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Abstract: Non-intrusive load monitoring systems that are based on deep learning methods produce
high-accuracy end use detection; however, they are mainly designed with the one vs. one strategy.
This strategy dictates that one model is trained to disaggregate only one appliance, which is sub-
optimal in production. Due to the high number of parameters and the different models, training
and inference can be very costly. A promising solution to this problem is the design of an NILM
system in which all the target appliances can be recognized by only one model. This paper suggests
a novel multi-appliance power disaggregation model. The proposed architecture is a multi-target
regression neural network consisting of two main parts. The first part is a variational encoder with
convolutional layers, and the second part has multiple regression heads which share the encoder’s
parameters. Considering the total consumption of an installation, the multi-regressor outputs the
individual consumption of all the target appliances simultaneously. The experimental setup includes
a comparative analysis against other multi- and single-target state-of-the-art models.

Keywords: non-intrusive load monitoring; energy disaggregation; NILM; deep learning; variational
inference; multi-target regression; KL divergence; convolution neural networks

1. Introduction

Disaggregation is the process of breaking down a quantity into its separate elements.
Specifically, the term energy disaggregation is a synonym for non-intrusive load monitoring
(NILM) [1], a set of methods that aim to estimate the power consumption of electrical
appliances that together compose the aggregate consumption of an installation. NILM
can be thought as a blind source separation task [2], with only the mains consumption
signal provided as input, and can be an essential tool for both individual consumers and
distribution system operators (DSOs). From the consumer side, NILM constitutes a vital
part of intelligent home systems, providing insights into reducing energy waste, raising
energy awareness [3,4], improving the operational efficiency of installations [5–7], and
creating smart alert mechanisms for residents in need [8–10]. On the other hand, DSOs
can use NILM as a building block for various applications regarding the management
and efficient monitoring of the grid [11,12] in combination with more accurate energy
consumption forecasts [13,14]. In a similar fashion, disaggregation can be performed in
other quantities that are used in residential buildings, such as natural gas [15] and potable
water [16–18], in order to preserve resources and reduce the overall living costs of habitats.

Early attempts to confront the task of energy disaggregation used combinatorial meth-
ods to estimate the on/off events of each appliance [1] and Factorial Hidden Markov
Models [19–21] to derive the appliance consumption. In FHMMS, a model consists of
multiple independent HMMs and the output is essentially a combination of all the hidden
states. During the last decade, deep learning solutions have come to dominate the energy
disaggregation research field, producing state-of-the-art solutions [22]. Kelly and Knot-
tenbelt [23] were the first to apply deep learning in order to tackle the problem of NILM,
introducing three novel architectures. Subsequently, researchers in this field have devised
a variety of solutions using different types of networks, including convolutional [24,25]
and recurrent [26–29] networks as well as combinations of the two [30–32]. A number of
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these studies claim to have achieved state-of-the-art performance [24,27,31,33]. A popular
technique from Natural Language Processing that produces good disaggregation models is
the concept of attention [32,34–36]. The main idea is that the model can detect the most im-
portant parts of a sequence and learn to take them into consideration. Based on the results
in the literature, this type of model shows great generalization capabilities. Moreover, the
concept of data generation has been successfully applied to the problem of NILM as both a
detection system [36–39] and a data generator [40,41].

Towards the direction of reproducible and comparable results, Symeonidis et al. [42]
designed a framework composed of various stress test scenarios for evaluating energy
disaggregation methods, whereas Batra et al. [43] implemented an easy-to-use API for rapid
comparison of algorithmsalong with a set of baseline models. In an effort to standardize
the way in which NILM experiments are conducted, Virtsionis Gkalinikis et al. [44] created
Torch-NILM, the first Pytorch-based deep learning library for energy disaggregation. Torch-
NILM contains tools to process time series data and build neural networks, along with three
APIs to design experiments that follow an integrated benchmark method. Even though the
aforementioned works are in the direction of standardization of experiments for tackling
the comparability issue, at present the NILM research community lacks a globally accepted
comparison framework [45].

The present article contributes to energy disaggregation research in the following ways.
First, we present a novel neural network that is able to achieve multi-target disaggregation.
The proposed network is built upon a combination of artificial layers such as CNN and
fully connected layers [46], using the concept of variational inference in a similar way as
in [47]. The proposed network is compared with a variation of the UNet-NILM multi-target
model [31] and a baseline model. Additional experiments with known single-target models
on the same data are included in order to measure the performance differences between the
two strategies. Finally, we present the results of an ablation study to highlight the benefits
of variational inference in the current task. The ablation analysis is essentially a comparison
between the proposed neural network and a vanilla version without variational inference.

