
Citation: Dawadi, B.R.; Adhikari, B.;

Srivastava, D.K. Deep Learning

Technique-Enabled Web Application

Firewall for the Detection of Web

Attacks. Sensors 2023, 23, 2073.

https://doi.org/10.3390/s23042073

Academic Editor: Valderi R. Q.

Leithardt

Received: 16 January 2023

Revised: 9 February 2023

Accepted: 9 February 2023

Published: 12 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Learning Technique-Enabled Web Application Firewall
for the Detection of Web Attacks †

Babu R. Dawadi 1,* , Bibek Adhikari 1 and Devesh Kumar Srivastava 2

1 Department of Electronics and Computer Engineering, Pulchowk Campus, Tribhuvan University,
Kathmandu 19758, Nepal

2 Department of Information Technology, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
* Correspondence: baburd@ioe.edu.np
† Portion of this paper was presented on 12th IOE Graduate Conference, Kathmandu, Nepal,

19–22 October 2022.

Abstract: New techniques and tactics are being used to gain unauthorized access to the web that harm,
steal, and destroy information. Protecting the system from many threats such as DDoS, SQL injection,
cross-site scripting, etc., is always a challenging issue. This research work makes a comparative
analysis between normal HTTP traffic and attack traffic that identifies attack-indicating parameters
and features. Different features of standard datasets ISCX, CISC, and CICDDoS were analyzed and
attack and normal traffic were compared by taking different parameters into consideration. A layered
architecture model for DDoS, XSS, and SQL injection attack detection was developed using a dataset
collected from the simulation environment. In the long short-term memory (LSTM)-based layered
architecture, the first layer was the DDoS detection model designed with an accuracy of 97.57% and
the second was the XSS and SQL injection layer with an obtained accuracy of 89.34%. The higher
rate of HTTP traffic was investigated first and filtered out, and then passed to the second layer. The
web application firewall (WAF) adds an extra layer of security to the web application by providing
application-level filtering that cannot be achieved by the traditional network firewall system.

Keywords: WAF; LSTM; XSS; SQL injection; web security

1. Introduction

One of the common difficulties in various disciplines of computer science is protecting
computers and networks from infiltration, theft, and disturbance [1]. The importance of
a security system increases as the number of internet users increases. A web application
firewall (WAF) acts as a barrier between a web application and the client on the internet
when it is deployed in front of a web application [2,3]. A WAF is a type of reverse proxy
that protects the web server from being exposed to the client by detecting anomalous traffic
in the WAF, while a proxy server acts as an intermediary to protect a client machine’s
identity. A WAF is controlled by a set of rules known as policies and a pre-trained module
to predict new incoming requests. By filtering harmful communications, these policies try
to guard against application vulnerabilities. The usefulness of a WAF is derived in part
from the speed and ease with which policy modifications may be deployed, allowing for a
faster reaction to various attack vectors [4,5]. Figure 1 depicts the fundamental structure of
a WAF.

Many attempts have been made to build various security solutions, such as intrusion
detection systems (IDS) and firewalls [6]. In most of these cases, network layer firewalls
and IDS do not inspect HTTP packets in the application layer [2]. As a result, they are
incapable of fully safeguarding web servers. Web applications, especially in the cloud,
are one of the most appealing targets for attackers looking to break into an organization’s
information infrastructure. Internal data leaks, financial losses, and website manipulation
can all result from an organization’s failure to implement web security. A WAF is an

Sensors 2023, 23, 2073. https://doi.org/10.3390/s23042073 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6449-399X
https://doi.org/10.3390/s23042073
https://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/23/4/2073?type=check_update&version=5

Sensors 2023, 23, 2073 2 of 16

application to identify and prevent many types of attacks, such as SQL injections, cross-site
scripting (XSS), and dynamic denial of service (DDoS) [4,7]. WAF uses IDS methods in the
application layer to secure web applications.

Figure 1. Working of web application firewall.

Most of the current WAFs work on signature-based systems. Traditional firewall
systems are not meeting the needs of the modern environment to properly filter out attacks
over any kind of network [5,8]. Attackers are smarter and they find adaptable techniques
and tactics to breach the system. Hence, a signature-based protection system is not always
a reasonable solution [9,10]. The signature-based system only works for known attacks and
threats, but cannot work on zero-day attacks [7]. If we are providing a service through the
web, the entire service and business process depends on this web service system, in which
any kind of DDoS attack would directly hamper the service, the business, and the economy.
A deep learning-based web application firewall is developed by training the system, such
that it is capable of detecting new attack vectors, tactics, and behaviors. It is capable to
protect web applications based on the effort we have made while training the module [11].
Correctly identifying the threat is a challenging task; if any threat is detected incorrectly,
this may highly impact the business process resulting in organizational loss.

