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Abstract: Expected global climate change is allegedly becoming more intense, and the impacts on
water resources are being tracked in various hydroclimatic regimes. The present research investigates
a hydrologically important area of Greece, where four natural lakes are concentrated. It aims to
quantify any potential long-term trends in lake water area, precipitation, and temperature time-
series. Water area timeseries spanning four decades are estimated by the mNDWI from Landsat
satellite imagery and used as an index of each lake’s water storage. Precipitation and temperature
measurements are obtained from the open access datasets Hydroscope and ERA5-Land, respectively.
All of the timeseries were tested seasonally and annually with the Pettitt and Mann–Kendal tests
for statistically significant breakpoints and trends detection. No timeseries analysis resulted in a
statistically significant (at 0.05 or 0.1 levels) annual or seasonal trend. The hydroclimatic regime over
the past forty years in western Greece is found to have been relatively stable. Land use was also
assessed to have been relatively unchanging, converging to the overall stability of the local water
regime. However, the findings of this research should not be interpreted as a reassurance against
climate change, but as a call to further research for the detailed regional and local assessment of
climate change and hydroclimatic variability with acknowledged statistical approaches.

Keywords: climate change; lakes; remote sensing; water area; trend analysis; ERA5; Landsat

1. Introduction

Natural lakes and manmade reservoirs play a key role in the Earth’s water cycle, satis-
fying the water demands of human activities along with important ecosystem services [1–4].
They also are important indexes of climate conditions, trends, and abrupt changes, with
deviations of their physical, chemical, and biological features [1,5]. Lakes and reservoirs
regulate river flows, mitigate floods, provide groundwater recharge flows, improve and
stabilize water quality, as well as frequently serving as the primary water supply source for
human use [3,6]. Additionally, lakes and reservoirs hold a significant share in the global
carbon cycle and contribute to methane emissions [1,3,7]

Climate change is projected to augment the pressures and intensify the impacts on
water resources, especially in the mid latitudes—Mediterranean region [8–11]. Thus, alter-
ations of the water cycle are expected, highlighting its importance on providing ecosystem
services and regulating extreme flows [8,9]. Furthermore, land cover/use changes subject
to economic growth, increased livestock, increased need of pasture and agricultural pro-
duction, as well as increased water demands, constitute another key pressure on water
resources [2,12–15].

Greece is a typical Mediterranean country, where in recent decades, land resources are
documented to be overexploited, while noteworthy shares of land have been transformed
into artificial surfaces, intensifying the pressures on water and land resources [16]. More-
over, after the mid-20th century, an increasing number of droughts is being recorded in
Greece, and relevant studies project an intensification of the drought phenomena, along
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with incremental water stress [17–19]. It is worth noting a drought occurrence that extended
to the whole country in 1990, which is considered the most severe of the 20th century [20].
By the time of the drought’s peak, in December of 1990, the water reserves of the country’s
capital, Athens, were expected to only last for a few weeks more [21].

Considering the issues mentioned above, the quantitative pressures exerted on water
resources are expected to increase in the near future. The latter will also be required to
contribute to an increasing demand of the human environment, as local regulators of climate
change and as pillars sustaining ecosystems. A major role of any toolkit of sustainable water
resource management in defence of water security, is stated to be their monitoring [22–24].
Water resource monitoring is feasible with in-situ observations, hydrological modelling, and
remote sensing techniques [25]. From the 1990s, remote sensing approaches towards the
monitoring of inland waters have been receiving increasing consideration from researchers
and governance bodies. The most important aspects of the lakes’ and reservoirs’ water
cycles, their water levels, water areas, and water storages have been attracting the highest
research interest.

The Normalized Difference Water Index (NDWI) was introduced in 1996, and con-
stitutes the most widely adopted index for delineating water features from satellite im-
agery [26–30]. However, the modified NDWI (mNDWI) has gained significant approval,
and is considered to be more accurate in the distinction of water bodies [31–36]. The
modification consists of replacing the Near Infrared Band spectrum used in the NDWI,
with a higher bandwidth, middle infrared band. Thus, the mNDWI has a higher accuracy
and less noise, when delineating open water features, compared to the original NDWI [37].

Since the first launch of the Landsat-1 satellite in 1972, environmental earth observation
entered a new phase. Optical satellite imagery provides an almost 50 year-long record of
important measurements over water bodies. Although altimetry missions became adequate
sources of water level information a few decades ago, water area estimations are feasible
for a much longer timeseries, constituting a significant source of information for long-term
hydroclimatic analysis [14].