2. Related Work on Multi Target NILM

In an effort to provide more solid and deployable solutions towards practical NILM
applications, multi-appliance approaches can be utilized. In this framework, one model
accurately detects the electrical signatures of multiple targets. This results in the estimation
of the corresponding individual energy usages simultaneously. Ideally, successful training
should provide a model that automatically takes into account the energy allocation of
all the targets and provides the right answer without any extra work. In this direction,
Basu et al. [48,49] were the first to apply popular multi-label classification algorithms to the
problem of NILM in order to detect on/off events with multiple targets. Furthermore, recent
works have explored the concept of mixed-integer nonlinear programming (MINP) [50–52]
to estimate the power consumption of many appliances simultaneously. These approaches
are based on Hart’s original formulation [1] and perform disaggregation after modeling
the power traces of the target appliances. Even though MINP solutions are lightweight and
require few data for training, they are more suitable in cases where the data resolution is
between 1 and 10 min.

In order to perform multi appliance disaggregation with deep learning, the general
approach is usually composed of two steps: first, to detect the on/off events of the devices,
and then to estimate their energy usage [53–56]. In a similar fashion, Verma et al. [57]
faced the problem as a multi-classification task concerning on/off appliance states and
addressed it by implementing an LSTM autoencoder. The proposed network was trained to
compress the input into a latent feature space and reconstruct it with minimal information
loss. Then, the latent features were used to perform multi-appliance disaggregation on the
mains signal. Recently, Faustine et al. [31] followed a different direction and designed a
multi-target model that outputs both the power time series and the on/off states of a set of
target appliances simultaneously. The architecture is essentially a UNet model that consists
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of a series of 1D convolutional layers in combination with the idea of quantile regression.
In the current paper, a novel architecture is designed with the capacity to output the power
consumption time series of many appliances directly while keeping computational costs
low. It should be noted that during our experiments we found that providing the on/off
states of the appliances as ground truth to the model boosted its performance.

3. Practical Challenges in NILM

In terms of deep learning and neural networks, the majority of NILM research focuses
on designing one network per appliance. While this strategy simplifies the problem and
implementation, it has a number of drawbacks. To begin with, it is not a cost-effective
solution for real-world applications deployed on cloud services, where the charge depends
on the training duration and space requirements. A series of compression techniques suited
for implementation on hardware with constrained computing capability were developed
by Kukunuri et al. [58] in order to mitigate this problem and make the one vs. one strategy
more usable in real-world solutions. Furthermore, a method of combining the results of
all the models to provide a final answer needs to be designed, which is a non-trivial task.
For instance, multiple models could detect the same end use (or part of it) as their target
appliance. The choice of the correct output depends on a number of factors, such as the
total consumption at the time of the specific end use, the general accuracy of the model, the
uncertainty level of the answers, etc.

Apart from the deployment and practicality issues, the design of a NILM-oriented ap-
plication should consider a number of hidden parameters. To begin with, a disaggregation
algorithm heavily depends on the datasets used in its design and the evaluation. NILM
algorithms aim to detect appliance events, which are closely affected by the habits and the
culture of the users. Designers should take into account the fact that, although generaliza-
tion capability of methods is a desirable property, the regionality of the data is an important
factor that needs to be taken into account. Moreover, the sampling period of the data has
a great effect on the detection limitations of algorithms. Usually, disaggregation research
revolves around sampling periods of 1–10 s, which is a low sampling frequency in NILM.
In lower granularities, e.g., 1–15 min, the unique features in electrical signatures vanish. As
a result, accurate appliance event detection is impossible with such data. In these cases,
nonlinear programming or combinatorial methods may be reasonable solutions to tackle
the problem instead of more computationally intense deep learning models. On the other
hand, neural networks can achieve state-of-the-art performance in situations where the
granularity of the measurements is higher than 10 s. Finally, ensuring the reproducibility
of NILM experiments is not an easy task, as there is no common bench-marking process
among researchers. Thus, choosing a suitable NILM algorithm for an application is not
always straightforward.

The current research concentrates on designing a deep learning architecture capable
of detecting the desired set of electrical household appliances simultaneously. The network
should be computationally efficient in order to be used in both commercial and research ap-
plications, and should have high training and inference speeds. The proposed architecture,
which we call Variational Multi-Target Regressor (V.M.Regressor), has low storage and
computation requirements, outperforms other multi-target disaggregation models, and is
competitive with known state-of-the-art models that use the one vs. one (or single-target)
strategy. Through an ablation experiment, we show how the key ingredients of the network
increase its disaggregation capability compared to simpler implementations, whereas a
comparison of three variants of the model indicates the best one. In order to identify any
changes in performance of the models, the final experiment was designed using a different
number of target appliances.
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4. Materials and Methods
4.1. Datasets

The training for all the experiments of this work was executed on data from the
UKDALE [59] public dataset, which contains data from five residential buildings in the
UK. For evaluation of the models, we utilized data from theUKDALE and REFIT [60]
datasets. These datasets are very popular among NILM researchers due to the fact that
they contain high quality measurements with limited missing values. For most of the
experiments, five household devices were chosen: a dishwasher (DW), fridge (FZ), kettle
(KT), microwave (MW), and washing machine (WM). There were two main reasons for
this. First, as these are widely used residential appliances, accurate disaggregation of
their consumption could be of interest to users and DSOs. Second, these appliances have
different operating characteristics, resulting in quite different electrical signatures. Thus,
multi-target models need to extract the most useful and complicate characteristics in order
to separate the individual sources and achieve high performance.