We introduce a layered architecture of WAF. Generally, in the WAF, features from
the incoming traffic are extracted and tested for different types of threat detection mod-
ules/signatures. Based on the incoming traffic, a higher rate of detection is filtered in
the first layer, and only the filtered traffic from the first layer is processed in the second
layer. As the nature of the attack is different for different attacks, extracting the required
parameter based on the nature of the attack and predicting new requests using a pre-trained
model would increase the performance and accuracy of the WAF. The major contributions
of this research are as follows:

• WAF layered architecture was proposed for DDoS, SQL injection, and XSS detection
in the web-based service system.

• The proposed model’s performance was evaluated and achieved 97.57% accuracy
with DDoS detection and 89.34% accuracy with XSS/SQL injection detection.

The rest of this paper is organized as follows: Section 2 presents a background study
with related work on web application firewall implementation practices. Section 3 provides
the methodology of the current research, including system architecture, dataset preparation,
and approach for analysis, whereas Section 4 presents the results and analyses. Section 5
concludes the paper.

2. Background and Related Work

A web application firewall engine consists of two modules: (a) a configuration module
(CM) and (b) packet analyzer module (PAM). When live packets are received from the

Sensors 2023, 23, 2073 3 of 16

internet, rule files filter them from CM and passes the traffic to PAM. PAM analyzes the
packets and extracts the features from the packet. Using previously trained data, it tests
and identifies the nature/character of that packet. Therefore, only analyzed and allowed
packets are passed through the PAM to the web application server. WAF can be deployed
as hardware devices on virtual appliances or software running on the same web server
as the web application or through the cloud. It operates using a particular set of rules
called policies [12]. In each of these deployment models, the WAF is always placed in front
of the web application, intercepting all traffic between the application and the Internet.
Thus, these policies determine the WAF firewalls that look for the traffic behavior and
decides what action needs to be taken with vulnerabilities. The WAF will continue scanning
web applications and receive GET and POST requests to identify and filter HTTP requests
with malicious activity [5,13,14]. Furthermore, an intelligent WAF can even request to
identify whether the participant is a human or a bot. When vulnerabilities are found in
the application, the WAF immediately patches them to automatically block attackers and
malicious actors, for example, bots and attacked IP addresses. WAFs are the first line
of defense against complex attacks that threaten the integrity of any business. The most
effective and efficient solutions provide the following WAF capabilities [15]:

• Input protection provides a comprehensive application filter that accepts only valid
user inputs.

• HTTP validation detects HTTP vulnerabilities and prevents attacks by setting up the
validation rules.

• Policies tailored to widely used applications are set up according to specific require-
ments and need. Thus, it protects applications from vulnerabilities and also provides
real-time insights about the traffic.

• Data leakage prevention provides an alert and prevents any kind of unusual traffic
or data leakage by identifying, filtering, and shielding the private data.

• Automated attack blocking provides automation tools for blocking attacks by deny-
ing malicious traffic from entering the network.

Web application security [16] is needed for securing information, clients, and organiza-
tions from information robbery, interference in commerce progression, or other destructive
actions that come from cyber crime. Web application security and protection approaches
endeavor to ensure the security of applications using measures such as WAFs, multi-factor
confirmation for clients, utilized security, and approval of threats to preserve client states.

Every website on the Internet is vulnerable to cyber-attacks. The dangers range from
human error to sophisticated cyber-attacks carried out by an organized group of criminals.
The major incentive for cyber attackers, according to Verizon’s data breach investigations
report, is financial [17]. Whether we run an E-commerce site or a small simple company
website, we are at risk of being attacked. Each harmful assault on our website is unique,
and with so many types of attacks circulating, it becomes difficult to defend against all of
them. However, there is a lot that can be done to protect websites from these assaults and
reduce the chances that dangerous hackers will target them. Major known web attacks are
depicted in Figure 2. XSS and SQL injections are among the top web attacks.

DDoS attacks are deliberate attempts to interrupt the normal traffic of a targeted server,
service, or network by flooding the target or its surrounding infrastructure with Internet
traffic [18]. A DDoS attack is similar to unanticipated traffic congestion that prevents
regular traffic from reaching its target. PCs and other networked resources, such as IoT
devices, are used to flood the target with internet traffic that is controlled/instructed by the
central system. Bots are individual devices, whereas a botnet is a collection of bots. Once a
botnet has been formed, the attacker can lead an attack by sending remote commands to
each bot. When a botnet targets a victim’s server or network, each bot sends requests to
the target’s IP address, potentially overwhelming the server or network and preventing
normal traffic from passing through. As each bot is a legal Internet device, it makes it
difficult to distinguish attack traffic from typical Internet traffic. XSS is an injection attack

Sensors 2023, 23, 2073 4 of 16

that occurs when the attacker uses vulnerabilities in trusted websites to inject malicious
code, and this code can be implemented to steal personal information from users, such as
login information, session cookies, and sensitive information [1]. It can even remain on
the website permanently to continue targeting multiple users. An SQL injection is a sort
of online security issue that allows an attacker to manipulate database queries in a web
application. It gives an attacker access to data they would not normally have access to. An
attacker can change or erase this data in many cases, causing the application’s content or
behavior to be permanently changed [3].

