
Citation: Yin, Y.; Chen, Z.; Liu, G.;

Guo, J. A Mapless Local Path

Planning Approach Using Deep

Reinforcement Learning Framework.

Sensors 2023, 23, 2036. https://

doi.org/10.3390/s23042036

Academic Editors: Luis Payá, Oscar

Reinoso García and

Helder Jesus Araújo

Received: 16 January 2023

Revised: 7 February 2023

Accepted: 8 February 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Mapless Local Path Planning Approach Using Deep
Reinforcement Learning Framework
Yan Yin , Zhiyu Chen, Gang Liu and Jianwei Guo *

School of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China
* Correspondence: guojianwei@ccut.edu.cn

Abstract: The key module for autonomous mobile robots is path planning and obstacle avoidance.
Global path planning based on known maps has been effectively achieved. Local path planning in
unknown dynamic environments is still very challenging due to the lack of detailed environmental
information and unpredictability. This paper proposes an end-to-end local path planner n-step
dueling double DQN with reward-based ε-greedy (RND3QN) based on a deep reinforcement learning
framework, which acquires environmental data from LiDAR as input and uses a neural network to fit
Q-values to output the corresponding discrete actions. The bias is reduced using n-step bootstrapping
based on deep Q-network (DQN). The ε-greedy exploration-exploitation strategy is improved with
the reward value as a measure of exploration, and an auxiliary reward function is introduced to
increase the reward distribution of the sparse reward environment. Simulation experiments are
conducted on the gazebo to test the algorithm’s effectiveness. The experimental data demonstrate
that the average total reward value of RND3QN is higher than that of algorithms such as dueling
double DQN (D3QN), and the success rates are increased by 174%, 65%, and 61% over D3QN on three
stages, respectively. We experimented on the turtlebot3 waffle pi robot, and the strategies learned
from the simulation can be effectively transferred to the real robot.

Keywords: D3QN; exploration-exploitation; turtlebot3; n-step; auxiliary reward functions;
path planning

1. Introduction

With the gradual development and growth of artificial intelligence, mobile robots
based on artificial intelligence have provided various conveniences to society while im-
proving social productivity, among which autonomous mobile robots are widely concerned
for their ability to complete tasks independently in a given environment. The key to au-
tonomous mobile robots is the ability to navigate autonomously, and the basis of navigation
is path planning. It means finding a safe path from the starting position to the target
position without colliding with any obstacle. According to the degree of information about
the environment, path planning can be divided into global path planning and local path
planning (also called real-time planning). This paper aims to explore the problem of local
path planning for robots in dynamic environments.

Different ways of path planning are needed in different environments, for example,
a completely known environment usually uses global path planning, while a partially
known environment or a completely unknown environment requires local path planning.
The robot navigation completes its own localization based on simultaneous localization
and mapping (SLAM) [1,2], and then plans the path to the target location by global path
planning, the accuracy of which depends on the accuracy of environment acquisition.
Global path planning can find the optimal solution, but it requires accurate information
about the environment to be known in advance and its poor robustness to the noise of
the environmental model. Local path planning detects the robot working environment
by sensors to obtain information such as unknown and geometric properties of obstacles.

Sensors 2023, 23, 2036. https://doi.org/10.3390/s23042036 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042036
https://doi.org/10.3390/s23042036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3369-3993
https://doi.org/10.3390/s23042036
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042036?type=check_update&version=1

Sensors 2023, 23, 2036 2 of 24

With high robustness to environmental errors and noise, this method can provide real-time
feedback and correction of the planning results. But the planning results may not be
optimal due to the lack of global environmental information. An advantage of learning-
based agent navigation over SLAM-based navigation is that it does not require high-
precision sensors to construct environmental maps to accomplish the navigation task, thus
making the navigation process simpler and reducing costs. Deep reinforcement learning
path planning methods have been very successful in tasks such as robotics [3–5], image
enhancement [6], and recommender systems [7]. However, there are many challenges in
solving path planning problems using deep reinforcement learning, one of which is that
many deep reinforcement learning algorithms suffer from overestimation bias. Secondly,
in path planning tasks since there is only one target location in most cases, the rewards are
sparsely distributed in the environment, which empirically slows down the learning speed
significantly and even leads to non-convergence. Therefore, it’s difficult for the commonly
used reward to function in this environment. Third, the strategy commonly explored and
utilized by deep reinforcement learning algorithms is the ε-greedy strategy. It indicates
that the agent will randomly choose the action with a small positive probability ε when
making a decision, leaving a probability of 1− ε to choose the action with the highest action
value. However, this strategy has many problems such as the agent must choose the action
randomly with epsilon probability, which can lead the agent to reselect actions that are
considered wrong. Therefore, a stochastic approach such as ε-greedy, may be ineffective in
path planning tasks [8].