4.2. Data Preprocessing

In order for the neural networks to extract complex features and patterns, a minimum
level of preprocessing should be applied to the raw data. The preprocessing of the data in
this study comprised the following steps:

• Mains and target time series were aligned in time;
• Empty or missing values were replaced with zeros;
• Time series were normalised using standardization, with the values transformed

centered around the zero mean with the unit standard deviation:

Z =
x−mean

std
(1)

where Z is the standard score, x is the datapoint, and mean and std the average and
the standard deviation of the time series, respectively;

• The data were transformed in order to follow the sliding window method [27];
• The on/off states of the target appliances were calculated in each window. An appli-

ance was considered to be working when its power level at the time of interest was
above a predefined threshold. The power thresholds in this manuscript are drawn
from the work of Kelly and Knottenbelt [23].

4.3. Methodology

The experiments reported in this work are summarized in Table 1. All the experi-
ments were designed and performed using the Torch-NILM framework created by Virtsio-
nis Gkalinikis et al. [44]. The same data preprocessing and model hyperparameters were
used across all the experiments. All the models used the same input window with a length
of 200 datapoints with the sliding window approach. The batch size was set to 1024 and
the sampling period to 6 s. Each experiment was executed ten times on different random
seeds on an Nvidia TitanX GPU.

In order to stress-test the methods under examination, the benchmark framework pro-
posed by Symeonidis et al. [42] was loosely followed. This framework consists of four
categories, each of which is an experimental scenario that aims to highlight the strengths and
weaknesses of NILM detection algorithms. Category 1 of the benchmark framework involves
performing training and inferencing on data from the same installation, whereas in Category
2 the algorithms are trained and tested on different buildings from the same dataset. The third
and fourth scenarios evaluate the learning capabilities of the models across many installations
in combination with inferencing on the same and or different datasets.
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Table 1. Summary of experiments.

Experiment Environment Setup Goal

Ablation study comparing the
same network with and without
variational inference.

Applied the first category of
benchmarking [42], where
training and inference happen
during the same installation.

To highlight the
performance boost due
to the variational
inference approach.

Performance comparison of
three variations of the proposed
network.

Applied the first two categories
of benchmarking [42], where
training and inference happen
on installations from the same
dataset.

To decide which
combination method is
the best.

Benchmark performance
evaluation of multi-target
models.

Executed the first three
categories of benchmarking [42]
for four installations from two
different datasets.

For performance
comparison of the novel
model versus the
baseline.

Performance comparison of
multi-target models against
single-target models.

Executed the first two categories
of benchmarking [42], where
training and inference happen
on the same dataset.

For performance
comparison of the novel
multi-target model
versus single-target
baselines.

Performance comparison
between multi-target models for
different numbers of appliances.

Applied the first category of
benchmarking [42], where
training and inference happen
on the same installation.

To highlight any
performance boost or
drop of the models.

In the current research, the first two scenarios were executed as described in the
original paper, whereas the third and the fourth were considered as one category and
applied with a variation. Specifically, Category 3 in the experiments corresponds to training
on only one dataset (UKDALE) and inference on the same (UKDALE) or another (REFIT).
Hence, the ability of the models to learn across many houses was not evaluated in this case.

Table 2 summarizes the installations used for the benchmark categories for all the
experiments in this study. The training period for UKDALE 1 was 5 months, from 1 March
2013 to 1 August 2013, whereas one month of data was used for inference in all scenarios.

Table 2. Installations used for the current study. UKDALE installation 1 was used for training in all
categories, whereas UKDALE 1 and 2 were used for inference in Categories 1–2. REFIT installations 2
and 5 were used for evaluation in Category 3.

Appliance
Category 1 Category 2 Category 3

Train Test Train Test Train Test

Dishwasher 1 1 1 2 1 2, 5
Microwave 1 1 1 2 1 2, 5
Fridge 1 1 1 2 1 2, 5
Kettle 1 1 1 2 1 2, 5
Washing Machine 1 1 1 2 1 2, 5

4.4. Evaluation Metrics

A good NILM algorithm should have two qualities. First, it should successfully detect
the operation states of the appliances. This is a non-trivial task, because overlapping events
between different appliances is a common phenomenon and makes the detection more
difficult. Second, the algorithm should provide good power estimation of the detected end
uses. This is of high value, and is of concern to users and DSOs. As a result, the performance
of NILM solutions should be evaluated with metrics that measure these properties.
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In NILM research to date, two known machine learning metrics have typically been
used. The performance in operation states detection is measured with F1 (2), the harmonic
mean of Precision (3) and Recall (4). High Precision indicates a low rate of false positives
(FP), whereas high Recall means that the number of false negative (FN) is low. The F1 score
is a combination of these two. In Equations (3) and (4), the number of true positives is
denoted as TP.

The ability to produce correct power estimations is measured using the MAE, which
is calculated in Watts, as provided by (5), where T is the length of the predicted sequence,
yt’ is the estimated electrical power consumption, and yt is the true value of active power
consumption at moment t.

