed design parameters
affecting the SE of composites, then develop and propose a series of mathematical models
that can estimate the SE by using the mixed design parameters without involving the other
indirect variables. Moreover, from the consideration of the diversity of the available materi-
als, the varied impact of the different materials on the SE, as well as the scope and limit
of a single research paper, the study was then narrowed to the composites incorporating
carbon fibres. It should also be noticed that the proposed model should be compared
with the existing models from the previous literature to demonstrate its superiority and
progression. However, since the available models from the previous literature are mainly
focused on the extension or progression of relaxation-time-based models, which do not
involve mixed design parameters, it should be noted that it is unfair to compare these
models with the models to be proposed due to the different input parameters as well as the
different prediction methods.

It should be noticed that, although the results from the previous literature have proven
that the presence of conductive fibres significantly improves the composites’ overall SE,
most of the high-conductive fibres, such as CFs, are costly and incur higher capital costs for
the overall project [2]. Moreover, conducting such experiments for the shielding properties
is also expensive and time consuming compared to numerical modelling. The previous
literature has shown that the interaction between the materials’ properties and machine
learning algorithms has grown rapidly, and the good performance of machine learning
algorithms in estimating or predicting these properties using mixed design parameters
has been witnessed by a wide range of research articles [13–17]. Machine learning models
have a series of advantages, such as time saving and cost saving, over conducting physical
experiments. With these, this study aims to develop and propose a series of prediction
models that can be used to estimate the EMI SE of such cementitious composites containing
CFs at a given frequency by using mixed design parameters. For this purpose, a multi-
variable non-linear regression model and a backpropagation neural network model (BPNN)
were then developed to meet the different prediction accuracy requirements and complexity.
To meet such aims, a database containing 346 pairs of data from 10 different studies
was complied.

3. Background of the Shielding Effectiveness of Cement Composites
3.1. Shielding Effectiveness

EMWs are represented as a sinusoidal pair of electric and magnetic fields vibrating
perpendicular to each other. These waves are characterised by their wavelength, which is
the distance between the two consecutives peaks or, accordingly, their frequency (f ). The
equation relating the energy (E) within a wave and its frequency is shown in Equation (2):

E = h× f (2)

where h is the Planck constant.
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Hence, these EMWs have different energies based on their frequencies. Classically,
the EMWs are divided into different spectrums based on their energies. The waves at the
lower end of the spectrum have lower frequencies, i.e., lower energies and so on [2]. When
a EMW falls on a material, there can be three types of effects: absorption, reflection or
transmission (through the material) as shown in Figure 1. When the incident wave intensity
is reduced upon transmission, it is called shielding [2]. Therefore, the total SE is represented
as Equation (3), where SEA is due to the absorption, SER is due to the reflection and SEM is
due to multiple reflections:

SE = SEA + SER + SEM (3)
Sensors 2023, 23, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 1. Possible interaction of an EMW with a material [2]. 

3.2. Mix Design Parameters Affecting Shielding Effectiveness 
Cementitious composites are one of the most commonly used materials for conduc-

tivity and have been the subject of many studies which point out that the conductivity 
and SE of the composites depend on many factors, such as the type of additives, water-to-
cement ratio, porosity and fillers, etc. [19]. 

To investigate the effect of the water-to-cement ratio on the shielding properties of 
the cementitious material, Wanasinghe et al., therefore, conducted a series of experiments 
to observe the changes in the SE of mortar within a frequency band of 30 MHz to 1.5 GHz 
[6]. Their results show that increasing the water-to-cement ratio led to a decrease in the 
SE of the mortar within the given band, while increasing the water-to-cement ratio made 
the specimen more porous and decreased the specimen density, hence adversely affecting 
the ability of the EMI absorption of the specimen. It also should be noted that a more 
porous structure would also have higher multiple reflections. However, this enhancement 
was not adequate to compensate for the loss of the overall EMI SE by absorption and re-
flection. The study also claimed that the optimum water-to-cement ratio that yielded the 
best EMI SE was 0.3 [6]. 

It was established that, with the increase in the fibre content in the cement composite, 
the SE was shown to increase [20], with the maximum transmission SE produced by the 
largest amount of CFs [1]. It was also shown that, with a higher CF content, the electrical 
conductivity of the composite was seen to increase due to the conductive network created 
[1]. Their results also revealed that the specimens containing unsized CFs generally 
showed an improvement in the SE of the composites compared to the sized fibres. They 
also claimed that the mix design which showed the relatively best SE of 40–60 dB from 
300 MHz to 1.5 GHz was the one incorporating the 12 mm unsized CFs at a fibre fraction 
of 0.7 wt%. Similarly, Zhang et al. conducted a series of experiments using steel fibre, 
carbon fibre and polyvinyl alcohol fibre (PVA) at varied volume contents from 0.5% up to 
3% [21] with a frequency band of 80 MHz to 10 GHz. Their results showed that, for both 
fibres, increasing the fibre content increased the overall SE. 

Past studies have shown that there is an effect of the sand ratio on the EMI SE. The 
addition of sand has been shown to decrease the resistivity of the material [22]. However, 
studies into the effect of the sand content on the shielding properties of composites or 
concrete is still limited and, thus, shows a potential for further investigation. Moreover, 
research shows that an increase in the thickness of the material increases the interaction 
between the material and the EMW, causing a higher absorption of the EMW [6,23] since 
the thickness also impacts the skin depth while the frequency plays a major part in decid-
ing the effect of the thickness on the attenuation of the waves. The aspect ratio is the ratio 

Figure 1. Possible interaction of an EMW with a material [2].

The reflection occurs due to the impedance mismatch between the incident waves
and the surface of the material [18], which can be expressed as Equation (4) where f is the
frequency, ε is the electrical permittivity, µ is the magnetic permittivity and σT is the total
electrical conductivity:

SER = −10 log
(

σT
16 f εµr

)
(4)

Hence, the electrical conductivity plays a major part in the shielding. Materials with
higher conductivity, such as metals, are good reflectors [2]. Materials with multiple fillers
can undergo multiple internal reflections due to the different dielectric properties of each
filler. The SE due to multiple reflections is shown in Equation (5), where δ is the skin depth
of the material [1]:

SEM = 20 log
(

1− e
−2z

δ

)
(5)

EMWs can undergo absorption, which is dependent on the dielectric properties of
the material. The SE due to absorption can be represented as Equation (6), where α is the
attenuation and z is the thickness of the material [1]:

SEA = 20 log
(

1
e−αz

)
(6)

The SE can also be defined as the ratio of the received power of the beam with the
material present (P1) to the received power of the beam without the material present (P2) [1],
as shown by Equation (7):

SE = 10 log
(

P1

P2

)
(7)
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3.2. Mix Design Parameters Affecting Shielding Effectiveness

Cementitious composites are one of the most commonly used materials for conductiv-
ity and have been the subject of many studies which point out that the conductivity and SE
of the composites depend on many factors, such as the type of additives, water-to-cement
ratio, porosity and fillers, etc. [19].