This work uses DQN [9] as a baseline. But it has several drawbacks, one of of which
is the overestimation problem. The goal strategy is a greedy strategy that selects actions
based on the value of all actions. And the goal strategy is chosen by the ε-greedy algorithm,
which includes maximization operations. It maximizes on the estimated value, which can
also be seen as implicitly estimating the maximum value, which is one of the two causes
of overestimation (maximization). And the other cause of DQN algorithm overestimation
is bootstrapping, since the DQN algorithm uses part of the estimated Q-value calculated
by DQN when calculating the temporal-difference (TD) target (as in Equation (1)). The
utilization of the part of the estimated Q-value calculated based on yt to update itself causes
bootstrap. Also, backpropagation using stochastic gradient descent (as in Equation (2))
would further promote the overestimation of values. As in Figure 1.

yt = rt + γmax Q
a

(st+1, a; w), (1)

w = w− α(Q(st, at; w)− yt)
∂Q(st, at; w)

∂w
(2)

where yt in Equation (1) is the TD target value at time step t, rt is the obtained reward, γ is
the discount factor, max Q

a
(st+1, a; w) is the highest Q-value among all actions at next state

st+1, st+1 is the state at time step t+1, a is the action at time step t, and w is the weight of the
neural network. The α in Equation (2) is the learning rate, Q(st, at; w) is estimated value, yt
is true value. The network weights are updated by Equation (2), which makes the network
converge toward the global optimal solution.

The maximization problem is further illustrated here. Let the observed true values be
x1, x2, x3, ..., xn, and add noise with mean 0 to the true values to obtain Q1, Q2, Q3, ..., Qn.
The zero-mean noise does not affect the mean: E[meani(Qi)] = meani(xi). The zero-mean
noise increases the maximum: E[maxi(Qi)] ≥ maxi(xi). In the DQN algorithm, set the
maximum value of the action value function to q: q = max Q(s, a; w). We get q > max(x(a)).
Thus, the q is overestimated, and by the same time step t+1 qt+1 is also higher than the true
action value. Therefore, TD target is also an overestimate. TD learning drives action value
function value Q(st, at; w) towards yt, leading it to be higher than the true value, which
creates a vicious circle of overestimation.

Sensors 2023, 23, 2036 3 of 24

Figure 1. Overestimation of the process of transmission and facilitation between DQN and Target.

The DQN algorithm idea is to output the value of each action through the network
and select the highest of them to execute. If the overestimation phenomenon is uniform
for all actions, it will not affect the highest-valued action to be selected. Because states
and actions in the replay buffer occur at different frequencies, the DQN overestimation
phenomenon is not uniformly generated, leading to the possibility that the action selected
by DQN is non-optimal. The action value evaluation is not accurate enough. In the learning
process, selecting different actions in some states may not have an impact on the Q-value,
so we do not need to learn the impact of each action on that state. Decoupling the action-
independent states from the calculation of the Q-value and using each action individually
for the evaluation would result in more robust learning. The second challenge is the long
training time. Reinforcement learning requires constant interaction with the environment
for “trial and error”, so training times are usually long.

The RND3QN algorithm is proposed to improve some shortcomings of the current
robot deep learning framework applied to autonomous navigation. It improves the model
by the following points: shaping the auxiliary reward function; improving the exploration-
exploitation strategy; introducing double DQN [10], dueling DQN [11], and using the n-step
method guidance method. The above improvements effectively solve these problems and
improve the effectiveness of local path planning.