F1 = 2
Precision× Recall
Precision + Recall

(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

MAE =
1
T ∑ |y′t − yt| (5)

5. Topology of Neural Networks

In order to verify that the proposed solution has good performance, comparison with
strong known baseline models is necessary. In the current case study, two main cases of
performance comparison involved baseline models, namely, the benchmark for the multi-
target detection models and the comparison between multi-target and single-target models.
For the first case, two multi-target models were considered as the baseline, while one was
used to achieve highly accurate results. In the second scenario, three known single-target
architectures were chosen based on their performance and popularity.

An overview of the properties of the models used in the experiments is depicted in
Table 3. It can be noted that the single-target models have more parameters in comparison
to the multi-target architectures. Due to the fact that in this case one model corresponds to
one appliance, the scenario of using many heavy algorithms for accurate disaggregation in
production mode is unscalable. On the other hand, regarding the size of the networks, the
multi-target algorithms are lighter, with decent training and inference times for multiple
appliance disaggregation simultaneously. It should be noted that the same input window
with a size of 200 was used for all tested appliances and models.

Table 3. Properties of the tested models: number of parameters, size of the model, training speed
(GPU), inference speed (GPU and CPU). For the single-target models, the numbers are measured for
experiments with one appliance. The input window was 200 datapoints for all appliances and models.

Strategy Appliances Architecture Params
(Mil)

Size
(MB)

Training
GPU (it/s)

Inference
GPU (it/s)

Single-Target 1
DAE 2.9 11.540 102.13 139.20
S2P 10.3 41.160 18.390 78.16

NFED 4.7 18.956 20.220 44.93

Multi-Target 5

CNN-base 2.2 8.650 30.960 82.74
UNet-NILM 2.2 8.940 14.750 50.01

V.M.Regressor (Linear) 2.1 8.376 18.901 59.40
V.M.Regressor (Addition) 2.0 8.170 19.405 61.10
V.M.Regressor (Attention) 2.0 8.171 19.290 60.20

5.1. Single-Target Baseline Models

For the comparison of multi-target versus single-target strategies, three known NILM
architectures were chosen: a denoising autoencoder, a sequence-to-point disaggregator,
and a neural Fourier energy disaggregator. These models are all different from each other,
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and they were designed using different elements; thus, the comparative study should not
be biased against similar architectures.

Denoising autoencoders are a family of neural networks designed to eliminate noise
from input signals and output a clean signal. In NILM, the goal is to separate the appliance
consumption from the mains consumption of the installation. Hence, the mains time
series plays the role of the noisy signal, whereas the individual energy consumption is the
noiseless target. The original architecture of DAE was proposed by Vincent et al. [61] and
later adapted in NILM by Kelly and Knottenbelt [23] as a series of fully connected/dense
artificial layers. The architecture is depicted in Figure 1:

Figure 1. Architecture of DAE.

The model called sequence-to-point (S2P) [24] is composed of a series of five convolu-
tional layers that act as a feature extractor. These features are then passed through a dense
layer with a ReLU activation layer. S2P is considered state-of-the-art, and is used across
many papers in the literature either as an inspiration and/or as baseline. The architecture
of the network is summarized in Figure 2.

Figure 2. Architecture of S2P.

The Neural Fourier Energy Disaggregator (NFED) [62] could be considered as a
member of the transformer family [63–66] due the fact that it is based on FNET [67], a
transformer in which the attention layer is replaced by Fourier transformation as an efficient
alternative. In comparison to state-of-the-art-models, NFED achieves similar performance
with lower computational cost. NFED is composed of fully connected and normalised
layers along with two main residual connections. The architecture is depicted in Figure 3.

Normalization

Fourier

Add

Input

Normalization

Dense

Add

Output

Real Imag.

Concat

Dense

Linear/Leaky
ReLU

(a)

Conv

Pool

Fourier Block

Dense ReLU

Dense ReLU

Input

Output

Linear

(b)

Figure 3. The NFED neural network: (a) Fourier block and (b) NFED architecture.
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5.2. Multi-Target Baseline Models

In order to evaluate the proposed implementation, an adaption of the UNet NILM
proposed by Faustine et al. [31] was used. As input, the network receives the mains time
series and outputs both the appliance states and power time series. In the original paper,
UNet NILM performed quartile multi-target regression in a sequence-to-sequence fashion,
with the length of the input being the same as the length of the output. Quartile regression
involves smoothing of the mains and target time series using quartile filtering. This technique
removes spikes and other features that may be valuable for successful disaggregation.

Our variation of the UNet NILM differs from the original in the following aspects. First,
we use the sliding window approach [27] instead of sequence-to-sequence. In this method,
the input of the networks is a sequence and the output is the last disaggregated point of the
sequence. Hence, near-real-time disaggregation can be achieved, along with faster training
and inference. Second, regular regression without quartile smoothing was performed in
order to compare the two implementations on the same level. Due to these changes, several
parameters were adjusted in order for the model to perform at its best. The architecture
of UNet NILM is depicted in Figure 4. Because the UNet NILM differs from the original
implementation, the CNN-base architecture described in Faustine et al. [31] was used and
adjusted accordingly in order to extract more insights about the performance of the models.