LSTM model is a special type of recurrent neural network. It is capable of learning
long-term dependencies during the training of the module [7,19]. A LSTM model consists
of three layers integrated together in each cell to process the input from sequential input
data and output from the previous cell.

ht−1 = Previous cell output
xt = Input in current cell
Ct−1 = Previous cell state

Figure 2. Different types of web attacks.

Figure 3. LSTM network.

The structure of LSTM network is depicted in Figure 3. The first layer is the forgotten
gate. This layer filters out the content that needs to be memorized or not. The sigma
function gives the output (ft) ‘1’ or ‘0’. ‘1’ signals to memorize the previous cell, whereas ‘0’
signals to forget it.

ft = σ(W f · [ht−1, xt] + b f) (1)

The second is the input gate that contains two layers, of which the first is the input
gate sigmoid layer (it) that decides on which value to update and the second one is the
“tanh” function. Both are combined and added to the previous layer output to give the cell
state output (C̃t).

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC (3)

The final layer is the output gate, which gives the output of the cell. The output of the
sigmoid is obtained by the sigmoid output of the input and the previous cell’s output (ot).

Sensors 2023, 23, 2073 5 of 16

The cell state value is passed through the “tanh” function. It multiplies with the sigmoid
output (ot) to get the cell output value (ht).

ot = σ(Wo[ht−1, xt] + bo (4)

ht = ot · tanh(C̃t) (5)

Related Work

Gustavo et al. [20] explored the deep learning techniques implemented in web ap-
plication firewalls to classify the HTTP traffic. The author used a transformer encoder to
analyze the classification of HTTP traffic. Using natural language processing, the authors
trained the model by transferring the HTTP traffic to the feature vector.

Moradi et al. [2] used a stacked auto-encoder method in the deep belief network to detect
bad HTTP requests. The authors used the n-gram feature extraction model to extract features
for model development. Three different machine learning models have been used with the
CSIC 2010 and ECML/PKDD 2007 dataset, and compared the performance of these models to
verify which had better performance as a web application firewall in the detection of anomalies.

Pen et al. [21] presented the importance of an unsupervised method of machine learning
over a supervised learning method for attack detection. The authors proposed an auto-
encoder-based model for the detection of such attacks to analyze XSS and SQL injections.

Rajesh et al. [22] analyzed different features including UDP flood attacks, ICMP ping
flood attacks, TCP SYN flood attacks, and land attacks to distinguish between normal and
DDoS attack traffic. The authors also presented a comparative analysis of the different
machine learning methods, including K-nearest neighbour, decision tree, random forest,
and naive Bayes.

Lente et al. [23] proposed a new model called 3C-LSTM, which is a combination of
LSTM and CNN, claiming it had better accuracy than other models. The authors used
the proposed model for XSS detection, trained by converting words to vectors. This work
evaluated the model for different sizes of batch input, and proposed the best batch size for
better results.

Keracan et al. [24] proposed using DA-SANA to detect attack traffic by considering
the noise coefficient. The author used three datasets, CISC, PKDD, and a generated dataset
to analyze the model to present the comparative results. In this work, the authors analyzed
attacks including SQL injection, XSS, RCE, CSRF, XXE, and many more.

Liang et al. [9] worked on analyzing URL content and identifying whether a URL had an
SQL injection and XSS payload or not. For this, they tokenized and vectorized the URL and
used this information to train RNN, LSTM, and GRU machine learning modules.

Tekerek et al. [25] used the CSIC2010v2 dataset to train the CNN, and discussed the
advantages of using CNN over ANN. The authors claimed that the proposed deep learning
model had higher accuracy than other machine learning models.

To the best of our knowledge, there have been many studies carried out investigating
TCP, UDP, SYN, and NTP flood types of DDoS attacks, but not specifically HTTP flood
DDoS attacks. Hence, we investigated HTTP flood DDoS attacks and correlated two types
of attacks, XSS and SQL injection, with one affecting the availability of service and the other
affecting the confidentiality and integrity of the web services.