Accordingly, this research aims to assess the long-term trends in hydroclimatic vari-
ables in western Greece, where several natural lakes are located. Despite the large amounts
of available consistent remote sensing data concerning quantitative indices of the water
cycle, only a couple of studies have focused on these aspects of the lake water cycle, e.g.,
water area, water level, or water storage [30,38]. However, there have been several ap-
plications of remote sensing techniques on the qualitative characteristics of inland water
bodies [39–46]. Hence, this research aims to target the long-term climatic trends of the natu-
ral lakes of western Greece, Trichonis, Lysimacheia, Ozeros, and Amvrakia, using remote
sensing water area estimations as the main water content indicator. The abovementioned
choice, of the water area as an indirect index of water storage, is considered justified due
to the converging conclusions of various studies towards the high correlation between
water area and water storage timeseries [2,24,25,30,47–50]. Moreover, this research aims to
analyse the simultaneous trends of importance to the water cycle climate variables, such
as precipitation and temperature, as well as human interference in the land use pattern of
each lake basin.

2. Materials and Methods
2.1. Study Area

The four natural lakes, Trichonis, Lysimacheia, Ozeros, and Amvrakia are located
in western Greece, a rich hydrologic part of Greece, and are presented along with their
corresponding basins in Figure 1. All four lakes belong to the River Basin District of
western Greece, which is characterised by the second highest average precipitation in the
country. Specifically, low elevation regions receive 800–1000 mm annual precipitation,
while mountainous regions receive 1400–1800 mm of annual precipitation. The dominant
land cover/land uses are forests (> 45%) and pastures (> 30%), followed by crop cultivation
and roads [51].
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lake Trichonis is indexed as a NATURA 2000 protection area, as an area of high potential 
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in Greece. Lower: Detailed view of the above lakes (LWB) and basins in SW part of western Greece
with a digital elevation model background.

Lake Trichonis is the largest lake in Greece, with a nominal water area of 96.51 km2

and water perimeter of around 53.5 km. It is a protected area of aquatic species of economic
importance under the Directive 2006/44/EC, due to its significant production of smelt. Its
annual inflows are 254 hm3 from its hydrologic basin, as well as 131.5 hm3 coming from a
diversion channel from the hydroelectric reservoir Stratos II. About 329.6 hm3 on average
are diverted from lake Trichonis to lake Lysimacheia, while the direct water abstractions
from lake Trichonis account for 12.96 hm3. Under the 1st Revision of the River Basin
Management Plan of Western Greece, lake Trichonis is considered to have a good ecological
and chemical status. Lake Trichonis is considered to have an average depth of 30.5 m and a
maximum depth of 57.0 m, about 40 m below sea level [52,53]. Moreover, lake Trichonis is
indexed as a NATURA 2000 protection area, as an area of high potential research value [52].

Lake Lysimacheia has a nominal water area of 13.04 km2 and water perimeter of
around 22.9 km. Its annual inflows are 123 hm3 from its hydrologic basin, as well as
329.6 hm3 coming from a diversion channel from lake Trichonis. About 264.7 hm3 on
average are diverted from lake Lysimacheia to the nearby Acheloos river basin, while the
direct water abstractions from lake Lysimacheia account for 6.3 hm3. Under the 1st Revision
of the River Basin Management Plan of Western Greece, lake Lysimacheia is considered to
have a moderate ecological and good chemical status.

Lake Ozeros has a nominal water area of 9.39 km2 and water perimeter of around
13.6 km. Its annual inflows are 24.3 hm3 from its hydrologic basin. Lake Ozeros is not
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considered to receive any water abstractions. Under the 1st Revision of the River Basin Man-
agement Plan of Western Greece, lake Ozeros is considered to have a moderate ecological
and good chemical status.

Lake Amvrakia has a nominal water area of 14.53 km2 and water perimeter of around
34.35 km. Its annual inflows are 84.0 hm3 from its hydrologic basin. Lake Amvrakia is not
considered to receive any known water abstractions. However, there is an evident decrease
of its water content in its north compartment, which has not been attributed to a specific
cause. Under the 1st Revision of the River Basin Management Plan of Western Greece, lake
Ozeros is considered to have a good ecological and chemical status [51,54,55].

2.2. Data Used
2.2.1. Landsat Family IMAGERY

Satellite images from the Landsat missions 4, 5, 7, 8, and 9, covering the four lakes’
basins, were collected from the United States Geological Survey (USGS) online portal
(https://earthexplorer.usgs.gov/, accessed on 1 December 2022). Landsat 4, launched in
1982, was the first environmental remote sensing satellite to provide band products at the
resolution of 30 m, which is sufficient to capture the examined lakes. Thus, the selected
dataset covers the temporal period between 1984–2022, with a spatial resolution of 30 m,
for every Landsat mission mentioned. The selection of 1984 as a start year is based on
satellite products’ availability and temporal consistency. Moreover, the selected dataset had
cloud covered images removed, resulting in 375 satellite images throughout the examined
years, which leaves approximately 10 images per year. Regarding Landsat 7’s SLC failure,
the present research followed the gap-filling methodology prescribed by the USGS [56].
Regarding the rest of the Landsat missions, 4, 5, 8, and 9, it should be noted that their
products selected are Level-2, therefore already preprocessed and ready to use for the scope
of the present research.