To investigate the effect of the water-to-cement ratio on the shielding properties of the
cementitious material, Wanasinghe et al., therefore, conducted a series of experiments to
observe the changes in the SE of mortar within a frequency band of 30 MHz to 1.5 GHz [6].
Their results show that increasing the water-to-cement ratio led to a decrease in the SE of
the mortar within the given band, while increasing the water-to-cement ratio made the
specimen more porous and decreased the specimen density, hence adversely affecting the
ability of the EMI absorption of the specimen. It also should be noted that a more porous
structure would also have higher multiple reflections. However, this enhancement was not
adequate to compensate for the loss of the overall EMI SE by absorption and reflection. The
study also claimed that the optimum water-to-cement ratio that yielded the best EMI SE
was 0.3 [6].

It was established that, with the increase in the fibre content in the cement composite,
the SE was shown to increase [20], with the maximum transmission SE produced by
the largest amount of CFs [1]. It was also shown that, with a higher CF content, the
electrical conductivity of the composite was seen to increase due to the conductive network
created [1]. Their results also revealed that the specimens containing unsized CFs generally
showed an improvement in the SE of the composites compared to the sized fibres. They
also claimed that the mix design which showed the relatively best SE of 40–60 dB from
300 MHz to 1.5 GHz was the one incorporating the 12 mm unsized CFs at a fibre fraction of
0.7 wt%. Similarly, Zhang et al. conducted a series of experiments using steel fibre, carbon
fibre and polyvinyl alcohol fibre (PVA) at varied volume contents from 0.5% up to 3% [21]
with a frequency band of 80 MHz to 10 GHz. Their results showed that, for both fibres,
increasing the fibre content increased the overall SE.

Past studies have shown that there is an effect of the sand ratio on the EMI SE. The
addition of sand has been shown to decrease the resistivity of the material [22]. However,
studies into the effect of the sand content on the shielding properties of composites or concrete
is still limited and, thus, shows a potential for further investigation. Moreover, research
shows that an increase in the thickness of the material increases the interaction between the
material and the EMW, causing a higher absorption of the EMW [6,23] since the thickness
also impacts the skin depth while the frequency plays a major part in deciding the effect of
the thickness on the attenuation of the waves. The aspect ratio is the ratio of the length to
diameter of the fibre. In addition, the previous literature has observed that the aspect ratio
of the fibre also plays a role in affecting the SE of the composites considerably [1,2,20]. An
experiment by Wanasinghe et al. (2020) showed that the transmission of the SE produced
by the 3 mm fibres and 6 mm fibre mixed specimens generated significantly higher SE in
comparison to the fibres with the same diameter [1]. The addition of fibres with longer
lengths led to a larger interconnected conduction network, thereby increasing the overall
SE [1]. Wang et al. [24] studied the effects of CFs on the shielding properties of composites
subjected to environmental conditions. This study explained the behaviours of the SE of the
composites containing CFs during freezing and thawing cycles. Their results showed that
within a band of 2–18 GHz, freezing and thawing did not show obvious impacts on the SE for
the composites not containing CFs. After freezing and thawing, the composites containing CFs
revealed an increase in the EMW reflection while the absorption decreased at a high frequency.

4. Experimental Database

Based on the results and conclusions by the previous literature, the parameters, in-
cluding the fibre content, water-to-cement ratio (by mass), sand-to-cement ratio (by mass),
aspect ratio of fibres, specimen thickness and frequency, were reported to have significant
effects on the shielding effectiveness and were selected for further analysis. A database
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containing 346 pairs of data from ten different literature sources was then complied and the
variables collected included the fibre content, water-cement ratio (w/c), sand-cement ratio
(s/c), aspect ratio of fibre, specimen thickness, frequency and SE. Table 1 summaries the
key statistical results of the database and detailed database can be viewed in Appendix A.
It should be noted that all the data were not normalised for the model development.

Table 1. Statistics of the database [1,2,6,20,21,25–28].

Variable Unit Min. Max. Mean

Fibre, % Input 0.05 4.00 0.27
w/c Input 0.20 0.50 0.38
s/c Input 0.80 1.20 1.05

Aspect ratio Input 250 857 322.88
Specimen
thickness Input mm 3.80 100 52.16

Frequency Input GHz 0.00090 12.44 3.37
SE Output dB 10.20 68.13 37.04

4.1. Fibre Content

Figure 2 presents the scatter plots of the SE against the CF content in volume percentage
with colour mapping in the frequency of the fibre content from (a) 0–4%, (b) 0–1% and
(c) 2–4%, respectively. The plot reveals that the majority of the data fell within a range
of 0–1%, as only five pairs of data were beyond 1%, indicating that the database needs
to be enriched in the future with more research outcomes into the shielding properties of
carbon-fibre-reinforced composites at a high fibre content, especially at a high frequency.
From the plot in Figure 2c, for the points containing CFs beyond 1 vol%, it can be seen
that, with an increase in the fibre fraction, the overall SE shows a general growing trend
up to a percentage of 4 vol%. This observation is consistent with the findings reported
by Wanasinghe et al. [1] and Zhang et al. [21] that increasing the fibre content leads to
an increase in the overall SE. However, it should be emphasised that Figure 2b does not
indicate a significant trend that increasing the fibre content leads to an increase in the
overall SE. It might be since the EMI shielding property is governed by three different
mechanisms as described previously. The interference of the different mechanisms might
lead to undesirable behaviours or changes [1]. Additionally, factors such as the changing
porosity and subsequent permeability, impedance mismatch and surface conditions of the
cement matrices could also affect the overall SE significantly [29]. Moreover, the tendency
that Figure 2b remains unclear might also be attributed to other governing factors, such as
the water-to-cement ratio, fibre type, specimen thickness, etc., and that the single plot could
not eliminate the effects of the other parameters unless it performed the control variates
method in future study.
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4.2. Water-to-Cement Ratio

Research has shown that the water-to-cement ratio has a considerable effect on the
EMI SE of the cement composites [6]. Increasing the water content increases the porosity,
which increases the multiple reflection of the EMW within the material. The presence of
fillers or fibres aids this phenomenon. It is interesting to note that, with a higher porosity,
the density of the specimen decreases and, thus leads, to a lower SE. Figure 3 reveals that
increasing the water-to-cement ratio will obviously worsen the overall SE of the composites,
and it is consistent with the conclusions from the previous literature [6]. The figure also
illustrates that the SE increases with an increase in the frequency.
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4.3. Sand-to-Cement Ratio

Past studies have shown that there is an effect of the sand ratio on the EMI SE, as
the addition of sand has been shown to decrease the resistivity of the material [22]. From
Figure 4, it can be witnessed that, with an increase in the sand-to-cement ratio, the plot
generally exhibits a slight decrease when the ratio reaches approximately 1 followed by
a significant increase. It should also be noticed that due to the limit of lacking a diversity
of data in the sand-to-cement ratio, this trend might not be adequate to propose a general
trend of changing behaviours. As discussed in Section 3.2, the study on the effects of the
sand content on the shielding effectiveness is still limited, and the mechanism behind
this trend might be unclear and complicated. Moreover, this also reflects the potential for
studying the influence of the changing sand content on the overall shielding effectiveness
for pioneer researchers.