3. Methodology
3.1. System Working Architecture

A WAF exists between the web server and client. Incoming HTTP traffic is parsed
and analyzed in the request processing unit of the WAF. The WAF was trained with a
training dataset to predict whether new incoming HTTP traffic was normal or malicious.
As the nature of a DDoS attack is different from XSS and SQL injections, the system was
trained with a separate, appropriate dataset for these attacks. A new HTTP request is
parsed and its parameters are extracted for prediction by the module. Then, it applies

Sensors 2023, 23, 2073 6 of 16

to the pre-trained module for a prediction. If the HTTP traffic is classified as malicious,
then it will be dropped; otherwise, it will be passed to the second module for testing the
SQL injection and XSS. Similarly, the second module identifies whether the HTTP traffic is
normal or malicious. If the HTTP traffic is predicted to be normal traffic, the HTTP session
is passed to the web server; otherwise, the HTTP session will be discarded/dropped in the
WAF itself. As the rate of DDoS requests are very high if we check for DDoS in the first
layer of the WAF, there is a higher rate of traffic filtered out in the first layer. This helps to
increase the accuracy and performance of the WAF system. Our proposed WAF consists of
two modules in the layered architecture, one for DDoS attack detection in the first layer and
another for SQL injection and XSS detection in the second layer. Rather than training the
module with the single dataset, training the module with separate datasets would lead to
better results, as the nature of the data and attacks are different. The complete framework
of this model is presented in Figure 4.

Figure 4. Model development framework.

3.2. Framework of the Proposed Model

For the training phase, two different datasets were used. Different features and
parameters were used for the detection of DDoS, XSS, and SQL injection, as per the nature
of attack. One dataset contained DDoS detection parameters, such as time-to-live, packet
length, request type, time, etc., whereas the SQL injection and XSS extracted the HTTP
header and body parts to analyze the characteristics presented. Training and testing
datasets were applied to the LSTM model using the generated dataset. After training the
system, the weight of the node in the module was adjusted so that we could predict new
requests by applying the pre-trained module. The module steps are shown in Figure 5.

• Decoder: The captured data is in raw form, and needs to be decoded to a standard
format. The DDoS data was decoded by Wireshark, whereas the SQL injection and
XSS log were decoded using URL decoding.

• Feature and parameters selection: The decoded dataset consists of different features
and parameters, so the appropriate parameters/features must be selected for training
the module. The DDoS attack detection features were selected by analyzing standard
dataset and correlation analyses in the captured data. For the SQL injection and XSS
detection, we analyzed the standard dataset to perform a comparative analysis of
normal and attack traffic, and selected the appropriate parameters.

• Numericalization: We coded the request methods of GET and POST as 1 and 2, respectively.
Similarly, flag values in textual forms were transformed to 1 and 0, respectively.

• Normalization/Scaling: To reduce the complexity of the module, higher numeri-
cal values were normalized to lower ones using min-max normalization, which is

Sensors 2023, 23, 2073 7 of 16

zi = xi−min(x)
max(x)−min(x) . Moreover, the data was converted to scalar form, which is suitable

for the LSTM module to make sequential inputs.
• LSTM module: In DDoS attack detection, we need to use a large sequential dataset

for the output and this sequence data are dependent on each other. Hence, instead of
a normal feedforward network model, LSTM could be the better choice.

Figure 5. Flowchart of LSTM modules.

3.3. Data Collection Methodology

The standard datasets DDoS IDS ISCX 2012 and CIC-DDoS 2019 were used for the
analysis and to detect the normal and DDoS attack traffic. Similarly, for the analysis of
SQL injections and XSS detection, we used the CISC dataset as the standard dataset to
identify features that could be indicators of XSS and SQL injection attacks. Additionally,
we developed a simulation environment for DDoS, XSS, and SQL injection-related dataset
generation for the processing and training of the WAF model.

3.3.1. Dataset Preparation for SQL Injection and XSS

A test environment was established using the DVWA [26] web application vulnerabil-
ity analysis tool, using the Burp Suite tool to pass the XSS and SQL injection payloads and
capture the traffic in the middle proxy. The dataset generation steps are shown in Figure 6.
Different XSS and SQL injection payloads were passed through the web browser. The traffic
forwarded from the web browser to the server were captured in the middleware Burp Suite
proxy. The captured raw traffic was then processed to extract the required parameters from
the raw log. Then, we analyzed the captured traffic and extracted the features/parameters

Sensors 2023, 23, 2073 8 of 16

from it using around 5700 payloads to collect the HTTP attack traffic. The normal traffic
was collected with normal input from the user interface.

Figure 6. Dataset generation approach for DDoS, XSS, and SQL injection.

3.3.2. Data Collection for DDoS

The Low Orbit Ion Cannon (LOIC) tool and hulk tool in the Kali Linux environment in
VMware was set up and implemented for data collection. We hosted a sample E-commerce
site on a local host on a Windows system, then flooded the traffic from four LOIC instances
consisting of two instances of LOIC on each machine. The forwarded traffic was captured
with the Wireshark and then processed to extract useful information from it to train the
WAF module.

3.3.3. Correlative Data Collection for DDoS and SQL Injection

For the correlative analysis, the first layer of defense was for DDoS protection, whereas
the second layer of protection was for XSS and SQL injection. SQL injection data acts like
normal data in the DDoS attack layer of protection. Different payloads were passed from
the browser as HTTP requests through the Burp Suite proxy and collected the HTTP traffic
using Wireshark. The collected log in the respective tool was used for training the model.
The collected data in Wireshark was taken as normal data, because it was collected by
normally browsing the web. The correlated log was only applicable for the DDoS detection
model, as the second layer of detection was applicable for XSS and SQL injection detection.