The robot senses its surroundings through LIDAR. The process removes invalid data,
sets null to 0 and infinity to 3.5, and then passes reasonable data (including observed
environment information and its own location information) to the RND3QN algorithm
to achieve local path planning in dynamic environments. The change of ε probability is
controlled by the reward value, which balances the exploration or exploitation strategy.
The task-appropriate ε decay formulation is also designed to avoid problems such as agents
getting into local optimal solutions or overfitting.

We conducted simulation experiments and real experiments by using the robot oper-
ating system (ROS). As in Figure 2. The experiments proved that the total reward curves
of double DQN [12], dueling DQN [11] and other algorithms have high volatility, and
the total reward values of these algorithms present significantly lower than RND3QN.
And RND3QN is more stable and has a significantly higher success rate. As a result, local
path planning in an unknown dynamic environment is achieved. The main contributions
are as follows:

• For reward function shaping, a potential-based reward shaping is introduced. Two
variables, angle and distance, are used as sources of potential energy. The robot
is encouraged to move towards the target by continuously adjusting the angle and
reducing the distance to the target.

• Navigation tasks usually have only one goal and belong to a sparse reward envi-
ronment. In this environment, the one-step method makes the agent learn slowly.
Replacing the n-step method with a one-step method to obtain more information

Sensors 2023, 23, 2036 4 of 24

about the environment is a solution. Meanwhile, the effect of reward value and target
value normalization on the stability of the algorithm is also explored.

• To address the drawbacks of exploration in traditional reinforcement learning, an ε-
greedy strategy based on reward value control ε probability variation is proposed. It
can make the agent use exploration rationally in the environment and learn
more effectively.

Figure 2. Training framework diagram for experiments based on ROS framework in simulated and
real environment under different maps, respectively. The above figure depicts the planning process
of the robot in the ROS framework. Firstly, the robot collects the environment data through sensors,
after that the data is analyzed and passed to the agent (RND3QN), and finally the agent outputs the
corresponding action instructions to be passed to the robot for execution.

The rest of the paper is organized as follows. Section 2 provides a summary of existing
robot path planning algorithms. Section 3 first introduces the Markov decision process and
the foundations of reinforcement learning. This is followed by a description of the problem
definition and the RND3QN algorithm. Experimental results and a brief analysis are listed
in Section 4. Section 5 summarizes the entire article and discusses future research that can
be conducted in this area.

2. Related Work

This section describes the related work about path planning methods. To date, many
methods have emerged for the path planning problem. We classify them into two main cat-
egories, traditional algorithms based on non-learning and learning, where the mainstream
algorithms are based on deep reinforcement learning methods. The former mostly requires
complete map information to complete path planning and cannot cope with unpredictable
situations, while the latter can learn based on the data continuously collected by sensors
without complete map information.

2.1. Traditional Algorithms

Traditional algorithms can be divided into two categories: graph search-based methods
and sampling-based methods. The earliest graph search algorithm is Dijkstra’s algorithm
proposed by dutch scientist E.W. Dijkstra in 1959 [13], which uses a greedy strategy, travers-
ing the shortest and unvisited points of an edge at a time until the endpoint. Subsequently,
the well-known A* algorithm [14] was proposed. This algorithm adds heuristic functions
to Dijkstra’s algorithm to improve performance and accuracy. Firstly A* algorithm has poor

Sensors 2023, 23, 2036 5 of 24

real-time performance. Secondly, as the number of nodes increases, its computation and
time grow exponentially. It also cannot handle dynamic obstacles. The D* algorithm [15],
proposed by Anthony Stentz et al. in 1997, is capable of handling the planning problem
of dynamic obstacles. D* reverses the direction of planning from the target point to the
starting point, and can handle some partially or completely unknown environments and
dynamic obstacle situations, solving the A* algorithm cannot deal with the dilemma of
dynamic obstacles. The D* algorithm consumes more resources and has a slow computation
time. Koenig et al. extended the D* and lifelong planning A* (LPA*) [16] algorithms and
proposed the D* Lite algorithm [17] using reverse search with incremental search makes
it possible to continuously update the optimal path from the current point to the target
point in the dynamic obstacle map using the node distance information generated in the
previous iterations, which reduces the algorithmic complexity of D* path planning and
solves the LPA* iterative planning problem. Another class of research is sampling-based
algorithms, and the research that laid the foundation is the rapidly-exploring random
trees (RRT) algorithm proposed by LaValle et al. in 1998. The RRT algorithm [18] is a fast
search algorithm at the expense of optimal behavior, and the path it searches is often not
the optimal path. To solve this problem, RRT* [19] appears, which makes RRT possess
asymptotic optimality, but this approximation to the optimum is not fast. To improve the
convergence speed of RRT*, Informed-RRT* [20] is developed to improve the convergence
speed of the initial path to the optimal path. Conventional path planning has its limitations
that the robot can’t complete planning in complex unknown environments and quickly
adapt to its surroundings because of its dependence on the environment.