Sensors 2023, 23, 2084 8 of 22

Sensors 2023, 23, x FOR PEER REVIEW 8 of 22 
 

 

Past studies have shown that there is an effect of the sand ratio on the EMI SE, as the 
addition of sand has been shown to decrease the resistivity of the material [22]. From Fig-
ure 4, it can be witnessed that, with an increase in the sand-to-cement ratio, the plot gen-
erally exhibits a slight decrease when the ratio reaches approximately 1 followed by a 
significant increase. It should also be noticed that due to the limit of lacking a diversity of 
data in the sand-to-cement ratio, this trend might not be adequate to propose a general 
trend of changing behaviours. As discussed in Section 3.2, the study on the effects of the 
sand content on the shielding effectiveness is still limited, and the mechanism behind this 
trend might be unclear and complicated. Moreover, this also reflects the potential for stud-
ying the influence of the changing sand content on the overall shielding effectiveness for 
pioneer researchers. 

 
Figure 4. Scatter plot of the SE vs. the sand-to-cement ratio. 

4.4. Thickness of Specimen 
According to Figure 5, it has been witnessed that the data are mainly located at the 

thickness of approximately 10 mm and 100 mm and showed a big blank in between. It is 
mainly attributed to the differences between the testing standards and most of the data 
gathered used a similar specimen geometry. It should be noted that it is brutal to conclude 
that increasing the specimen thickness had a higher overall SE due to a lack in the varia-
tion in the data for the specimen thickness. However, the thickness of the material also 
plays a significant role in generating a high EMI shielding effectiveness in a material [23]. 
This therefore reflects and indicates the possibility of further research into considering 
size effect on the SE. 

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25
0

10

20

30

40

50

60

70

SE
 (d

B)

s/c

0.000

1.556

3.113

4.669

6.225

7.781

9.338

10.89

12.45

Frequency, GHz

Figure 4. Scatter plot of the SE vs. the sand-to-cement ratio.

4.4. Thickness of Specimen

According to Figure 5, it has been witnessed that the data are mainly located at the
thickness of approximately 10 mm and 100 mm and showed a big blank in between. It is
mainly attributed to the differences between the testing standards and most of the data
gathered used a similar specimen geometry. It should be noted that it is brutal to conclude
that increasing the specimen thickness had a higher overall SE due to a lack in the variation
in the data for the specimen thickness. However, the thickness of the material also plays
a significant role in generating a high EMI shielding effectiveness in a material [23]. This
therefore reflects and indicates the possibility of further research into considering size effect
on the SE.
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4.5. Aspect Ratio

From Figure 6, it can be seen that with a higher frequency, the SE is higher. Within a
frequency band of 0–6.225 GHz, the increase in the aspect ratio tends to decrease the SE
and then slightly increase.
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5. Prediction Models

In this study, two types of prediction models for estimating the EMI SE of the com-
posites incorporating carbon fibres were developed, namely a multi-variable non-linear
regression model and a backpropagation neural network model (BPNN) based on the
Levenberg–Marquardt algorithm. The multi-variable non-linear regression model devel-
oped was based on the ordinary least squares method, and it aimed to be able to estimate
the SE of a composite at a given frequency using mixed design parameters with a certain
accuracy and simpler mathematical expression. The BPNN model was designed to be
applicable for more accurate predictions compared to the least square regression model, but
with a more complex expression in the matrix format. To develop such models, the database
established was split into training, validation and test sets by random selection from each
literature at a ratio of 70–15–15% as a common ratio. However, it should be noted that, from
the consideration of the limited pairs of data gathered, the leave-one-out cross-validation
method was then chosen to validate the BPNN model to avoid the validation set. The
database was therefore split into training and test sets with a ratio of 70–30%. Both the
regression model and the BPNN model were then developed based on the training set and
their performances were evaluated by the test set. All the models were developed using
the MATLAB platform.

5.1. Regression Model

As discussed in Section 4, six parameters were considered as the inputs for the regres-
sion model, namely the fibre content in the volume percentage, water-to-cement ratio by
mass, sand-to-cement ratio by mass, thickness of the specimen, aspect ratio of the fibre and
frequency of the target output for the EMI SE in dB. By tracing the raw data, it was ob-
served that all the parameters were linearly proportional to the EMI SE, either positivity or
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negatively, although there was a wide scatter due to the interdependency of the individual
parameters. Therefore, the following regression model was proposed as

SE′ = b1 + b2 ∗ v + b3 ∗ w + b4 ∗ s + b5 ∗ z + b6 ∗ a + b7 ∗ f (8)

where SE′ is the predicted SE, v is the fibre volume percentage, w is the water-to-binder
ratio, s is the sand-to-cement ratio, z is the thickness of the specimen, a is aspect ratio, f is the
frequency of the EMW and b1 to b7 are the regression coefficients. To obtain the regression
coefficients, the ordinary least square (OLS) regression method or simply least squares
method was used. The regression coefficients obtained are shown in the following equation
and the proposed model had an RMSE of 2.3 dB with an R2 of 0.88. These indicated that the
model was a good attempt for estimating the SE at a given frequency with mixed design
parameters and has the ability to explain the data.

SE′ = −730.81 + 6.47v + 691.49w + 380.42s + 1.078z− 0.0071a + 2.87 f (9)

5.2. BPNN Model

A backpropagation neuron network model (BPNN) is one type of an artificial neuron
networks (ANN), which assesses the differences between the predictions and labels, then
propagates the errors to each neuron to adjust the weightings and biases to achieve the
expected training goal. BPNN models or neural network-based models have been deeply
studied and widely applied in predicting or estimating fresh or hardened properties of
concrete or cementitious composites [30–33]. A simple BPNN model consists of three layers:
an input layer, numerous hidden layers and an output layer, as shown in Figure 7. The
connections between the neurons in the different layers can be expressed as

yj = f

(
n

∑
j=1

(
wjixi + bji

))
(10)

where wji is the weighting between neuron i in the upper layer and neuron j in lower layer,
xi is the output from neuron i, bji is the bias between neurons i and j, f is the activation
function (transfer function) that is used to map the inputs from the previous layer to a
given range and yj is the output from neuron j [14]. In this paper, the activation function
selected for the hidden layer is a tangent sigmoid function as

f (x) =
2

1 + e−2x − 1 (11)
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In the training process, the iteration loop was broken when the mean squared error
(MSE) was less than the pre-defined training goal and the training stopped.