4. Results and Analysis
4.1. IDS ISCX 2012 Dataset

To identify the features that could be used to distinguish normal traffic from DDoS
attack traffic, we used the ISCX dataset, taking a sample of 100 K normal data and 100 K
DDoS attack data. From the samples, we analyzed the features of attack traffic and normal
traffic. As shown in Figure 7, the first 100 K is the attack traffic and the last 100 K is
the normal traffic. We analyzed 25 different features, from which the IP protocol used,
time-to-live, Don’t Fragment flag, header length, source, and destination port used were
the most distinguishable features between normal and DDoS attack traffic. As shown in
Figure 7a, we found attack traffic with the UDP protocol used, whereas almost all normal
traffic was with the TCP protocol. Similarly, we analyzed the TTL in the sample dataset. As
shown in Figure 7b, we found that the normal dataset had a higher TTL value compared
with the attack dataset. Similarly, during the analysis of header length, normal traffic had a
higher header length compared with attack traffic, as shown in Figure 7c. In addition, we
examined the Don’t Fragment flag used in forwarded packets in normal and attack traffic,
as shown in Figure 7d. We found that attack traffic had a greater number of Don’t Fragment
flags enabled compared with normal traffic. Moreover, there was greater variation in the

Sensors 2023, 23, 2073 9 of 16

destination ports used for the attack traffic compared with the normal traffic. For the
other remaining features, we did not find distinguishing properties between normal and
attack traffic.

(a) (b)

(c) (d)
Figure 7. IDS ISCX 2012 dataset representations: (a) protocol used; (b) TTL value used; (c) header
length; and (d) Don’t Fragment flag.

4.2. 2019 DDoS CIC Dataset

Visualizations of the CIC dataset are presented in Figure 8a–d. We considered almost
100 K data samples from the CIC2019 dataset, where 80 K was the attack dataset and
20 K was the normal dataset. During the analysis of 45 normalized features, the most
distinguishable parameters that differentiated between normal and attack traffic were push
flag, flow rate, port used, protocol used, and urgent flag.

Referring to Figure 8a, it is obvious that the DDoS traffic flow rate is higher than for
normal traffic, comparing the ratio between normal and attack traffic in the normalized
data. As shown in Figure 8b, most of the normal traffic is forwarded with TCP, whereas
attack traffic is forwarded with the UDP protocol. This is because TCP packets require
an acknowledged response from the server, whereas UDP packets do not. Thus, the UDP
is mostly used for attack traffic. In addition, we analyzed the total length of packet per
second, which was far higher for attack traffic than for normal traffic, as shown in Figure 8c.
Similarly, the most popular and lower-valued ports were used in the normal traffic, whereas
there was a higher variation of ports used in attack traffic, as shown in Figure 8d. There was
a variation in the segment length of normal traffic and DDoS attack traffic. We observed
that small-length segments were bombarded at a higher rate with a DDoS attack. In
addition, we observed more push and urgent flags were used in normal traffic compared
with attack traffic.

Sensors 2023, 23, 2073 10 of 16

(a) (b)

(c) (d)
Figure 8. DDoS CIC 2019 dataset representation: (a) flow rate in normal vs. attack traffic; (b) protocol
used; (c) total length of packet per sec; and (d) destination port used.

4.3. Generated Dataset Representation

This dataset was collected in the simulation environment. A total of 100 K data
samples were considered, out of which 50 K was the attack dataset and 50 K was the normal
dataset. The flow rate sending the attack traffic from a single LOIC instance and the normal
traffic flow from normal browsing are presented in Figure 9a,b. A total of 35 different
features were extracted from the captured log and analyzed the feature patterns, as shown
in Figure 10a–d. Other parameters considered to distinguish normal and attack traffic
included flags, time-to-live, frame length, and packet length. These distinguishing features
were used to train the model, so that it could be used for the prediction of new traffic.

(a) (b)

Figure 9. Rate representation during data preparation: (a) traffic rate from single LOIC instance and
(b) rate during normal browsing of the site.

Sensors 2023, 23, 2073 11 of 16

(a) (b)

(c) (d)
Figure 10. Dataset generated in the simulation environment representation: (a) Don’t Fragment flag;
(b) time-to-live; (c) frame length; and (d) packet length.

4.4. XSS and SQL Injection Dataset

We analyzed the CISC 2010 normal and attack traffic dataset [27]. Normal HTTP traffic
and HTTP traffic with XSS and SQL injection payloads were collected and the features
were extracted by parsing the log collected in the proxy. To find appropriate parameters
to distinguish between normal and attack traffic, we captured data with XSS and SQL
injection payloads, normal browsing data, and data with normal input. We used a total
of 4K XSS payloads and 2K SQL injection payloads for the generated attack dataset. The
generated normal dataset was verified with the standard dataset by comparing the features
and words presented in it. We considered the most frequent characteristics and words
presented in the attack traffic with the payloads compared with the normal traffic.