2.2.2. In-Situ Precipitation Measurements

In-situ daily precipitation measurements for the four lakes’ basins were collected
from the “Hydroscope” project’s online portal (http://www.hydroscope.gr/, accessed on 1
December 2022). Fourteen hydrometeorological stations were selected within the basins of
the four lakes and their precipitation data were downloaded from the portal. The stations’
locations are Analipsi, Gavalou, Thermo, Kallithea, Lepenou, Poros Riganiou, Stamna,
Ag. Vlasios, Achira, Monastirakion, Sargiada, Stanos, Lesinio, and Trikorfo. Their altitude
varies from 2 m.a.s.l. to 852 m.a.s.l., and they are all operated by the Hellenic Ministry of
Environment and Energy. The available datasets cover almost the entirety of the water area
timeseries, containing the years from 1984 until 2016–2019.

2.2.3. ERA5-Land Monthly Temperature Data

ERA5-Land reanalysis data for the four lakes’ basins were collected from the EU
Copernicus Climate Change Service online portal (https://cds.climate.copernicus.eu, ac-
cessed on 1 December 2022). The ERA5-Land reanalysis dataset provides 2 m above ground
temperature data at a maximum temporal resolution of one hour, and a spatial resolution
of 0.1 degree. For the purpose of the present research, the downloaded data consisted of the
monthly average temperatures, containing the years from 1984 until 2022, fully covering
the water area timeseries. ERA5-Land reanalysis products are considered ideal in cases of
scarce in-situ data, as in the case of western Greece where there is a lack of open access
temperature data. Moreover, ERA5-Land data have a growing usage in hydrology and
remote sensing applications [57,58], thus they are considered suitable for the purposes of
the present research.

2.2.4. CORINE Land Cover (CLC)

Land cover data for the four lakes’ basins were collected from the EU Coperni-
cus Land Monitoring Service online portal (https://land.copernicus.eu/, accessed on

https://earthexplorer.usgs.gov/
http://www.hydroscope.gr/
https://cds.climate.copernicus.eu
https://land.copernicus.eu/
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1 December 2022). The CLC dataset is characterized by a minimum mapping unit of 25 ha
and a minimum mapping width of 100 m [59]. Two datasets covering western Greece were
downloaded from the abovementioned portal, one covering the time period around year
1990 and the other covering the time period around year 2018.

2.3. Methodology
2.3.1. Water Area Extraction

For the calculation of the mNDWI, the Green and SWIR bands were used and the water
and non-water pixels were distinguished following Equation (1) [32–35]. The mNDWI is
characterized by a spatial resolution of 30 m, deriving from the resolution of the Landsat
bands used. For each Landsat mission used, the different bands’ names representing Green
and SWIR are presented in Table 1.

mNDWI =
Green− SWIR
Green + SWIR

(1)

Table 1. Landsat 4, 5, 7, 8, and 9 missions’ Green and SWIR bands used.

Landsat Green [µm] SWIR [µm]

4, 5—Thematic Mapper B2 (0.52–0.60) B5 (1.55–1.75)

7—ETM+ B2 (0.52–0.60) B5 (1.55–1.75)

8, 9—OLI B3 (0.53–0.59) B6 (1.57–1.65)

Moreover, the nominal water–non water threshold value of 0, was substituted from an
optimum threshold following the minimum thresholding method, initially proposed by
Prewitt and Mendelsohn [60]. The selected approach has been proven to be more accurate
than other thresholding approaches [29], and has also been tested by the authors for the
calculation of NDWI in Yliki reservoir [30]. Each date’s initial mNDWI’s histogram is
smoothed until it shows only two local maxima, and the optimum threshold lies in the
minimum value between them. The extracted wet perimeter is converted to a lake water
polygon and the area is calculated for each date.

2.3.2. Statistical Point of Change and Trend Analysis

A widely accepted approach to detect statistically significant trends and points of
abrupt change in hydrological variables is the combination of the Mann–Kendall [61,62]
and Pettitt [63] tests, respectively. The abovementioned statistical tests have been applied
extensively to hydroclimatic variables, including discharge timeseries [64–66], lake water
level timeseries [14], as well as climatic variables including precipitation and tempera-
ture [14,64–67].

The statistic value Ut,N of a timeseries xt (t = 1, 2, 3, . . . , N) is calculated as shown in
Equation (2).

Ut,N = Ut−1,N + Vt,N ; t = 2, 3, . . . , N (2)

where N is the timeseries size and Vt,N as described in Equation (3).

Vt,N =
N

∑
i=1

sgn(xi − xt) (3)

The location of the breakpoint KN, which represents the point of abrupt change, is
defined by Equation (4) [63].

KN = Max |Ut,N| ; t = 1, 2, 3, . . . , N (4)
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while the statistical significance p of KN is approximated by Equation (5).

p ∼= 2× exp

[
−6×K2

N

N3 + N2

]
(5)

The null hypothesis “Ho: no change point exists” is rejected at low p-values, and thus
there is a significant point of abrupt change that separates the timeseries into two parts, pre
and post change.

The Mann–Kendall test statistics SMK are defined in Equation (6).