MSE = 1/n
n

∑
i=1

(yi − ŷi)
2 (12)

where yi and ŷi are the predictions from the model and labels, respectively [14].
In this study, with the consideration that the size of the database complied was limited,

the number of input and output variables were simple. Since the idea was to keep the model
as simple as possible for user friendliness, the BPNN model was designed to have a simple
architecture. As discussed earlier, the dataset was divided into training and testing sets with
the ratio of 70–30%. The parameters to be pre-configured were the basic training parameters
and the hyperparameters. The training parameters, such as a training function, epochs,
learning rate and learning goal, etc., decided the training process, and the hyperparameters
defined the structure of the network. The training function was selected to be the default
learning function based on the Levenberg–Marquardt algorithm [14]. Using this training
function, the validation process was performed using the data from the training set to tune
the other hyperparameters. Due to this, the leave-one-out cross-validation method was
considered to achieve the hyperparameter tuning, following which the validation set was
combined with the training set. In this study, a single hidden layer model was selected due
to the complexity of the problem and the hyperparameters to be tuned was a number of
hidden neurons in this layer. In this case, the hidden neurons ranging from one to 10 were
validated and each model was repeated 10 times to take average root mean squared error
(RMSE). The results are summarised in Table 2. The result show that the model with two
neurons had the minimum average RMSE and, hence, this was selected.

Table 2. Cross-validation results.

Neurons 1 2 3 4 5 6 7 8 9 10

Avg RMSE 0.444 0.391 0.688 0.593 0.519 0.612 0.591 9.531 0.527 3.765

In this study, the model’s performance was assessed based on two parameters, namely
the root mean square error (RMSE) and the coefficient correlation (R), which describe the
degree of the correlation of the input parameters to the SE. The proposed BPNN can be
mathematically described as Equation (7). Due to the heavy computation, we attempted to
minimise the computation required by mapping the inputs from 0 to 1 according to the
following equations. It should also be noted that the output of the model was mapped back
for a result discussion, as shown in Equations (8)–(10). The developed BPNN model offered
an R and RMSES of 0.962 and 0.31 dB for the training set. For the test set, the model reached
an R and RMSE of 0.983 and 2.64 dB, respectively, as shown in Figure 8. These indicate that
the proposed BPNN model has the ability to estimate the SE at a given frequency using
mixed design parameters at a relatively good level.

SE = tansig


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The equation for mapping : y = (ymax − ymin) ∗
x− xmin

xmax − xmin
+ ymin (16)
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6. Conclusions

This study proposed two prediction models, a multi-variable non-linear regression
model and a BPNN model, to meet the different accuracy requirements with various
complexity for estimating the shielding effectiveness of cementitious composites containing
carbon fibres at a given frequency using mixed design parameters, including the fibre
fraction, water-to-binder ratio, sand-to-cement ratio, thickness of specimens and fibre
aspect ratio. The conclusions of this study can be summarised as follows.

• The data aggregation revealed that the fibre fraction of 0–1 vol% was commonly used
since the majority of the data fell within this range. At each fibre content, it was clear
to see the increase in the SE with a higher frequency as expected. With an increase
in the fibre content, the SE did not exhibit a significant increasing trenddue to the
interactions of different mechanisms. This behaviour is opposite to the finds being
reported in previous literature.

• The scatter plot for the SE against the water-to-cement ratio illustrated that a higher
w/c ratio led to a poorer SE, since a higher water content increased the porosity of the
material and, hence, increasing the multiple reflection of the EMW and the inclusion
of the fibres aids this deterioration. This observation is consistent with the conclusions
drawn in the previous literature.

• Although the data aggregation gave an indication of the increasing sand-to-cement
content, the SE experienced a reduction and then started to increase. It should be noted
that there was a lack of data in the sand-to-cement ratio in this database and it showed
a potential for pioneer researchers to comprehensively investigate the behaviour of
the SE with varied sand content.

• Conclusions from the previous literature emphasised the non-negligible effect of the
specimen thickness on the shielding effectiveness. However, the data aggregation
did not indicate sufficient evidence that proved the correlation between the specimen
thickness and the material’s SE due to the limited data in the thickness. Further
research is required to comprehensively investigate the effect of the specimen thickness
and corresponding size effect on the shielding effectiveness.
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• The water-to-binder ratio was negatively related to the SE unless the conductivity was
large enough to cause an effect to reverse. This effect may have been noticed since the
relation was positive between the SE and the water-to-binder ratio.

• The multi-variable non-linear regression model was deemed reasonable to estimate
the EMI SE. It was confirmed by the high R2 value of 0.88 and low RMSE of 2.3 dB.
The BPNN model also offered a good prediction accuracy since its best R2 and RMSE
reached 0.96 and 2.64 dB.

Although the parameters, such as the sand-to-cement ratio, specimen thickness and
aspect ratio of the fibres, were reported to have a non-negligible effect on the overall
shielding effectiveness of the concrete or cementitious composites, the results from the
data aggregation did not exhibit the expected behaviour of the SE and the mechanisms
or correlations behind the effects of these factors on the SE still remained unclear due
to the built-in disadvantage of being unable to explain the physical theory behind the
predictions for the regression or machine learning. These, therefore, reflect the possibility
for pioneer researchers to further investigate the behaviour of the SE with these parameters
by conducting physical experiments. Moreover, since the BPNN model as well as the
regression model exhibited a reasonable performance, it is possible for pioneer researchers
to include the data of the other additives or fillers instead of solely carbon fibres in the
database and develop prediction models with a higher ability of generalisation. Apart from
the BPNN model, there are plenty of models available from machine learning, and they
also have the potential for combining different classifiers to form a hybrid system or boost
the system to further overcome the disadvantages of the BPNN model, thus improving the
general performance of the model.
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Appendix A

Table 1. Database Established and Complied.