4.5. Model with Generated Dataset

We used the generated dataset for the analysis, training, and testing of the module.
We standardized the collected data using the standard score of a sample (x), which was
calculated as: z = (x−η)

s , where ‘η’ is the mean and ‘s’ is the standard deviation. We made
a matrix of m x n, where ‘m’ is the number of data presented and ‘n’ is the total number of
selected features for model training, with a sliding window of size ‘z’ to separate continuous
packets and reshape the data into a series of times. The data was reshaped into a three-
dimensional matrix of shape (m-z) × z × n. This data was then implemented in the model
with the train, test, and validation ratio of 60:20:20. The 60% dataset was used for the
training of a bidirectional LSTM model with the activation function ‘tenh’. At the last layer
of the LSTM model, we used a sigmoidal activation function for binary classification. For
model regularization, we used the regularizer L2. In addition, we used the Adam optimizer
for better optimization and used binary cross entropy as the loss function. As a result, after

Sensors 2023, 23, 2073 12 of 16

training the model up to 100 epochs, we observed an accuracy of 89.34%. The train and test
accuracy of each epoch is shown in Figure 11.

Figure 11. Training and test accuracy of LSTM model for XSS and SQL injection detection.

Similarly, we applied the generated DDoS dataset to the LSTM model. After training
the model up to 40 epochs, we observed an accuracy of 97.57%. The train and test accuracy
of each epoch is shown in Figure 12.

Figure 12. Training and test accuracy of LSTM model for DDoS detection.

4.6. Testing the Combined Model with New Test Dataset

For the validation of the model with the new dataset, we passed the log of live DDoS
traffic to the new site and applied it to our pre-trained model for prediction. It was able to
correctly detect 96% of the live traffic. Moreover, traffic with XSS and SQL injection was
applied to the DDoS module, as it detected it as good traffic and passed it to the second
layer. The features for prediction in the second layer were extracted. It correctly detected
90% of HTTP packets with the payloads. A proxy was configured on the Jupiter notebook
and listened to the specific port for live HTTP traffic input to the system. When traffic was
routed from source to destination, it passed through the two modules: first, it was checked
for DDoS attacks, then for XSS and SQL injection attacks. Only correctly classified traffic
was routed to the web server.

A confusion matrix of 2279 test datasets is shown in Figure 13. A total of 922 attacks
were correctly predicted as malicious, whereas 1129 normal datasets were correctly pre-
dicted as normal. Similarly, seven normal datasets were detected as malicious by the model,
and 221 malicious datasets were classified as normal.

Sensors 2023, 23, 2073 13 of 16

Figure 13. Confusion matrix for XSS and SQL injection detection model tested.

A confusion matrix is shown in Figure 14 for about 53,133 DDoS datasets showing that
26,505 attacks were correctly classified as malicious, whereas 25,131 normal dataset were
correctly classified as normal. Similarly, 1386 normal datasets were detected as malicious
by the model, and 133 malicious dataset were classified as normal.

Figure 14. Confusion matrix for DDoS detection model tested.

Comparing the performance between the first and second layer of detection, as shown
in Figure 15, we found that the DDoS module had higher accuracy and recall than the XSS
and SQL injection module, whereas the XSS and SQL injection module had higher precision
than the DDoS detection module. The performance parameters of previous studies are
shown in Table 1. Not one study considered the combination of all three attacks (XSS, SQL,
and DDoS), which is what we addressed in our work. The performance of our proposed
model is satisfactory compared with previous methods because of the correlative dataset
obtained for analysis.

Table 1. Model performance comparison in terms of accuracy.

Ref. XSS XSS and SQL
Injection DDoS

[1] 99.5% - -
[7] - 87.26% -
[10] - - 99.22%
[23] 99.4% - -
[18] - - 97.36%

Proposed - 89.34% 97.57%

Sensors 2023, 23, 2073 14 of 16

Figure 15. Performance evaluation of modules.

5. Conclusions

Using LSTM as our deep learning approach, the proposed model detected DDoS,
XSS, and SQL injection attacks with considerably good accuracy. The first detection layer
was a DDoS attack detection model with an accuracy of 97.57%, and the second layer
was for XSS and SQL injection attack detection with an accuracy of 89.34%. We analyzed
features and parameters for attack detection, which reduced false positives during traffic
filtering in the WAF. As DDoS traffic comes at a higher rate than normal traffic, the system’s
performance imporves when we check the traffic in a layered format, i.e., first checking for
DDoS before testing for SQL injection and XSS. Moreover, we analyzed the performance
perspective of the web application when an extra layer of filtering was added and found
a slight impact on performance. However, this difference was not distinguishable from a
user experience perspective.