SMK =
N

∑
i

N

∑
j=i+1

sgn
(
xj − xi

)
(6)

For N ≥ 8, SMK follows an approximately normal distribution and its variance, σ2
MK,

is calculated as in Equation (7).

σ2
MK =

N× (N− 1)× (2×N + 5)
18

(7)

Finally, the Mann–Kendall main test statistic ZMK is defined in Equation (8).

ZMK =


SMK−1
σ2

MK
, SMK > 0

0, SMK = 0
SMK+1
σ2

MK
, SMK < 0

(8)

The null hypothesis “Ho: no trend detected” can be rejected at 5% significance level,
p-value < 0.05, when |ZMK| > 1.96. If the above is true, then a positive value of ZMK
indicates a positive (incremental) trend, while a negative value of ZMK indicates a nega-
tive trend.

The Mann–Kendall test, as defined in Equations (6)–(8), does not account for season-
ality in the examined data. Hence, since many hydrologic and climatic variables display
seasonality, an alteration of the MK test is applied. The alteration, proposed by Hirsch and
Slack [68], is defined again by Equations (6)–(8), by substituting N (total timeseries sample
size) with nk, which stands for the measurements size in season k. For the purposes of the
present research, two seasons are assessed, the dry hydrological period (May to October)
and the wet hydrological period (November to April).

3. Results
3.1. Water Area Timeseries and Trends
3.1.1. Water Area Timeseries

The extraction of the lakes’ water areas, spanning from 1984 to mid-2022, resulted in
377, 376, 379, and 369 water area measurements for lakes Trichonis, Lysimacheia, Ozeros,
and Amvrakia, respectively.

Lake Trichonis’ water area measurements are presented in Figure 2. The maximum
area observed is 93.43 km2, whilst the minimum area observed is 88.60 km2. The average
water area of lake Trichonis during the observed period of 39 years is found to be 92.16 km2.
During the period examined, lake Trichonis shows small percentages of water area changes,
hence the maximum water extent is 1.38% larger than the average, and the minimum is
3.86% smaller.
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Figure 2. Landsat family derived lake Trichonis water area timeseries (red line; 2-year moving average).

Regarding the Pettitt and Mann–Kendall tests conducted on the timeseries, there
does not exist a statistically significant trend, although a breakpoint is identified in 2014.
The calculated value of p is equal to 0.00 and ZMK = −0.33. The absence of a statistically
significant trend can be illustrated in the moving average trendline (red colored) shown in
Figure 2.

Lake Lysimacheia’s water area measurements are presented in Figure 3. The maximum
area observed is 14.42 km2, whilst the minimum area observed is 7.00 km2. The average
water area of lake Lysimacheia during the observed period of 39 years is found to be
10.33 km2. During the period examined, lake Lysimacheia shows significant water area
changes, with the maximum water extent being 39.61% larger than the average, and the
minimum being 32.37% smaller.
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Figure 3. Landsat family derived lake Lysimacheia water area timeseries (red line; 2-year moving
average).

Regarding the Pettitt and Mann–Kendall tests conducted on the timeseries, there does
not exist a statistically significant point of change or trend, hence the calculated values of
p ≈ 1 and ZMK = −5.07. The absence of a statistically significant trend is illustrated in the
moving average trendline (red colored) in Figure 3.

Lake Ozeros’ water area measurements are presented in Figure 4. The maximum
area observed is 9.43 km2, whilst the minimum area observed is 8.60 km2. The average
water area of lake Ozeros during the observed period of 39 years is found to be 9.00 km2.
During the period examined, lake Ozeros shows relatively small water area changes, with



Sensors 2023, 23, 2056 8 of 19

the maximum water extent being 4.81% larger than the average, and the minimum being
4.43% smaller.
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Figure 4. Landsat family derived lake Ozeros water area timeseries (red line; 2-year moving average).

Regarding the Pettitt and Mann–Kendall tests conducted on the timeseries, there does
not exist a statistically significant point of change or trend, hence the calculated values of
p ≈ 1 and ZMK = +0.36. The absence of a statistically significant trend can be seen in the
moving average trendline (red colored) shown in Figure 4.

Lake Amvrakia’s water area measurements are presented in Figure 5. The maximum
area observed is 13.24 km2, whilst the minimum area observed is 8.91 km2. The average
water area of lake Amvrakia during the observed period of 39 years is found to be 11.10 km2.
During the period examined, lake Amvrakia shows moderate water area changes, with
the maximum water extent being 19.34% larger than the average, and the minimum being
19.71% smaller.
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Figure 5. Landsat family derived lake Amvrakia water area timeseries (red line; 2-year moving average).

Regarding the Pettitt and Mann–Kendall tests conducted on the timeseries, there does
not exist a statistically significant point of change or trend, hence the calculated values of
p ≈ 1 and ZMK = +1.87. The absence of a statistically significant trend can be seen in the
moving average trendline (red colored) shown in Figure 5.