ID Fibre
Content, % w/c s/c Aspect

Ratio

Specimen
Thickness,

mm

Frequency,
GHz

SE,
dB Ref ID Fibre

Content, % w/c s/c Aspect
Ratio

Specimen
Thickness, mm

Frequency,
GHz

SE,
dB Ref

1 2 0.5 1 3.9 250 1 16.5 [28] 174 0.1 0.48 1 5 625 9.25 16.3 [25]

2 2 0.5 1 3.9 250 2 21.8 [28] 175 0.1 0.48 1 5 625 9.37 16.25 [25]

3 3 0.5 1 4.1 250 1 19.2 [28] 176 0.1 0.48 1 5 625 9.47 16.41 [25]

4 3 0.5 1 4.1 250 2 23.8 [28] 177 0.1 0.48 1 5 625 9.57 16.41 [25]

5 4 0.5 1 3.9 250 1 21.1 [28] 178 0.1 0.48 1 5 625 9.67 16.4 [25]

6 0.4 0.48 1 7 500 8.21 20.04 [20] 179 0.1 0.48 1 5 625 9.79 16.46 [25]

7 0.4 0.48 1 7 500 8.39 20.02 [20] 180 0.1 0.48 1 5 625 9.89 16.56 [25]

8 0.4 0.48 1 7 500 8.58 20 [20] 181 0.1 0.48 1 5 625 9.99 16.62 [25]

9 0.4 0.48 1 7 500 8.77 20.05 [20] 182 0.1 0.48 1 5 625 10.1 16.67 [25]

10 0.4 0.48 1 7 500 8.96 20.05 [20] 183 0.1 0.48 1 5 625 10.21 16.61 [25]

11 0.4 0.48 1 7 500 9.14 20.11 [20] 184 0.1 0.48 1 5 625 11.48 17.3 [25]

12 0.4 0.48 1 7 500 9.33 20.26 [20] 185 0.1 0.48 1 5 625 11.58 17.35 [25]

13 0.4 0.48 1 7 500 9.53 20.43 [20] 186 0.1 0.48 1 5 625 11.69 17.45 [25]

14 0.4 0.48 1 7 375 9.71 20.48 [20] 187 0.1 0.48 1 5 625 11.78 17.4 [25]

15 0.4 0.48 1 7 375 9.91 20.63 [20] 188 0.1 0.48 1 5 625 11.89 17.4 [25]

16 0.1 0.4 0.836 10 428.57 0.02 1.07 [1] 189 0.1 0.48 1 5 625 11.99 17.39 [25]

17 0.1 0.4 0.836 10 428.57 0.08 0.17 [1] 190 0.1 0.48 1 5 625 12.11 17.39 [25]

18 0.1 0.4 0.836 10 428.57 0.13 0.52 [1] 191 0.1 0.48 1 5 625 12.21 17.66 [25]

19 0.1 0.4 0.836 10 428.57 0.18 1.02 [1] 192 0.1 0.48 1 5 625 12.32 17.66 [25]

20 0.1 0.4 0.836 10 428.57 0.23 1.47 [1] 193 0.05 0.3 1.2 100 100 0.67 29.88 [34]

21 0.1 0.4 0.836 10 428.57 0.29 1.82 [1] 194 0.05 0.3 1.2 100 100 0.7 30.36 [34]

22 0.1 0.4 0.836 10 428.57 0.34 2.13 [1] 195 0.05 0.3 1.2 100 100 0.93 34.76 [34]

23 0.1 0.4 0.836 10 428.57 0.41 2.4 [1] 196 0.05 0.3 1.2 100 100 1 36.66 [34]

24 0.1 0.4 0.836 10 428.57 0.46 2.59 [1] 197 0.05 0.3 1.2 100 100 1.11 38.69 [34]
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Table 1. Cont.

ID Fibre
Content, % w/c s/c Aspect

Ratio

Specimen
Thickness,

mm

Frequency,
GHz

SE,
dB Ref ID Fibre

Content, % w/c s/c Aspect
Ratio

Specimen
Thickness, mm

Frequency,
GHz

SE,
dB Ref

25 0.1 0.4 0.836 10 428.57 0.52 2.8 [1] 198 0.05 0.3 1.2 100 100 1.16 38.85 [34]

26 0.1 0.4 0.836 10 428.57 0.63 3.21 [1] 199 0.05 0.3 1.2 100 100 1.19 38.69 [34]

27 0.1 0.4 0.836 10 428.57 0.74 3.67 [1] 200 0.05 0.3 1.2 100 100 1.21 39.23 [34]

28 0.1 0.4 0.836 10 428.57 0.8 3.85 [1] 201 0.05 0.3 1.2 100 100 1.33 39.21 [34]

29 0.1 0.4 0.836 10 428.57 0.86 4.26 [1] 202 0.05 0.3 1.2 100 100 1.38 39.33 [34]

30 0.1 0.4 0.836 10 428.57 0.92 4.17 [1] 203 0.05 0.3 1.2 100 100 1.42 39.43 [34]

31 0.1 0.4 0.836 10 428.57 0.98 4.42 [1] 204 0.05 0.3 1.2 100 100 1.45 39.6 [34]

32 0.1 0.4 0.836 10 428.57 1.03 4.17 [1] 205 0.05 0.3 1.2 100 100 1.48 40.49 [34]

33 0.1 0.4 0.836 10 428.57 1.11 4.11 [1] 206 0.05 0.3 1.2 100 100 1.51 40.82 [34]

34 0.1 0.4 0.836 10 428.57 1.15 4.05 [1] 207 0.05 0.3 1.2 100 100 1.54 42.89 [34]

35 0.1 0.4 0.836 10 428.57 1.22 4.05 [1] 208 0.05 0.3 1.2 100 100 1.58 44.22 [34]

36 0.1 0.4 0.836 10 428.57 1.27 4.23 [1] 209 0.05 0.3 1.2 100 100 1.63 46.25 [34]

37 0.1 0.4 0.836 10 428.57 1.31 4.41 [1] 210 0.05 0.3 1.2 100 100 1.68 47.27 [34]

38 0.1 0.4 0.836 10 428.57 1.38 4.47 [1] 211 0.05 0.3 1.2 100 100 1.71 48.19 [34]

39 0.1 0.4 0.836 10 428.57 1.45 4.5 [1] 212 0.05 0.3 1.2 100 100 1.74 49.07 [34]

40 0.1 0.4 0.836 10 428.57 1.49 4.78 [1] 213 0.05 0.3 1.2 100 100 1.78 49.94 [34]

41 0.7 0.4 0.836 10 428.57 0.02 23.69 [1] 214 0.05 0.3 1.2 100 100 1.82 51.88 [34]

42 0.7 0.4 0.836 10 428.57 0.04 21.81 [1] 215 0.05 0.3 1.2 100 100 1.86 52.71 [34]

43 0.7 0.4 0.836 10 428.57 0.06 21.72 [1] 216 0.05 0.3 1.2 100 100 1.98 54.74 [34]

44 0.7 0.4 0.836 10 428.57 0.1 21.77 [1] 217 0.6 0.3 1.2 100 100 0.7 38.49 [34]

45 0.7 0.4 0.836 10 428.57 0.14 22.12 [1] 218 0.6 0.3 1.2 100 100 0.93 39.36 [34]

46 0.7 0.4 0.836 10 428.57 0.19 22.39 [1] 219 0.6 0.3 1.2 100 100 0.97 39.74 [34]

47 0.7 0.4 0.836 10 428.57 0.23 22.62 [1] 220 0.6 0.3 1.2 100 100 1 40.52 [34]

48 0.7 0.4 0.836 10 428.57 0.28 22.77 [1] 221 0.6 0.3 1.2 100 100 1.16 44.03 [34]
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Table 1. Cont.