This study focused on three types of web attacks: DDoS, SQL injection, and XSS.
Future studies could include other types of common web attacks, such as RCE, malware,
brute force, etc. Due to the similar detection properties, we examined SQL injection and
XSS in a single module in this work. Further testing of models with other types of deep
learning algorithms could lead to greater enhancements in WAF performance.

Author Contributions: Conceptualization, B.R.D. and B.A.; methodology, B.R.D., B.A. and D.K.S.;
software, B.R.D.; validation, B.R.D. and B.A.; formal analysis, B.A. and B.R.D.; investigation, B.R.D.,
B.A. and D.K.S.; resources, B.R.D. and D.K.S.; data curation, B.A.; writing—original draft preparation,
B.A. and B.R.D.; writing—review and editing, B.R.D., B.A. and D.K.S.; visualization, B.R.D. and B.A.;
supervision, B.R.D. and D.K.S.; project administration, B.R.D. and D.K.S.; funding acquisition, B.R.D.
All authors have read and agreed to the this version of the manuscript.

Funding: This research was supported by the University Grants Commission, Nepal, under the Collab-
orative Research Project Grants (ID: CRG-078/79-Engg-01), principally investigated by Babu R. Dawadi.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The program code, datasets, and experimental work snapshots of this
study are available at our GitHub link: https://github.com/baburd/WAF.

Acknowledgments: The authors thank LICT labmates for their support in this research work. The
authors also thank the reviewers for their constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/baburd/WAF.

Sensors 2023, 23, 2073 15 of 16

References
1. Krishnan, M.; Lim, Y.; Perumal, S.; Palanisamy, G. Detection and defending the XSS attack using novel hybrid stacking ensemble

learning-based DNN approach. Digit. Commun. Netw. 2022, 2352–8648. [CrossRef]
2. Moradi Vartouni, A.; Teshnehlab, M.; Sedighian Kashi, S. Leveraging deep neural networks for anomaly-based web application

firewall. IET Inf. Secur. 2019, 13, 352–361. [CrossRef]
3. Appelt, D.; Nguyen, C.D.; Panichella, A.; Briand, L.C. A machine-learning-driven evolutionary approach for testing web

application firewalls. IEEE Trans. Reliab. 2018, 67, 733–757.
4. Ito, M.; Iyatomi, H. Web application firewall using character-level convolutional neural network. In Proceedings of the

2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), Penang, Malaysia, 9–10 March 2018;
pp. 103–106.

5. Hao, S.; Long, J.; Yang, Y. Bl-ids: Detecting web attacks using bi-lstm model based on deep learning. In Proceedings of the
Security and Privacy in New Computing Environments: Second EAI International Conference, SPNCE 2019, Tianjin, China,
13–14 April 2019; pp. 551–563.

6. Jakić, P.; Hajjaj, F.; Ibrahim, J.; Elsadai, A. The Overview of Intrusion Detection System Methods and Techniques. In Proceedings
of the Sinteza 2019-International Scientific Conference on Information Technology and Data Related Research; Singidunum University:
Belgrade, Serbia, 2019; pp. 155–161.

7. Moradi Vartouni, A.; Mehralian, S.; Teshnehlab, M.; Sedighian Kashi, S. Auto-Encoder LSTM Methods for Anomaly-Based Web
Application Firewallall. Int. J. Inf. Commun. Technol. Res. 2019, 11, 49–56.

8. Tian, Z.; Luo, C.; Qiu, J.; Du, X.; Guizani, M. A distributed deep learning system for web attack detection on edge devices.
IEEE Trans. Ind. Inform. 2019, 16, 1963–1971. [CrossRef]

9. Liang, J.; Zhao, W.; Ye, W. Anomaly-based web attack detection: A deep learning approach. In Proceedings of the 2017 VI
International Conference on Network, Communication and Computing, Kunming, China, 8–10 December 2017; pp. 80–85.

10. Adefemi Alimi, K.O.; Ouahada, K.; Abu-Mahfouz, A.M.; Rimer, S.; Alimi, O.A. Refined LSTM Based Intrusion Detection for
Denial-of-Service Attack in Internet of Things. J. Sens. Actuator Netw. 2022, 11, 32. [CrossRef]

11. Seyyar, Y.E.; Yavuz, A.G.; Ünver, H.M. An attack detection framework based on BERT and deep learning. IEEE Access
2022, 10, 68633–68644. [CrossRef]

12. Madhavapeddy, A.; Scott, D.J. Unikernels: Rise of the Virtual Library Operating System: What if all the software layers in a
virtual appliance were compiled within the same safe, high-level language framework? Queue 2013, 11, 30–44. [CrossRef]

13. Pantoulas, E. Description, Analysis and Implementation of a Web Application Firewall (WAF). Creation of Attack Scenarios and
Threats Prevention. Master’s Thesis, School of Information Technology and Communications, Piraeus, Greece, 2022.