3.1.2. Annual Water Area Trend Analysis

The annual average of water area for lake Trichonis is presented in Figure 6. It is calcu-
lated that no significant trend is detected, despite a graphically observed slight positive
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trend. Lake Trichonis shows insignificant interannual water area variations during the
examined 39 years, with the annual water area varying between −0.53% and +0.49% from
the annual water area average of 92.17 km2. The Pettitt test conducted on the available
annual timeseries does not show a statistically significant point of change. Moreover,
the Mann–Kendall test resulted in p ≈ 1 and ZMK = 1.84, depicting a nonsignificant posi-
tive trend.
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Figure 6. Annual water area average and linear trendline of lake Trichonis (red line; linear trendline).

The annual average of the water area for lake Lysimacheia is presented in Figure 7.
It is calculated that no significant trend is observed, despite a graphically observed neg-
ative trend. Lake Lysimacheia shows small interannual water area variations during the
examined 39 years, with the annual water area varying between −6.27% and +13.94% from
the annual water area average of 10.35 km2. The Pettitt test conducted on the available
annual timeseries does not show a statistically significant point of change. Moreover,
the Mann–Kendall test resulted in p ≈ 1 and ZMK = −2.06, depicting a nonsignificant
negative trend.
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Figure 7. Annual water area average and linear trendline of lake Lysimacheia (red line; linear trendline).

The annual average of water area for lake Ozeros is presented in Figure 8. It is clearly
depicted that no significant trend is observed. Lake Ozeros shows small interannual
water area variations during the examined 39 years, with the annual water area varying
between−3.14% and +2.31% from the annual water area average of 9.0 km2. The Pettitt test
conducted on the available annual timeseries does not show a statistically significant point



Sensors 2023, 23, 2056 10 of 19

of change. Moreover, the Mann–Kendall test resulted in p ≈ 1 and ZMK = −0.60, showing a
nonsignificant negative trend.
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Figure 8. Annual water area average and linear trendline of lake Ozeros (red line; linear trendline).

The annual average of water area for lake Amvrakia is presented in Figure 9. It
is calculated that no significant trend is observed, despite a graphically observed slight
negative trend. Lake Amvrakia shows moderate interannual water area variations during
the examined 39 years, with the annual water area varying between −16.62% and +13.69%
from the annual water area average of 11.2 km2. The Pettitt test conducted on the available
annual timeseries does not show a statistically significant point of change. Moreover,
the Mann–Kendall test resulted in p ≈ 1 and ZMK = −0.73, showing a nonsignificant
negative trend.
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Figure 9. Annual water area average and linear trendline of lake Amvrakia (red line; linear trendline).

3.1.3. Seasonality Trend Analysis

The investigation of water area seasonality in lake Trichonis, during the available
timeseries of 39 years, shows that there is no significant variation between wet and dry
periods. More explicitly, the average water area of the lake for the wet periods is 92.17 km2,
while for the dry ones is 92.16 km2. Furthermore, following the results of the seasonality
trend analysis, no significant trends or points of change are identified for either period. The
wet periods show a p ≈ 1 and ZSK = +1.06, depicting a statistically insignificant positive
trend, while the dry periods show a p ≈ 1 and ZSK = +1.45, depicting again a statistically
insignificant positive trend.
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Lake Lysimacheia, during the examined timeseries, shows a slight variation between
wet and dry periods. The average wet period water area is calculated at 10.84 km2, while the
dry periods show an average water area of 10.07 km2. Furthermore, following the results
of the seasonality trend analysis, no significant trends or points of change are identified
for either period. The wet periods show a p ≈ 1 and ZSK = −1.46, depicting a statistically
insignificant negative trend, while the dry periods show a p ≈ 1 and ZSK = −2.85, depicting
a statistically insignificant negative trend.

Lake Ozeros, during the examined timeseries, shows a slight variation between wet
and dry periods. The average wet period water area is calculated at 9.06 km2, while the
dry periods show an average water area of 8.97 km2. Furthermore, following the results
of the seasonality trend analysis, no significant trends or points of change are identified
for either period. The wet periods show a p ≈ 1 and ZSK = −1.72, depicting a statistically
insignificant negative trend, while the dry periods show a p ≈ 1 and ZSK = +0.33, depicting
a statistically insignificant positive trend.

Lake Amvrakia, during the examined timeseries, shows a slight variation between wet
and dry periods. The average wet period water area is calculated at 11.19 km2, while the
dry periods show an average water area of 11.05 km2. Furthermore, following the results
of the seasonality trend analysis, no significant trends or points of change are identified
for either period. The wet periods show a p ≈ 1 and ZSK = −0.04, depicting a statistically
insignificant negative trend, while the dry periods show a p ≈ 1 and ZSK = −0.48, depicting
a statistically insignificant negative trend.