ID Fibre
Content, % w/c s/c Aspect

Ratio

Specimen
Thickness,

mm

Frequency,
GHz

SE,
dB Ref ID Fibre

Content, % w/c s/c Aspect
Ratio

Specimen
Thickness, mm

Frequency,
GHz

SE,
dB Ref

49 0.7 0.4 0.836 10 428.57 0.33 22.92 [1] 222 0.6 0.3 1.2 100 100 1.2 43.76 [34]

50 0.7 0.4 0.836 10 428.57 0.37 22.74 [1] 223 0.6 0.3 1.2 100 100 1.24 43.53 [34]

51 0.7 0.4 0.836 10 428.57 0.42 23.04 [1] 224 0.6 0.3 1.2 100 100 1.33 45.19 [34]

52 0.7 0.4 0.836 10 428.57 0.46 22.84 [1] 225 0.6 0.3 1.2 100 100 1.36 46.34 [34]

53 0.7 0.4 0.836 10 428.57 0.51 22.88 [1] 226 0.6 0.3 1.2 100 100 1.39 47.11 [34]

54 0.7 0.4 0.836 10 428.57 0.55 23.06 [1] 227 0.6 0.3 1.2 100 100 1.43 47.46 [34]

55 0.7 0.4 0.836 10 428.57 0.6 22.92 [1] 228 0.6 0.3 1.2 100 100 1.48 48.64 [34]

56 0.7 0.4 0.836 10 428.57 0.64 23.32 [1] 229 0.6 0.3 1.2 100 100 1.51 50.51 [34]

57 0.7 0.4 0.836 10 428.57 0.69 23.32 [1] 230 0.6 0.3 1.2 100 100 1.54 51.18 [34]

58 0.7 0.4 0.836 10 428.57 0.74 23.72 [1] 231 0.6 0.3 1.2 100 100 1.58 52.21 [34]

59 0.7 0.4 0.836 10 428.57 0.78 23.9 [1] 232 0.6 0.3 1.2 100 100 1.61 52.99 [34]

60 0.7 0.4 0.836 10 428.57 0.83 24.26 [1] 233 0.6 0.3 1.2 100 100 1.64 53.88 [34]

61 0.7 0.4 0.836 10 428.57 0.87 24.73 [1] 234 0.6 0.3 1.2 100 100 1.68 54.87 [34]

62 0.7 0.4 0.836 10 428.57 0.92 24.79 [1] 235 0.6 0.3 1.2 100 100 1.71 55.59 [34]

63 0.7 0.4 0.836 10 428.57 0.96 25.41 [1] 236 0.6 0.3 1.2 100 100 1.74 56.82 [34]

64 0.7 0.4 0.836 10 428.57 1.01 25.41 [1] 237 0.6 0.3 1.2 100 100 1.77 57.42 [34]

65 0.7 0.4 0.836 10 428.57 1.06 25.91 [1] 238 0.6 0.3 1.2 100 100 1.82 59.76 [34]

66 0.7 0.4 0.836 10 428.57 1.1 26.23 [1] 239 0.6 0.3 1.2 100 100 1.99 68.13 [34]

67 0.7 0.4 0.836 10 428.57 1.15 26.46 [1] 240 0.4 0.3 1.2 100 100 0.94 37.72 [34]

68 0.7 0.4 0.836 10 428.57 1.19 27.2 [1] 241 0.4 0.3 1.2 100 100 0.97 38.44 [34]

69 0.7 0.4 0.836 10 428.57 1.24 27.41 [1] 242 0.4 0.3 1.2 100 100 1.21 42.33 [34]

70 0.7 0.4 0.836 10 428.57 1.28 28.39 [1] 243 0.4 0.3 1.2 100 100 1.24 42.06 [34]

71 0.7 0.4 0.836 10 428.57 1.33 28.73 [1] 244 0.4 0.3 1.2 100 100 1.33 43.4 [34]

72 0.7 0.4 0.836 10 428.57 1.37 29.42 [1] 245 0.4 0.3 1.2 100 100 1.37 44.27 [34]

73 0.7 0.4 0.836 10 428.57 1.42 30.09 [1] 246 0.4 0.3 1.2 100 100 1.41 45.34 [34]

74 0.7 0.4 0.836 10 428.57 1.47 30.42 [1] 247 0.4 0.3 1.2 100 100 1.43 45.73 [34]
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Table 1. Cont.

ID Fibre
Content, % w/c s/c Aspect

Ratio

Specimen
Thickness,

mm

Frequency,
GHz

SE,
dB Ref ID Fibre

Content, % w/c s/c Aspect
Ratio

Specimen
Thickness, mm

Frequency,
GHz

SE,
dB Ref

75 0.7 0.4 0.836 10 428.57 1.5 30.98 [1] 248 0.4 0.3 1.2 100 100 1.48 47.55 [34]

76 0.7 0.4 0.836 10 428.57 1.42 30.09 [1] 249 0.4 0.3 1.2 100 100 1.51 47.88 [34]

77 0.7 0.4 0.836 10 428.57 1.42 22.52 [1] 250 0.4 0.3 1.2 100 100 1.53 49.25 [34]

78 0.7 0.4 0.836 10 428.57 1.47 30.42 [1] 251 0.4 0.3 1.2 100 100 1.58 51.28 [34]

79 0.7 0.4 0.836 10 428.57 1.48 22.79 [1] 252 0.4 0.3 1.2 100 100 1.6 52.22 [34]

80 0.7 0.4 0.836 10 428.57 1.5 30.98 [1] 253 0.4 0.3 1.2 100 100 1.66 53.1 [34]

81 0.5 0.4 0.836 10 857.14 0.05 29.59 [1] 254 0.4 0.3 1.2 100 100 1.7 53.78 [34]

82 0.5 0.4 0.836 10 857.14 0.09 27.73 [1] 255 0.4 0.3 1.2 100 100 1.73 55.17 [34]

83 0.5 0.4 0.836 10 857.14 0.14 27.73 [1] 256 0.4 0.3 1.2 100 100 1.76 56.65 [34]

84 0.5 0.4 0.836 10 857.14 0.19 28.18 [1] 257 0.4 0.3 1.2 100 100 1.82 59.25 [34]

85 0.5 0.4 0.836 10 857.14 0.24 28.77 [1] 258 0.4 0.3 1.2 100 100 1.86 61.04 [34]

86 0.5 0.4 0.836 10 857.14 0.29 28.88 [1] 259 0.4 0.3 1.2 100 100 1.99 66.61 [34]

87 0.5 0.4 0.836 10 857.14 0.35 29.65 [1] 260 0.2 0.3 1.2 100 100 0.92 38.86 [34]

88 0.5 0.4 0.836 10 857.14 0.4 30.22 [1] 261 0.2 0.3 1.2 100 100 0.96 39.63 [34]