2.2. Reinforcement Learning Algorithms

Markov Decision Process (MDP) [21] is a mathematical representation of the rein-
forcement learning problem. And path planning is a natural markovian decision process.
The earliest research in value learning problem is solved by Q-learning [22]. However, it
has disadvantages such as poor generalization ability, slow convergence and not being
applicable to high-dimensional environments. In 2015, to solve the memory overflow
problem caused by large amount of data or coming continuous actions in high-dimensional
environments, DeepMind proposed the DQN [9] algorithm in Nature, which combines
neural networks with Q-learning.

Neural networks are used to generate Q-values for actions, turning the Q table update
problem into a function fitting problem. To address the problem of slow convergence
of the DQN algorithm, the work of Jiang et al. proposes a combination of deep neural
networks with empirical playback and prior knowledge [23] to speed up the convergence
rate. Subsequently the work of Hasselt et al. proposes double Q-learning [10] for the
overestimation problem of Q-learning, which alleviates the overestimation phenomenon.
The neural network of the DQN algorithm is inaccurate in the way it calculates Q-value.
Ziyu Wang et al. [11] made a simple network structure of the DQN improvement by
splitting the network into two estimators, one for the state value function and the other for
the action dominance function.

Distinguishing the state values that are not related to the action improves the accuracy
of Q-value. The work of double Q-learning does not eliminate overestimation, and the
average DQN [24] proposed by Oron Anschel et al. in 2017 demonstrates the existence of
approximation error and the impact of overestimation on learning. The method sets up k
networks and then takes the average of the previous Q-value estimates of these networks
as the current Q-value, thus achieving a more stable training process and improving perfor-
mance by reducing the variance of the approximation error in the target value. Benjamin
Riviere et al. [25] propose distinguishable safety modules to ensure collision-free operation,
and in environments, with many obstacles, the collision avoidance success rate improves by
20%. However, known environmental information is still required for planning. To address
the problem of reward sparsity in path planning tasks, a 2018 state-of-the-art approach is
random network distillation (RND) [26], a flexible combination of intrinsic and extrinsic

Sensors 2023, 23, 2036 6 of 24

rewards. In 2019 Haobin Shi et al. introduced an exploration strategy with intrinsic in-
centive rewards in [3], where curiosity is used to encourage an agent to explore unvisited
environmental states and as an additional reward for exploratory behavior. The algorithm
uses laser ranging results as inputs and outputs continuous execution actions. Experimen-
tal results show that the algorithm outperformed RND. Subsequent work [27] proposes a
novel generative adversarial exploration approach (GAEX) that outputs intrinsic rewards
to encourage exploration by an agent through generative adversarial networks that identify
infrequently visited mounted states. To solve the problem that conventional algorithms
need to re-invoke the planning algorithm to find an alternative path every time the robot
encounters a conflict. A global guided reinforcement learning approach (G2RL) [28] is
proposed. The method adopts a double DQN based on prioritized experience replay in
local path planning and an A* algorithm in global path planning. It also incorporates a new
reward structure to make it more general and robust. The network of the DQN algorithm
has neither memory of prior observations nor long-term prediction capability, so Koppaka
Ganesh Sai Apuroop et al. [29] combined deep reinforcement learning algorithms with
LSTM [30] to solve the path planning problem of cleaning robots indoors, allowing the
robot to generate a least costly path in a shorter time. In the latest research on catastrophic
forgetting in artificial neural networks, Qingfeng Lan et al. in [31] reduced forgetting and
maintained high sample efficiency by integrating knowledge from the target Q-network
to the current Q-network, while weighing the strategy of learning new knowledge and
preserving old knowledge. Replay buffer may have a large amount of duplicate and invalid
data, leading to a waste of memory space. It also reduces data utilization. There has been
related work on improving the replay buffer, such as that proposed by Tom Schaul et al. in
2015 prioritized experience replay (PER) [32] uses prioritized empirical replay to replace
the sampling method with uniform sampling to non-uniform sampling. Each piece of
data has a different priority, and the most useful information is learned first, thus im-
proving data utilization. Subsequent work [33] proposed a novel technique hindsight
experience replay(HER) that combines the characteristics of sequential decision problems
in reinforcement learning HER enables agent to learn from failed experiences, solving the
problem of reward sparsity in reinforcement learning. In 2019 Rui Zhao et al. proposed
a simple and efficient energy-based method [34] to prioritize playback of “posterior ex-
perience”, innovatively using “trace energy” instead of TD-error as a measure of priority.
In tasks such as continuous control [35], an actor-critic reinforcement learning algorithm is
used to achieve autonomous navigation and obstacle avoidance of UAVs, and robustness
to unknown environments through localization noise. Junjie Zeng et al. proposed the
MK-A3C [36] algorithm for memory neural networks to solve the problem of continuous
control navigation of a robot in an unknown dynamic environment for incomplete robots,
and trained using migration learning.