(a) (b)

Figure 4. Architecture of UNet NILM: (a) UNet NILM and (b) sliding window approach.

5.3. The Proposed Variational Multi-Target Regressor Architecture

As depicted in Figure 5, the novel implemetation is a combination of four basic mod-
ules: the ConvEncoder model (Figure 6), the Combination Mechanism (Figure 7), the
Shallow Regressor network (Figure 8) and the ReparamTrick module (Figure 9). After train-
ing, the model is supposed to output both the power consumption and the corresponding
states of the target appliances.

The ConvEncoder is composed of a series of convolutional layers with the same kernel
and different numbers of filters, which operate as a feature extractor. The output of the module
passes through the ReparamTrick layer, where the sampling through the reparametrization
trick is executed. Then, the two vectors are combined to produce a vector that contains
the information from the extracted features and the encoding. The available combination
mechanisms are depicted in Figure 7, and essentially produce a vector with a size equal to
that of the ConvEncoder output. After observation during the designing of the architecture,
combining the two vectors was found to boost the performance of the model.
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Figure 5. Architecture of Variational Multi-Target Regressor (V.M.Regressor).

Figure 6. Architecture of ConvEncoder.

In the current study, three lightweight and efficient combination methods were used.
First, a simple element-wise addition of the two vectors was used. In this case, the addition
acts as a residual connection [68] between the input of the ReparamTrick module. The idea
is to provide the model with information extracted by the ConvEncoder in order to help in
the training and fight any degradation issues [69]. Second, a dot attention mechanism [70]
was used to help the model focus on the most significant parts of the two vectors. In
addition, a dense neural layer with linear activation was trained in order for the model to
learn to combine the vectors automatically.

Finally, the product of the combination mechanism is passed to all the ShallowRe-
gressors to output the power and on/off estimation points for each target. Each Shal-
lowRegressor is a series of lightweight fully connected layers that aim to filter out the
unnecessary information and keep the valuable information regarding the corresponding
target appliance.
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Figure 7. Overview of tested combination mechanisms.

Figure 8. Architecture of Shallow Regressor.

The novel architecture is called Variational Multi-Target Regressor, because it uses the
concept of variational inference [47,71] in order to boost the performance of a multi-target
regression network. The intuition is that the network learns a posterior distribution instead
of point estimates. The posterior distribution describes the target data more naturally
than point estimates. Hence, the model is granted the ability to deal with unseen data
points, resulting in more generalised predictions. Prior information is necessary to learn
the posterior distribution, as described by Bayes’ rule (6), where given an input xεR the
unknown posterior p(z|x) is equal to the likelihood p(x|z) times the prior p(z) divided
by the evidence p(x). This prior information is inserted as a hyperparameter, and aims to
direct the model towards the right answer.

p(z|x) =
p(x|z)p(z)

p(x)
(6)

In NILM, these posterior distributions are based on many parameters, such as the
electrical signatures of each appliance, the frequency of operation, the duration of end use,
etc., and are generally hard to compute. As a result, an approximation of the posterior
distribution should take place. The idea of variational inference dictates that the unknown
posterior distribution can be approximated with another distribution q from the same
family. Usually, the steps for this process are: (a) choosing a distribution family and
(b) discovering the member of the family that is closest to the original data distribution.
The distance between the posterior and approximate distributions is measured using the
KL-divergence [72].

In order to successfully estimate the target distributions, the output of the encoder is
divided by the number of targets into equal vectors, as shown in Figure 9. Then, the mean
and standard deviation are learned for each target vector and, using the reparametrization
trick, the corresponding encoded vectors are sampled. Then, with the same statistics,
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the KL-divergence for each target is computed. It should be noted that the proposed
architecture as well as the various versions were implemented using Torch-NILM; the code
is availabe at https://github.com/Virtsionis/torch-nilm, accessed on 17 January 2023.

Figure 9. Reparametrization trick technique.

5.4. Loss Function

As described earlier, the model approximates the posterior distribution, then estimates
the power consumption and on/off appliance states of each target appliance. In order to
insert all of this information into the training process, a new loss function was designed,
presented in (7). This function consists of three different losses: the information loss, the
regression loss, and the classification loss. Additionally, three normalization factors were
used to scale each loss separately for best performance. For all the experiments, the values
of beta, gamma, and delta are 0.001, 1, and 10, respectively.

The information loss (8) is the sum of the KL-divergence between the posterior ap-
proximation q and the prior p for each target divided by the number of appliances N, and
is responsible for the posterior approximation. For the regression loss (9), the sum of all
the mean square errors between the targets and the ground truths is used, scaled by the
number of appliances. Similarly, the binary cross-entropy is calculated as the classification
of the on/off states ((10)).