89 0.5 0.4 0.836 10 857.14 0.45 30.95 [1] 262 0.2 0.3 1.2 100 100 1 39.45 [34]

90 0.5 0.4 0.836 10 857.14 0.5 30.45 [1] 263 0.2 0.3 1.2 100 100 1.07 40.88 [34]

91 0.5 0.4 0.836 10 857.14 0.55 30.38 [1] 264 0.2 0.3 1.2 100 100 1.08 41.56 [34]

92 0.5 0.4 0.836 10 857.14 0.6 30.05 [1] 265 0.2 0.3 1.2 100 100 1.13 42.53 [34]

93 0.5 0.4 0.836 10 857.14 0.65 30.22 [1] 266 0.2 0.3 1.2 100 100 1.16 42.67 [34]

94 0.5 0.4 0.836 10 857.14 0.7 30.25 [1] 267 0.2 0.3 1.2 100 100 1.18 42.93 [34]

95 0.5 0.4 0.836 10 857.14 0.75 30.59 [1] 268 0.2 0.3 1.2 100 100 1.35 45.06 [34]

96 0.5 0.4 0.836 10 857.14 0.81 30.96 [1] 269 0.2 0.3 1.2 100 100 1.4 45.31 [34]

97 0.5 0.4 0.836 10 857.14 0.86 31.7 [1] 270 0.2 0.3 1.2 100 100 1.43 46.47 [34]

98 0.5 0.4 0.836 10 857.14 0.91 31.91 [1] 271 0.2 0.3 1.2 100 100 1.48 47.03 [34]

99 0.5 0.4 0.836 10 857.14 0.96 32.67 [1] 272 0.2 0.3 1.2 100 100 1.51 47.61 [34]
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Table 1. Cont.

ID Fibre
Content, % w/c s/c Aspect

Ratio

Specimen
Thickness,

mm

Frequency,
GHz

SE,
dB Ref ID Fibre

Content, % w/c s/c Aspect
Ratio

Specimen
Thickness, mm

Frequency,
GHz

SE,
dB Ref

100 0.5 0.4 0.836 10 857.14 1.01 33.02 [1] 273 0.2 0.3 1.2 100 100 1.55 48.28 [34]

101 0.5 0.4 0.836 10 857.14 1.06 33.68 [1] 274 0.2 0.3 1.2 100 100 1.59 48.49 [34]

102 0.5 0.4 0.836 10 857.14 1.11 34.18 [1] 275 0.2 0.3 1.2 100 100 1.62 49.27 [34]

103 0.5 0.4 0.836 10 857.14 1.17 34.85 [1] 276 0.2 0.3 1.2 100 100 1.65 50.04 [34]

104 0.5 0.4 0.836 10 857.14 1.22 35.61 [1] 277 0.2 0.3 1.2 100 100 1.68 50.93 [34]

105 0.5 0.4 0.836 10 857.14 1.27 36.57 [1] 278 0.2 0.3 1.2 100 100 1.71 51.86 [34]

106 0.5 0.4 0.836 10 857.14 1.32 37.61 [1] 279 0.2 0.3 1.2 100 100 1.74 52.68 [34]

107 0.5 0.4 0.836 10 857.14 1.37 38.62 [1] 280 0.2 0.3 1.2 100 100 1.77 53.65 [34]

108 0.5 0.4 0.836 10 857.14 1.42 39.52 [1] 281 0.2 0.3 1.2 100 100 1.81 55.45 [34]

109 0.5 0.4 0.836 10 857.14 1.47 40.1 [1] 282 0.2 0.3 1.2 100 100 1.99 67.13 [34]

110 0.5 0.4 0.836 10 857.14 1.5 41.05 [1] 283 1 0.5 1 3.8 100 1 10.2 [28]

111 0.3 0.4 0.836 10 857.14 0.14 25.22 [1] 284 1 0.5 1 3.8 100 2 15.8 [28]

112 0.3 0.4 0.836 10 857.14 0.19 25.18 [1] 285 0.1 0.3 1.2 100 100 0.69 34.76 [27]

113 0.3 0.4 0.836 10 857.14 0.24 25.52 [1] 286 0.1 0.3 1.2 100 100 0.93 37.06 [27]

114 0.3 0.4 0.836 10 857.14 0.29 25.59 [1] 287 0.1 0.3 1.2 100 100 0.98 38.53 [27]

115 0.3 0.4 0.836 10 857.14 0.34 25.76 [1] 288 0.1 0.3 1.2 100 100 0.99 42.14 [27]

116 0.3 0.4 0.836 10 857.14 0.4 25.48 [1] 289 0.1 0.3 1.2 100 100 1.02 41.43 [27]

117 0.3 0.4 0.836 10 857.14 0.45 25.6 [1] 290 0.1 0.3 1.2 100 100 1.06 41.11 [27]

118 0.3 0.4 0.836 10 857.14 0.5 25.21 [1] 291 0.1 0.3 1.2 100 100 1.09 42.76 [27]

119 0.3 0.4 0.836 10 857.14 0.55 25.37 [1] 292 0.1 0.3 1.2 100 100 1.12 42.62 [27]

120 0.3 0.4 0.836 10 857.14 0.6 25.18 [1] 293 0.1 0.3 1.2 100 100 1.15 41.15 [27]

121 0.3 0.4 0.836 10 857.14 0.65 25.32 [1] 294 0.1 0.3 1.2 100 100 1.39 41.9 [27]

122 0.3 0.4 0.836 10 857.14 0.7 25.3 [1] 295 0.1 0.3 1.2 100 100 1.42 43.69 [27]

123 0.3 0.4 0.836 10 857.14 0.75 25.58 [1] 296 0.1 0.3 1.2 100 100 1.48 44.23 [27]

124 0.3 0.4 0.836 10 857.14 0.8 25.66 [1] 297 0.1 0.3 1.2 100 100 1.51 44.93 [27]
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Table 1. Cont.