3. Materials and Methods
3.1. Background

The path planning is constructed as a partially observable markov decision process
(POMDP) [37] model. At each discrete moment t = 0, 1, 2, 3, ..., both the agent and the
environment interact, and the agent chooses an action at ∈ A(S) based on observing some
feature expression st ∈ S. At the next moment, because of taking the action, a numerical
reward, rt+1 ∈ R, is given, and then the agent enters a new state. Thus, the agent and the
environment jointly create a trajectory s0, a0, r1, s1, a1, r2, s2, a2, r3,

The goal of agent is formally characterized as a special signal, namely reward, which
is transmitted to the agent through the environment, and at each moment, the reward is
a single scalar value, rt+1 ∈ R. The reward return represents the sum of future rewards
G = rt + rt+1 + rt+2 + rt+3.... As the network gradually converges, the accuracy of the
agent’s predictions about the future decreases. Therefore ‘discount’ is applied to future
rewards. The cumulative discounted reward Ut = rt + γrt+1 + γrt+2 + γrt+3... represents
the sum of the cumulative discounted future rewards, where γ is a parameter, 0 ≤ γ ≤ 1,

Sensors 2023, 23, 2036 7 of 24

which is called the discounted factor. When γ = 0, the agent only cares about the gain
of the current state, and as γ increases, the discounted return will consider more about
the future gain. The purpose of reinforcement learning is to maximize discounted return.
The return of adjacent time steps can be related to each other by Equation (3).

Ut = Rt + γrt+1 + γrt+2 + γrt+3... (3)

= rt+1 + γ(rt+2 + γrt+3 + γ2rt+4)...

= rt+1 + γUt+1

A policy in reinforcement learning is a mapping between the selection probabilities
of a state taking each action, and the formula for the policy π is π(a|s) = P(A = a|S = s).
The value of taking action a at state s under strategy π is denoted as qπ(s, a), which is called
the action value function. The expected payoff of all possible decision sequences under
strategy π starting from state s and after performing action a.

Qπ(s) = E[Gt|St = s, At = a] = Eπ [
∞

∑
i=0

γirt+i+1|St = s, At = a] (4)

Because actions and states are random so the value of qπ is random, and we call its
maximum value the optimal action value function.

Q∗(st, at) = max
π

Qπ(s, a) (5)

The agent is controlled by two functions π(a|s) and Q∗(st, at), and this work uses
the optimal action value function to control the agent. The function is fitted by a neu-
ral network, using the DQN algorithm, which is the pioneer of deep reinforcement
learning, as the baseline its target value is calculated as Equation (1), with a loss func-
tion L = (target−Q(s, a; θ))2.

3.2. Problem Definition

The robot is in an unknown environment and uses radar detectors to collect data
to grasp information about the environment. The robot and the obstacles are three-
dimensional objects in the real environment. To simplify the problem, this study ignores
the height of the robot and the obstacles and treats them as two-dimensional objects. With-
out knowing the location, shape and size of the obstacles in the unknown environment,
turtlebot3 only knows the start position and the target position.