14. Alaoui, R.L.; Nfaoui, E.H. Deep Learning for Vulnerability and Attack Detection on Web Applications: A Systematic Literature
Review. Future Internet 2022, 14, 118. [CrossRef]

15. Clincy, V.; Shahriar, H. Web application firewall: Network security models and configuration. In Proceedings of the 2018
IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018; Volume 1,
pp. 835–836.

16. Huang, H.C.; Zhang, Z.K.; Cheng, H.W.; Shieh, S.W. Web application security: Threats, countermeasures, and pitfalls. Computer
2017, 50, 81–85. [CrossRef]

17. Widup, S.; Spitler, M.; Hylender, D.; Bassett, G. Verizon Data Breach Investigations Report. Tech. Rep. 2018. Available online:
https://www22.verizon.com/wholesale/contenthub/data_breach_investigation_report.html (accessed on 15 January 2023).

18. Rusyaidi, M.; Jaf, S.; Ibrahim, Z. Detecting distributed denial of service in network traffic with deep learning. Int. J. Adv. Comput.
Sci. Appl. 2022, 13, 34–41. [CrossRef]

19. Fujita, H.; Perez-Meana, H. LSTM neural networks for detecting anomalies caused by web application cyber attacks. In New
Trends in Intelligent Software Methodologies, Tools and Techniques; IOS Press: Amsterdam, The Netherlands, 2021; Volume 337, p. 127.

20. Montes, N.; Betarte, G.; Martínez, R.; Pardo, A. Web Application Attacks Detection Using Deep Learning. In Proceedings of the
Iberoamerican Congress on Pattern Recognition, Porto, Portugal, 10–13 May 2021; pp. 227–236.

21. Pan, Y.; Sun, F.; Teng, Z.; White, J.; Schmidt, D.C.; Staples, J.; Krause, L. Detecting web attacks with end-to-end deep learning.
J. Internet Serv. Appl. 2019, 10, 1–22. [CrossRef]

22. Rajesh, S.; Clement, M.; SB, S.; SH, A.S.; Johnson, J. Real-Time DDoS Attack Detection Based on Machine Learning Algorithms. In
Proceedings of the Yukthi 2021—The International Conference on Emerging Trends in Engineering—GEC Kozhikode, Kerala,
India, 27 September 2021.

23. Lente, C.; Hirata, R., Jr.; Batista, D.M. An Improved Tool for Detection of XSS Attacks by Combining CNN with LSTM. In
Proceedings of the Anais Estendidos do XXI Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais,
Florianis, Brazil, 12–15 September 2021; pp. 1–8.

24. Karacan, H.; Sevri, M. A Novel Data Augmentation Technique and Deep Learning Model for Web Application Security.
IEEE Access 2021, 9, 150781–150797. [CrossRef]

25. Tekerek, A. A novel architecture for web-based attack detection using convolutional neural network. Comput. Secur. 2021,
100, 102096. [CrossRef]

http://doi.org/10.1016/j.dcan.2022.09.024
http://dx.doi.org/10.1049/iet-ifs.2018.5404
http://dx.doi.org/10.1109/TII.2019.2938778
http://dx.doi.org/10.3390/jsan11030032
http://dx.doi.org/10.1109/ACCESS.2022.3185748
http://dx.doi.org/10.1145/2557963.2566628
http://dx.doi.org/10.3390/fi14040118
http://dx.doi.org/10.1109/MC.2017.183
https://www22.verizon.com/wholesale/contenthub/data_breach_investigation_report.html
http://dx.doi.org/10.14569/IJACSA.2022.0130105
http://dx.doi.org/10.1186/s13174-019-0115-x
http://dx.doi.org/10.1109/ACCESS.2021.3125785
http://dx.doi.org/10.1016/j.cose.2020.102096

Sensors 2023, 23, 2073 16 of 16

26. Tyagi, S.; Kumar, K. Evaluation of static web vulnerability analysis tools. In Proceedings of the 2018 Fifth International Conference
on Parallel, Distributed and Grid Computing (PDGC), Solan, India, 20–22 December 2018; pp. 1–6.

27. Giménez, C.T.; Villegas, A.P.; Marañón, G.Á. HTTP Data Set CSIC 2010; Information Security Institute of CSIC (Spanish Research
National Council): Madrid, Spain, 2010; Volume 64.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Background and Related Work
	Methodology
	System Working Architecture
	Framework of the Proposed Model
	Data Collection Methodology
	Dataset Preparation for SQL Injection and XSS
	Data Collection for DDoS
	Correlative Data Collection for DDoS and SQL Injection

	Results and Analysis
	IDS ISCX 2012 Dataset
	2019 DDoS CIC Dataset
	Generated Dataset Representation
	XSS and SQL Injection Dataset
	Model with Generated Dataset
	Testing the Combined Model with New Test Dataset

	Conclusions
	References