3.2. Further Investigation
3.2.1. Precipitation

Lake Trichonis’ basin’s annual precipitation throughout the available examined years,
1984–2016, is found to be on average 1009 mm. The annual precipitation presents a large
variability, showing a maximum value of 1633 mm and a minimum of 595 mm, with a
standard deviation of 262 mm. The annual precipitation of lake Trichonis’ basin presents
none significant points of change or trends, as the Pettitt and Mann–Kendal tests resulted
in p ≈ 1 and ZMK = 2.80. Seasonal precipitation trends were also tested and no statistically
significant trend was found in either the wet or dry periods. Moreover, the Pearson
correlation between the annual precipitation and lake area is calculated at 0.05, implying a
negligible relationship between the abovementioned variables.

Lake Lysimacheia’s basin’s annual precipitation throughout the available examined
years, 1984–2016, is found to be on average 954 mm. The annual precipitation presents
a large variability, showing a maximum value of 1325 mm and a minimum of 606 mm,
with a standard deviation of 205 mm. The annual precipitation of lake Lysimacheia’s basin
presents no significant points of change or trends, as the Pettitt and Mann–Kendal tests
resulted in p ≈ 1 and ZMK = 2.37. Seasonal precipitation trends were also tested and no
statistically significant trend was found in either the wet or dry periods. Moreover, the
Pearson correlation between the annual precipitation and lake area is calculated at −0.03,
implying a negligible relationship between the abovementioned variables.

Lake Ozeros’ basin’s annual precipitation throughout the available examined years,
1984–2018, is found to be on average 1028 mm. The annual precipitation presents a large
variability, showing a maximum value of 1400 mm and a minimum of 632 mm, with a
standard deviation of 247 mm. The annual precipitation of lake Ozeros’ basin presents
no significant points of change or trends, as the Pettitt and Mann–Kendal tests resulted
in p ≈ 1 and ZMK = 3.13. The seasonal precipitation trends have also been tested and no
statistically significant trend was found in either the wet or dry periods. Moreover, the
Pearson correlation between the annual precipitation and lake area is calculated at −0.05,
implying a negligible relationship between the abovementioned variables.

Lake Amvrakia’s basin’s annual precipitation throughout the available examined
years, 1984–2018, is found to be on average 963 mm. The annual precipitation presents a
large variability, showing a maximum value of 1410 mm and a minimum of 587 mm, with a
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standard deviation of 198 mm. The annual precipitation of lake Amvrakia’s basin presents
no significant points of change or trends, as the Pettitt and Mann–Kendal tests resulted
in p ≈ 1 and ZMK = 1.60. The seasonal precipitation trends have also been tested and no
statistically significant trend was found in either the wet or dry periods. Moreover, the
Pearson correlation between the annual precipitation and lake area is calculated at 0.05,
implying a negligible relationship between the abovementioned variables.

Overall, regarding the four lakes’ basins’ annual and seasonal precipitation, there is no
significant change detected, as far as points of change and trends are concerned. Moreover,
the available timeseries of precipitation and the remotely sensed lake water area, do not
show a significant value of Pearson correlation between them. The annual precipitation
timeseries of the four basins are presented below, in Figure 10.
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Figure 10. Annual precipitation of the four lakes’ basins.

3.2.2. Temperature

Lake Trichonis’ basin’s annual average temperature throughout the available examined
years, 1984–2021, is found to be on average 15.36 ◦C. The annual average temperature
presents a moderate variability, showing a maximum value of 16.49 ◦C and a minimum
of 14.37 ◦C, with a standard deviation of 0.58 ◦C. The annual average temperature of lake
Trichonis’ basin presents no significant points of change or trends, as the Pettitt and Mann–
Kendal tests resulted in p ≈ 1 and ZMK = 4.65. The seasonal temperature trends have also
been tested and no statistically significant trend was found in either the wet or dry periods.
Moreover, the Pearson correlation between the annual average temperature and lake area
is calculated at 0.42, implying a weak relationship between the abovementioned variables.

Lake Lysimacheia’s basin’s annual average temperature throughout the available
examined years, 1984–2021, is found to be on average 15.36 ◦C. The average temperature
presents a moderate variability, showing a maximum value of 16.49 ◦C and a minimum
of 14.37 ◦C, with a standard deviation of 0.58 ◦C. The annual average temperature of lake
Lysimacheia’s basin presents no significant points of change or trends, as the Pettitt and
Mann–Kendal tests resulted in p ≈ 1 and ZMK = 4.52. The seasonal temperature trends
have also been tested and no statistically significant trend was found in either the wet or
dry periods. Moreover, the Pearson correlation between the annual average temperature
and lake area is calculated at −0.22, implying a weak inverse relationship between the
abovementioned variables.

Lake Ozeros’ basin’s annual average temperature throughout the available examined
years, 1984–2021, is found to be on average 15.36 ◦C. The annual average temperature
presents a large variability, showing a maximum value of 16.49 ◦C and a minimum of
14.37 ◦C, with a standard deviation of 0.58 ◦C. The annual average temperature of lake
Ozeros’ basin presents no significant points of change or trends, as the Pettitt and Mann–
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Kendal tests resulted in p ≈ 1 and ZMK = 4.45. The seasonal temperature trends have also
been tested and no statistically significant trend was found in either the wet or dry periods.
Moreover, the Pearson correlation between the annual average temperature and lake area is
calculated at 0.07, implying a negligible relationship between the abovementioned variables.