Loss = beta ∗ in f o_loss + gamma ∗ class_loss + delta ∗ reg_loss (7)

in f o_loss =
1
N

N

∑
n=1

KL(qi(z|x)||pi(z)) (8)

reg_loss =
1
N

N

∑
n=1

MSE(poweri, power′i) (9)

class_loss =
1
N

N

∑
n=1

binary_cross_entropy(statei, state′i) (10)

6. Experimental Results and Discussion

This section contains five experiments. To begin with, an ablation study is executed
in order to verify that the variational inference approach boosts the performance of a
vanilla multi-target regression model. In addition, a performance comparison between
three variations of the proposed network is conducted to determine the best one. Next, in
an effort to highlight the capabilities of the proposed network, benchmarking comparisons
with two multi-target and three single-target architectures are conducted. Finally, an
investigation regarding the relation between the model performance and the number of
target appliances is performed.

6.1. Ablation Study—Variational Inference

The goal of this investigation is to discover whether the variational inference approach
assists the learning process of the proposed model. As a consequence, all the variations
of the proposed model were compared side by side with the same network without the
variational inference part. This model is called Vanilla, and skips the ReparamTrick and

https://github.com/Virtsionis/torch-nilm
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Combination Mechanism modules. Thus, the output of the ConvEncoder is directly passed
to the ShallowRegressors. For this experiment, the first two categories of the benchmark
were applied, with data from UKDALE used for training and inference.

Regarding event detection, the results in Figures 10a and 11a indicate that the pro-
posed solution outperforms the vanilla variation in almost every case. In addition, the
networks show better generalization capability on the unseen data following the variational
inference (Figure 11a), reaching up to 27.9% higher performance compared to the vanilla
implementation. The only cases in which the vanilla model achieves similar performance
to the proposed counterpart are the dishwasher in Category 1 and the microwave in Cate-
gory 2. Furthermore, the results in terms of the power estimation in Figures 10b and 11b
demonstrate that the proposed solution achieves lower MAE errors in 9 out of 10 cases,
indicating better estimation ability than the vanilla model.

(a) (b)

Figure 10. Experiment 1: Ablation Study, highlighting the effect of variational inference on the
performance of the model. (a) F1 score in Category 1: single building NILM; (b) MAE in Category 1:
single building NILM.

(a) (b)

Figure 11. Experiment 1: Ablation Study, highlighting the effect of variational inference on the
performance of the model. (a) F1 score in Category 2: training and inference on different buildings
from UKDALE dataset; (b) MAE in Category 2: training and inference on different buildings from
UKDALE dataset.

At this point it is useful to compare the models based on their computational cost. The
properties of all the networks under investigation are depicted In Table 4. Comparing the
Vanilla and the V.M.Regressor (Addition) models, it is obvious that the cost of integrating
variational inference into the model is negligible. Additionally, the V.M.Regressor (Linear)
model is slightly heavier than the vanilla model, with the addition of 100K parameters,
which slightly affects the training speed of the model.
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Table 4. Properties of the ablation study on combination methods for five appliances. Number of
parameters in millions, size of the model on the disk, training speed (GPU), inference speed (GPU).

Architecture Parameters
(millions)

Size on the Disk
(MB)

Training GPU
(it/s)

Inference GPU
(it/s)

Vanilla 2.0 8.170 19.8 62.2

V.M.Regressor
(Addition) 2.0 8.170 19.4 61.1

V.M.Regressor
(Attention) 2.0 8.171 19.3 60.2

V.M.Regressor
(Linear) 2.1 8.376 18.9 59.4

6.2. Combination Mechanism Selection

A crucial point in the novel architecture is the way in which the output of the
ReparamTrick module is used. After experimentation, the novel architecture was imple-
mented into three variations depending on the combination mechanism: simple addition
mode, attention implementation, and a combination with a linear layer. In order to decide
which mechanism was the best, the macro-level averages of the F1 score and MAE error
were computed for the three categories of the benchmark. The macro-averaging process is
essentially the simple averaging of the evaluation metrics across all the appliances. The
results shown in Table 5 indicate that, for the first two categories, the model with the
linear combination mechanism achieves the best performance. Regarding the scenarios
in Category 3, the variant with the simple addition outperforms the other two. On the
contrary, the architecture with attention shows the lowest performance in all scenarios.
To highlight how close the overall performance of the variations with the linear and the
addition modes are, the percentage differences between the averages of the two metrics per
category are depicted in Table 6.

Table 5. Experiment 2: Performance comparison between the available combination methods; the
macro-average is the simple average of a metric across the five appliances. The best values are marked
in bold. In terms of F1 Macro, higher is better. In terms of MAE Macro, lower is better.

Category Train Test Combination F1 Macro MAE Macro

1 UKDALE 1 UKDALE 1
Addition 0.687 14.118
Attention 0.661 14.676

Linear 0.699 14.402

2 UKDALE 1 UKDALE 2
Addition 0.599 17.993
Attention 0.56 18.68

Linear 0.631 17.578

3 UKDALE 1 REFIT 2
Addition 0.506 25.678
Attention 0.446 29.402

Linear 0.481 26.098

4 UKDALE 1 REFIT 5
Addition 0.43 32.829
Attention 0.404 36.334

Linear 0.412 32.86

Table 6. Percentage differences between the average macro-average scores for each category in
Experiment 2. The best values are marked in bold. In terms of F1, higher is better. In terms of MAE,
lower is better.