ID Fibre
Content, % w/c s/c Aspect

Ratio

Specimen
Thickness,

mm

Frequency,
GHz

SE,
dB Ref ID Fibre

Content, % w/c s/c Aspect
Ratio

Specimen
Thickness, mm

Frequency,
GHz

SE,
dB Ref

125 0.3 0.4 0.836 10 857.14 0.85 25.97 [1] 298 0.1 0.3 1.2 100 100 1.54 45.45 [27]

126 0.3 0.4 0.836 10 857.14 0.9 26.09 [1] 299 0.1 0.3 1.2 100 100 1.58 47.32 [27]

127 0.3 0.4 0.836 10 857.14 0.95 26.38 [1] 300 0.1 0.3 1.2 100 100 1.59 48.61 [27]

128 0.3 0.4 0.836 10 857.14 1 26.59 [1] 301 0.1 0.3 1.2 100 100 1.62 48.18 [27]

129 0.3 0.4 0.836 10 857.14 1.05 26.93 [1] 302 0.1 0.3 1.2 100 100 1.65 49.95 [27]

130 0.3 0.4 0.836 10 857.14 1.1 27.29 [1] 303 0.1 0.3 1.2 100 100 1.7 51.04 [27]

131 0.3 0.4 0.836 10 857.14 1.16 27.63 [1] 304 0.1 0.3 1.2 100 100 1.74 51.02 [27]

132 0.3 0.4 0.836 10 857.14 1.21 28.42 [1] 305 0.1 0.3 1.2 100 100 1.77 51.08 [27]

133 0.3 0.4 0.836 10 857.14 1.26 28.98 [1] 306 0.1 0.3 1.2 100 100 1.81 54.52 [27]

134 0.3 0.4 0.836 10 857.14 1.31 29.98 [1] 307 0.1 0.3 1.2 100 100 1.98 58.01 [27]

135 0.3 0.4 0.836 10 857.14 1.36 30.49 [1] 308 0.8 0.3 1.2 100 100 0.67 38.34 [27]

136 0.3 0.4 0.836 10 857.14 1.41 31.63 [1] 309 0.8 0.3 1.2 100 100 0.73 40.57 [21]

137 0.3 0.4 0.836 10 857.14 1.46 32 [1] 310 0.8 0.3 1.2 100 100 0.76 40.57 [21]

138 0.3 0.4 0.836 10 857.14 1.5 32.71 [1] 311 0.8 0.3 1.2 100 100 0.78 41.89 [21]

139 0.4 0.48 1 7 375 10.09 20.8 [20] 312 0.8 0.3 1.2 100 100 0.81 43.43 [21]

140 0.4 0.48 1 7 375 10.28 20.88 [20] 313 0.8 0.3 1.2 100 100 0.94 45.63 [21]

141 0.4 0.48 1 7 375 10.47 20.92 [20] 314 0.8 0.3 1.2 100 100 0.99 45.96 [21]

142 0.4 0.48 1 7 375 10.65 20.97 [20] 315 0.8 0.3 1.2 100 100 1.03 46.6 [21]

143 0.4 0.48 1 7 375 10.84 21.12 [20] 316 0.8 0.3 1.2 100 100 1.06 46.75 [21]

144 0.4 0.48 1 7 375 11.03 21.25 [20] 317 0.8 0.3 1.2 100 100 1.2 49.84 [21]

145 0.4 0.48 1 7 375 11.23 21.38 [20] 318 0.8 0.3 1.2 100 100 1.27 50.27 [21]

146 0.4 0.48 1 7 375 11.4 21.52 [20] 319 0.8 0.3 1.2 100 100 1.34 51.13 [21]

147 0.4 0.48 1 7 500 11.6 21.72 [20] 320 0.8 0.3 1.2 100 100 1.36 51.25 [21]

148 0.4 0.48 1 7 500 11.78 21.87 [20] 321 0.8 0.3 1.2 100 100 1.38 51.15 [21]

149 0.4 0.48 1 7 500 11.98 21.97 [20] 322 0.8 0.3 1.2 100 100 1.42 52.51 [21]

150 0.4 0.48 1 7 500 12.17 22.12 [20] 323 0.8 0.3 1.2 100 100 1.46 54.01 [21]
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Table 1. Cont.

ID Fibre
Content, % w/c s/c Aspect

Ratio

Specimen
Thickness,

mm

Frequency,
GHz

SE,
dB Ref ID Fibre

Content, % w/c s/c Aspect
Ratio

Specimen
Thickness, mm

Frequency,
GHz

SE,
dB Ref

151 0.4 0.48 1 7 500 12.35 22.23 [20] 324 0.8 0.3 1.2 100 100 1.53 55.55 [21]

152 0.1 0.48 1 5 625 8.2 15.55 [25] 325 0.8 0.3 1.2 100 100 1.65 59.49 [21]

153 0.1 0.48 1 5 625 8.31 15.96 [25] 326 0.8 0.3 1.2 100 100 1.7 60.05 [21]

154 0.1 0.48 1 5 625 8.42 16.01 [25] 327 0.8 0.3 1.2 100 100 1.76 60.86 [21]

155 0.1 0.48 1 5 625 8.53 16.06 [25] 328 1 0.3 1.2 100 100 0.94 48.8 [21]

156 0.1 0.48 1 5 625 8.64 16.1 [25] 329 1 0.3 1.2 100 100 0.97 49.26 [21]

157 0.1 0.48 1 5 625 8.75 16.15 [25] 330 1 0.3 1.2 100 100 1.06 50.53 [21]

158 0.1 0.48 1 5 625 8.86 16.24 [25] 331 1 0.3 1.2 100 100 1.16 51.4 [21]

159 0.1 0.48 1 5 625 8.97 16.29 [25] 332 1 0.3 1.2 100 100 1.18 51.51 [21]

160 0.1 0.48 1 5 625 10.29 16.66 [25] 333 1 0.3 1.2 100 100 1.27 52.52 [21]

161 0.1 0.48 1 5 625 10.39 16.7 [25] 334 1 0.3 1.2 100 100 1.3 52.69 [21]

162 0.1 0.48 1 5 625 10.51 16.81 [25] 335 1 0.3 1.2 100 100 1.34 53.31 [21]

163 0.1 0.48 1 5 625 10.61 16.88 [25] 336 1 0.3 1.2 100 100 1.37 53.28 [21]

164 0.1 0.48 1 5 625 10.73 16.91 [25] 337 1 0.3 1.2 100 100 1.42 53.3 [21]

165 0.1 0.48 1 5 625 10.85 16.93 [25] 338 1 0.3 1.2 100 100 1.47 53.77 [21]

166 0.1 0.48 1 5 625 10.95 16.98 [25] 339 1 0.3 1.2 100 100 1.52 54.6 [21]

167 0.1 0.48 1 5 625 11.06 17.07 [25] 340 1 0.3 1.2 100 100 1.57 55.56 [21]

168 0.1 0.48 1 5 625 11.17 17.12 [25] 341 1 0.3 1.2 100 100 1.63 56.59 [21]

169 0.1 0.48 1 5 625 11.29 17.13 [25] 342 1 0.3 1.2 100 100 1.67 57.44 [21]

170 0.1 0.48 1 5 625 11.39 17.11 [25] 343 1 0.3 1.2 100 100 1.7 57.89 [21]

171 0.1 0.48 1 5 625 12.44 17.53 [25] 344 1 0.3 1.2 100 100 1.8 59.68 [21]

172 0.1 0.48 1 5 625 9.03 16.31 [25] 345 1 0.3 1.2 100 100 1.88 62.59 [21]

173 0.1 0.48 1 5 625 9.14 16.2 [25] 346 1 0.3 1.2 100 100 1.91 62.63 [21]
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