Lake Amvrakia’s basin’s annual average temperature throughout the available exam-
ined years, 1984–2021, is found to be on average 14.69 ◦C. The annual average temperature
presents a large variability, showing a maximum value of 16.88 ◦C and a minimum of
14.69 ◦C, with a standard deviation of 0.58 ◦C. The annual average temperature of lake
Amvrakia’s basin presents no significant points of change or trends, as the Pettitt and Mann–
Kendal tests resulted in p ≈ 1 and ZMK = 4.50. The seasonal temperature trends have also
been tested and no statistically significant trend was found in either the wet or dry periods.
Moreover, the Pearson correlation between the annual average temperature and lake area is
calculated at 0.01, implying a negligible relationship between the abovementioned variables.

Overall, regarding the four lakes’ basins’ annual average temperatures, there is no sig-
nificant change detected, as far as points of change and trends are concerned. Moreover, the
available timeseries of temperature and the remotely sensed lake water area, do not show a
significant value of Pearson correlation between them. The annual average temperature
timeseries of the four basins are presented below, in Figure 11.
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Figure 11. Annual average temperature of the four lakes’ basins.

Since temperature is considered the climate variable mostly connected to climate
change, there was an additional test conducted. The entire ERA-5 Land monthly average
temperature timeseries are tested for significant points of change and trends detection. Yet,
none are found, at the 95% or 90% confidence interval, as the Pettitt and Mann–Kendal test
concluded in p = (0.29, 0.28, 0.34, 0.40) and ZMK = (1.49, 1.49, 1.40, 1.36) for the basins of
Trichonis, Lysimacheia, Ozeros, and Amvrakia, respectively.

3.2.3. Land Cover

The examined land cover datasets, describing years 1990 and 2018, show a generally
stable land use pattern across the four lakes’ basins. Specifically, human environment land
uses, such as motorways and urban areas, gain small portions, from 1% to 10% of each
basin’s total area. Additionally, natural vegetation, such as grasslands and forests, also gain
small portions, accounting for 1% to 3% of each basin’s total area. In all four lakes’ basins,
cultivated areas seem to decline, favoring the abovementioned human environment and
natural vegetation uses. The reduction of cultivated areas ranges from 2% to 12% across
the four lakes’ basins. As no significant change is detected in any lake basin, it is evident
that there will be negligible or small differentiations of the water use regimes across the
four basins. This is confirmed by the water area analysis conducted in Section 3.1, where
no significant change or trend patterns were detected.
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4. Discussion

Before discussing the key findings of this research, a few constraining factors should
be remarked on as the study limitations. As described in Section 3.1, the four lakes’ water
area are found to have been relatively stable. Only small fluctuations are recorded, ranging
from −16% to +16% in lake Amvrakia, and from −0.5% to +0.3% in lake Trichonis. A
sensitivity analysis was conducted by the authors, but its results are explicitly limited by
the small water area change range. All four lakes showed near zero sensitivity [−5%, +5%]
to precipitation and temperature, when examined annually. Even when water area sensi-
tivity is examined for larger temporal periods, no specific pattern can be identified. For
instance, when examined for the 5-year average water area sensitivity to precipitation
and temperature, the results are incoherent. Consequently, this research argues that the
small range of change recorded during the period 1984–2022, poses a limit to presenting a
well-established sensitivity analysis. Additionally, there is a lack of tools to examine the
lakes relationships and interconnections with groundwater, which may also contribute
to the observed water content stability. Another aspect which should be addressed in
future research is the evaluation of the underlying uncertainties of the data used in the
present study. However, since all data sources have been extensively evaluated and used in
different case studies and scopes, the underlying uncertainty is judged to be minor.

The present research attempted to identify and evaluate potential quantitative changes
in the water content of four natural lakes of western Greece and links to climate variation.
Furthermore, the investigation assessed climate variables, such as precipitation and tem-
perature, perceived as highly connected to climate change. Finally, land cover and land use
changes were also assessed, since they have strong interconnections with water resources.
The overall results are concisely presented in Table 2 and discussed below.

Table 2. Overall statistical analysis results; annual timeseries.

Lake/Basin Water Area Precipitation Temperature

p ZMK p ZMK p ZMK

Trichonis ≈1 1.84 ≈1 2.80 ≈1 4.65

Lysimacheia ≈1 −2.06 ≈1 2.37 ≈1 4.52

Ozeros ≈1 −0.60 ≈1 3.13 ≈1 4.45

Amvrakia ≈1 −0.73 ≈1 1.60 ≈1 4.50

Neither the water area of the four lakes, nor the climatic variables of their basins
assessed—precipitation and temperature—show statistically significant annual or seasonal
trends or breakpoints during the examined timeseries from 1984 to 2016–2022. The findings
of the present research are in agreement with a long-term drought trend analysis over
Greece, where no statistically significant trend was identified [20]. Moreover, land cover
has remained relatively stable between 1990 and 2018 for the four lake basins, with only
small increases in artificial and natural vegetation areas and decreases of cultivated ones.
Taking also into account the seasonal stability of the water area timeseries, it is argued that
the hydrologic regime is stable within the lake basins.