Category Addition
(F1) Linear (F1) F1 Diff (%) Addition

(MAE)
Linear
(MAE)

MAE Diff
(%)

1 & 2 0.643 0.665 3.364 16.055 15.99 0.405

3 0.493 0.484 1.843 29.254 29.479 0.766
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6.3. Comparison to Multi-Target Baseline

The third experiment was a direct comparison of the novel deep learning solution
versus two multi-target architectures introduced by Faustine et al. [31], namely, the UNet
NILM and CNN-Base networks. In the original implementation, UNet NILM achieved high
performance in comparison to the CNN-Base model on experiments with the UKDALE
dataset, and it is considered a strong opponent. In the current work, UNet NILM was
adjusted to perform regular instead of quartile regression following the sliding window
approach [27]. In this comparison, the best two variations of V.M.Regressor were used, that
is, the versions with the addition and the linear combination mechanism.

In the first category of experiments, House 1 from the UKDALE dataset was used
for training and inference. This category is the most usual case in real world applications,
where a dedicated disaggregation model is trained for a residence. As can be seen in
Figure 12, the V.M.Regressor (Linear) architecture reaches the maximum F1 score for three
out of five target appliances, whereas for the remaining two there is a negligible difference
between the state-of-the-art. On the other hand, in terms of the MAE error there is not a
clear winner, with the UNet NILM ahead on three occasions and the rest of the models
ahead on one appliance each. Even though V.M.Regressor is below the state-of-the-art in
power estimation, it should be noted that the maximum absolute difference in MAE error
is observed during disaggregation for the kettle, and is under 6 Watts. Considering the
fact that a regular kettle operates at a maximum power level of around 2000 Watts, this
difference is not very significant.

The results in Category 2 are pictured in Figure 13, showing that V.M.Regressor
(Linear) is the clear winner in terms of F1 score, with a 3.2% average difference across the
five target appliances. On the appliance level, the largest differences in F1 score occur
in dishwasher and microwave detection, with 6.3% and 9.5%, respectively. It should be
noted that this category uses measurements from different installations of the same dataset
for training and inference. Thus, an overall drop in performance is expected for many
reasons, including the a great likelihood of different appliance models being in a house
and the significant differences in the routines and habits of residents. This may explain the
large drop performance of all models on washing machine and fridge disaggregation. A
promising fact here is that the proposed model retains similar performance on the rest of the
appliances. This highlights the fact that the generalization capability of the V.M.Regressor
is better that the compared models. Regarding the power estimation and MAE error, there
are mixed results. Specifically, the UNet NILM model achieves lower MAE errors for three
appliances in comparison to V.M.Regressor, which performs better only on the fridge. In
this case, the simple CNN-Base model performs better than the others on the microwave
and the washing machine.

(a) (b)

Figure 12. Experiment 3: Performance comparison of multi-target models in Category 1, with training
and inference on UKDALE House 1. (a) F1 score in Category 1 (higher is better) and (b) MAE in
Category 1 (lower is better).
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(a) (b)

Figure 13. Experiment 3: Performance comparison of multi-target model in Category 2, with training
on UKDALE House 1 and inference on UKDALE House 2. (a) F1 score in Category 2 (higher is better)
and (b) MAE in Category 2 (lower is better).

The experiments in Category 3 posed a greater challenge for the models. As in
the previous category the training and inference were applied to data from different
installations. The difference was that the installations were part of different datasets. This
fact introduces many more possibilities and reasons for the models to underperform due to
regionality, everyday habits, culture, etc. In this comparison, two use cases were explored.
The first concerned training on UKDALE 1 and inference on REFIT 2 houses. The results of
this scenario are depicted in Figure 14. It is notable that the V.M.Regressor variations are
the clear winners on four out of five appliances with regard to both the F1 score and the
MAE error. Yet again, the V.M.Regressor shows good generalization capacity, being able to
out perform the competition.

The second use case involves the same datasets while using the REFIT 5 house for
inference. The results in this scenario are summarized in Figure 15. In this case, the novel
neural network achieves the best event detection in three appliances, with the simple CNN-
BASE winning in disaggregation of the fridge and the microwave. In the case of the MAE
metric, V.M.Regressor had the lowest values on the fridge and the microwave, whereas
UNet NILM performed better for the dishwasher and the washing machine. At the same
time, UNet performed worse than the baseline model on microwave power estimation,
producing the highest observed error across all of the experiments reported in this paper.

(a) (b)

Figure 14. Experiment 3: Performance comparison of multi-target models in Category 3, with training
on UKDALE House 1 and inference on REFIT House 2. (a) F1 score in Category 3 (higher is better)
and (b) MAE on Category 3 (lower is better).
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(a) (b)

Figure 15. Experiment 3: Performance comparison of multi-target models in Category 3, with training
on UKDALE House 1 and inference on REFIT House 5. (a) F1 score in Category 3 (higher is better)
and (b) MAE in Category 3 (lower is better).