Local path planning is to enable the agent to perform path planning and obstacle
avoidance based on a partially observable environment, where the robot does not have
access to all environmental information in an unknown environment and therefore cannot
be constructed as a general MDP. This task requires a POMDP model [37].

Defining it as the tuple M = {S,A, T, R, Ω, O, γ}. The POMDP has state space S, action
space A, transition function T, reward signal R, a discount factor γ ∈ [0,1), a finite set of
observations Ω and an observation space O. Goal = {g1, g2, ..., gn} represents a set of target
position coordinate points. (obsxj , obsyj), (j = 1, ..., n) denotes the coordinate positions of n
obstacles. The ambient state space is represented by S, which is the data obtained by the
robot from the target detection and analysis by LiDAR (LDS). S = LDS(24) + Distance(1) +
Angle(1) + Obstacleangle(1) + Obstaclemin_range(1). We consider setting the action space as
discrete, and the sizes of the action space and state space as in Table 1. The correspondence
between action and velocity is shown in Table 2. The set A = {0, 1, 2, 3, 4} represents five
different actions in the action space. Meanwhile, we control the line speed at 0.25 m/s.
The obstacles include static and dynamic obstacles.

Sensors 2023, 23, 2036 8 of 24

Table 1. Table of action space and state space size settings in MDP. There are five actions, so the action
space is 5. The sum of all dimensions of the state is 28, so the state space size is 28.

Action Space State Space

5 28

Table 2. Correspondence table between motion and angular velocity.

Action Angular Velocity (rad/s) Direction

0 −1.5 left
1 −0.75 left front
2 0 front
3 0.75 right front
4 1.5 right

3.3. The n-Step Dueling Double DQN with Reward-Based ε-Greedy (RND3QN)

We propose RND3QN, which enables the robot to perceive the environment and per-
form feature extraction through neural networks. When interacting with the environment,
the data scanned by LiDAR is stored in the replay buffer, from which a batch of data of
mini_batch size is randomly sampled as input. Since the n-step method is used, each data is
n transitions, where n is used as a hyperparameter. This batch of data is processed through
the evaluation neural network and fitted to a linear function that replaces the Q-table in the
Q-learning algorithm, while periodically updating the target network. The DQN algorithm
uses the ε-greedy algorithm to select actions. A drawback of this method is that it requires
constant parameter tuning even in simple environments. Reward-based ε-Greedy is used
in RND3QN. It inferred the current exploration-exploitation state from the reward signal
and dynamically adjusted the change of ε according to this state to improve the exploration
efficiency. We experimented with whether the soft update method used by deep determin-
istic policy gradient (DDPG) [38] would have a facilitating effect on the convergence of
the network and found that the effect is slightly worse than being updated, and we need
to adjust the weight hyperparameters manually, so the target network is updated using
the hard update method. We summarize the agent and environment interaction model as
shown in Figure 3.

Figure 3. The model of the RND3QN algorithm.

Sensors 2023, 23, 2036 9 of 24

3.3.1. The n-Step TD

The n-step method allows flexible control of the backward sampling step size n while
reducing errors. The one-step TD can only sample one transition with reward at a time,
which is called one-step reward Gt = rt+1 + γQ(st+1). And n-step TD can sample n
transitions with rewards and obtain more observations than one step, which is called multi-
step return Gt:t+n = rt+1 + γrt+2 + ... + γn−1rt+n + γnQt+n−1. Thus, n-step TD targets
will have better learning efficiency. The n-step payoffs use the value function Vt+n−1 to
correct the sum of all remaining rewards after rt+n. The n-step payoffs have error-reducing
properties, i.e., its expected worst error is guaranteed to be no larger than γn times the
worst error of Qt+n−1.

max |Eπ [Gt:t+n|st = S]− vπ | 6 γn max|Vt+n−1 − vπ(s)| (6)

where Gt:t+n denotes the return reward at time t to n steps.
Since the learning speed of the DQN algorithm is slow, we introduce the n-step

bootstrap method into double dueling DQN and propose a new framework that can
accelerate the convergence of the Q-network. The n-step DQN (ND3QN) method is centered
on the expansion of the bellman equation, and since its formula is constantly iterative, we
can derive it as Equation (7):

ut = rt + γut+1 (7)