Similar research, conducted in different case studies, has associated lake water level
decrease with an intensification of agricultural land and water usage [14,15], and not with
climatic variables, when the latter remain relatively stable. Such are the present cases of
the four lake basins of western Greece, where no significant change of climatic variables
is observed. Additionally, the fact that land cover, and especially agricultural land, has
remained stable are converging to the long-term stability of the lake water areas, and thus
water contents. The nearest case study examined by similar research was lake Prespa,
a transboundary natural lake, located in the borders of Greece, Albania, and Northern
Macedonia [38]. Although lake Prespa is subject to a century-long decrease in water content,
it is suggested that increased irrigation of agricultural land has significantly contributed
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to a more intense rate of water storage loss [38]. Moreover, another study, examining arid
lakes in China, has indicated human uses, and alterations of the basin’s hydrology, as major
drivers of lake water loss [69].

According to the 6th IPCC report, the majority of Mediterranean basins are projected to
have reduced discharges, while lake water levels are also expected to decline [11]. Moreover,
the IPCC report argues for significant (at 0.1 level) trends regarding annual precipitation
(decreasing) and annual average temperature (increasing) over western Greece [10]. The
abovementioned findings could not be verified by the present research, either regarding
annual precipitation, which was based on in-situ data, or the annual temperature of
the basins, which was calculated from the ERA5-Land reanalysis data. Therefore, an
interesting finding emerges, that different datasets and statistical approaches over the
same variables, may lead to divergent results. The present research’s attempt to capture
potential quantitative changes of lake water exploited the finest resolution of open access
data, 30 m Landsat imagery for lake water area and a dense network of rain gauge stations.
Taking into account, the divergent results of this case specific study and of global or regional
datasets, the need for extensive validation of the latter is stressed. Furthermore, the need for
systematic and efficient downscaling and upscaling approaches is evident, in order to close the
gap between local, regional, and global monitoring, and forecasting of hydroclimatic variables.

5. Conclusions

The main findings of this research are concentrated below:

• Between 1984 and 2022, the maximum and minimum water area variations compared
to average water area for lakes Trichonis, Lysimacheia, Ozeros and Amvrakia, were
+1.38% to −3.86%, +39.61% to −32.37%, +4.81% to 4.43% and +19.34% to −19.71%
respectively.

• Annual average trend analysis conducted on the Landsat derived water area timeseries,
resulted in p ≈ 1 and ZMK equal to −0.33, −5.07, +0.36 and +1.87 for the four lakes
respectively, depicting the absence of statistically significant quantitative trends.

• Seasonal trend analysis conducted on the Landsat derived water area timeseries did
not again show a statistically significant quantitative trend.

• The climate variable of precipitation did not reveal a statistically significant trend
during years from 1984 to 2016–2019, in annual and seasonal scale.

• The climate variable of temperature did not reveal a statistically significant trend
during years from 1984 to 2022, in annual, seasonal and monthly scale.

• Land use change from 1990 to 2018 revealed a generally stable land environment, with
neglible to small increases of artificial and natural areas with a simultaneous decrease
of agricultural areas.

The abovementioned points align towards the observed stability of the water area,
which was used as an indicator of the lake water storage. Additionally, the stability
of the climatic variables of precipitation and temperature was depicted with the use of
statistics. Furthermore, the land use changes were assessed and found mostly stable in the
catchments of the four lakes examined. These findings strengthen recent similar research,
which examined catchments with intense land use alternations and relatively stable climatic
variables, resulting in significant lake water storage change. Thus, it is argued that land
uses and human interventions to the water cycle are a major driver of pressures to water
resources. Regarding the hydrologic implications of the present research, the results depict
a stable natural and human environment in the examined catchments. However, the
constant monitoring of the associated variables is necessary in order to ensure early and
solid identification of change and breakpoints.
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The present research successfully demonstrates the combination of different Earth
Observation tools and practices, towards the monitoring of regional hydrologic regimens.
More specifically, this research makes ground to novel remote sensing and hydrological
approaches in Greece, a climatically diverse Mediterranean country. It demonstrates an
efficient practice of merging earth observation and in-situ data to create consistent and
long timeseries of hydrologic and climatic variables. The exclusive use of open access data
promotes the applicability of the proposed approach. The capabilities of open access data
and water resources monitoring are expected to be more vital for the years to come, as water
demand and climatic pressures are expected to intensify, even if their impacts are not yet
traceable in several regions. The use of statistical tools is considered important, in order to
trace significant alternations of water regimes and correctly track, each specific case’s causes.
Moreover, the examined Earth Observation data sources, when validated with ground
truth data, may be significant inputs for successful climate and hydrological forecasting.
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