6.4. Comparison with Single-Target Models

Because the largest part of NILM research revolves around single-target solutions, it
is useful to compare them with the proposed network. Specifically, the S2P architecture
proposed by Zhang et al. [24] is considered to produce state-of-the-art performance, and
has been used in almost every NILM paper as a strong baseline. The NFED [62] model is
claimed to achieve similar performance using less computational resources. Finally, the
DAE architecture [23] was one of the first architectures adjusted to solve the problem of
energy disaggregation, and is included due to its popularity and high training and inference
speeds. It should be noted that for this experiment the first two categories of the benchmark
were used, with training and inference happening on data from the UKDALE dataset.

The results for the first category are presented in Figure 16a. Regarding the F1 score,
V.M.Regressor outperforms the single-target models in dishwasher disaggregation, whereas
it achieves similar performance in event detection on the kettle and the washing machine.
For the fridge and the microwavem the single-target models produce higher F1 score
measures. In terms of the MAE error, the proposed model produces the highest values
for four out of five of the appliances except the dishwasher. The clear winner in the MAE
comparison is NFED, achieving the lowest errors for four out of five appliances. Although
the model shows higher errors, the absolute differences are under 5 Watts except the case
of the fridge. As a result, the proposed network could be easily applied to a practical NILM
while providing results similar to single-target state-of-the art models, with a number of
parameters almost 25 times lower and training time in case of five target appliances that is
five times smaller, as shown in Table 3.

The final comparison in this experiment is based on the second category of bench-
mark [42]. After reviewing the results in Figure 17, it is obvious that V.M.Regressor
outperforms the single-target models in terms of F1 score for the washing machine, with
similar performance for the kettle and dishwasher. For the rest of the appliances, there is
a large difference between the single-target models. It should be noted that none of the
single-target models performs the same in disaggregating all the appliances. Hence, a dif-
ferent model could be more applicable for specific appliance disaggregation. On the aspect
of power estimation, all models produce similar errors for three out of five appliances,
except for the dishwasher and the fridge, where V.M.Regressor produces errors almost
15 Watts larger than the competition, reaching almost 30 Watts for the fridge. The newer
types of fridges usually operate around 80–150 Watts, meaning that 30 Watts of deviation
in power estimation is almost 20–38% of the total power level. On the other hand, a 20-Watt
miscalculation of an average dishwasher end use corresponds to 5–10% of the operating
power level, which is tolerable.
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(a) (b)

Figure 16. Experiment 4: Single-target vs. multi-target models in Category 1, with training and
inference on UKDALE House 1: (a) F1 score in Category 1 (higher is better) and (b) MAE in Category
1 (lower is better).

(a) (b)

Figure 17. Experiment 4: Single-target vs. multi-target models in Category 2, with training on
UKDALE 1 and inference on UKDALE 2 houses. (a) F1 score in Category 2 (higher is better) and
(b) MAE in Category 2 (lower is better).

6.5. Performance for Different Numbers of Appliances

The number of appliances that the model can detect successfully is an important
parameter of a practical NILM system. Thus, in the last experiments the performance of
the proposed model and a baseline model were compared on different sets of appliances.
For the set of two appliances, the kettle and the microwave were used. The set of four
appliances contained the kettle, microwave, fridge, and washing machine. The set of six
appliances included the dishwasher and the toaster. Finally, lights and an electric boiler
were added to make up the set of eight devices.

The experiment used data only from UKDALE house 1, with a training/inference
ratio of 4/1. The results are presented in Figure 18. It is notable from the results that the
performance of the models follows a similar trajectory; both reach the maximum at four
appliances and the minimum at eight, whereas in case of simultaneous disaggreation of six
appliances the curves intersect. It can be seen that the proposed model outperforms the
baseline model in all cases.
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Figure 18. Experiment 5: Macro-F1 score per number of appliances for Category 1, with training and
inference on UKDALE 1.

7. Conclusions and Future Work

Applying deep learning networks to practical Non-Intrusive Load Monitoring applica-
tions is a non-trivial task. The root cause of the difficulty is that state-of-the-art architectures
usually consist of a very large number of parameters. In addition, these networks are
usually designed to disaggregate only one appliance at a time, meaning that the training
and inference speeds and the overall size of the solution are heavily affected. Because these
kinds of systems are usually built and operate on the cloud, a high costs are introduced.

In this article, we propose V.M.Regressor, a cutting edge deep learning architecture,
as a solution for real world NILM systems. V.M.Regressor is capable of high quality
simultaneous multi-target disaggregation with minimal computation requirements. Our
proposed model outperforms a known state-of-the-art multi-target model of similar size,
with faster training and inference speeds, and is competitive with heavier state-of-the-art
single-target networks. The proposed model is build based on the principals of variational
inference, which boosts its performance and the generalization capability on unseen data.

For future work, a number of suggestions can be made. To begin with, the concept
of variational inference can be used to produce additional multi-target solutions. As the
integration of this concept does not increase the number of the model parameters, it can
be applied to boost the performance of lightweight architectures capable of running on
embedded appliances. Training on many different datasets could be executed in order to
increase the generalization ability of this type of model.
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