= rt + γ(rt+1 + γut+2)

= rt + γrt+1 + γ2rt+2 + γ2ut+3

=
n−1

∑
i=0

γirt+i + γnut+n

where ut is the cumulative discount reward, R is the immediate reward, and γ is the
discount factor. The n-step TD targets are used in the DQN algorithm, and the target value
is calculated as follows:

yt =
n−1

∑
i=0

γirt+i + γn max
a

Q∗(St+n, a; θ) (8)

where yt is the target value and θ is a parameter of the neural network. The n-step
method payoffs use the value function Vt+n−1 to correct the sum of all remaining rewards
after Rt+n.

3.3.2. Mitigating Overestimation Using Double DQN

Double DQN is added to our algorithm to mitigate the overestimation. The selection of
the optimal action and the calculation of the optimal action value function are coupled in the
traditional DQN method, but this method decouples them to achieve the effect of alleviating
overestimation. The action with the largest Q-value is obtained using the evaluation
network parameters, and then the action is used for the calculation of the target so that the
value of the target is smaller than the target value obtained by maximizing the Q-value. That
is, the action is selected using the evaluation network, a∗ = arg max

a
Q(St+1, a; w). Target

value is calculated using the target network. Thus the Q-value calculated by double DQN is
less than or equal to the Q-value maximized by DQN, Q(St+1, a∗; w−) 6 maxa Q(St+1, a; w).
In addition to this, we came up with the normalized value approach to further mitigate the
overestimation problem, i.e., scaling the mean to normalize the reward function value and
normalizing the target value of the value function in the same way. The standard deviation
is obtained from the Q-value data generated by the previous DQN, and the target Q-value
is divided by this standard deviation to normalize it to reduce the error and overestimation
problem. However, the results were not satisfactory in the experiments, so the method was
not used in this work.

Sensors 2023, 23, 2036 10 of 24

3.3.3. Introduction of Dueling Network to Optimize the Network

The Dueling network divides the Q-value approximated by the neural network into
two quantities: the value of the state V(s), and the advantage of the action in this state
A(s, a). The advantage function is defined as Equation (9).

A∗(s, a) = Q∗(s, a)−V∗(s) (9)

where A∗(s, a) indicates the advantage of action relative to baseline. If the advantage A* is
greater than 0, it means that the action is better than the average action. Conversely, it is
worse than the average action. Q∗(s, a) evaluates the goodness of action a made in state s
and V∗(s) evaluates the goodness of state s as the baseline.

V∗(s) = max
a

Q∗(s, a) (10)

Taking both sides of Equation (9) to be maximized the joint Equation (10) further
yields that

max
a

A∗(s, a) = max
a

Q∗(s, a)−V∗(s)

= 0 (11)

From Equation (9), we get Q∗(s, a) = A∗(s, a) + V∗(s), but the equation cannot
uniquely determine V* and A* by Q* (uniqueness), which will lead to not detecting the
fluctuation of neural network V and A during training, thus reducing the accuracy of the
algorithm. We then combine Equation (12) with max

a
A∗(s, a) to resolve the uniqueness,

and arrive at

max
a

Q∗(s, a) = V∗(s) + A∗(s, a)−max
a

A∗(s, a) (12)

In the experiment, the average was used instead of the maximum operation to obtain
better results. The mathematical form of the dueling network is given below:

Q(s, a; θ) = V
(

s; θV
)
+

(
A
(

s, a; θA
)
− ∑a A

(
s, a; θA)
| A |

)
(13)

where Q is the action value function; V is the value function; and A is the dominance
function. θV is the weight parameter of the state network, θA is the weight parameter of
the advantage network A. Our network structure uses the dueling network, as in Figure 4,
and outputs the action space size vector value and a real advantage value A through three
fully connected layers, respectively. V

(
s; θV) is the state function, outputting a scalar,

A
(
s, a; θA) is the advantage function, outputting a vector, and the vector length is equal to

the action space size.

Sensors 2023, 23, 2036 11 of 24

Figure 4. Network architecture diagram of RND3QN. The input layer is a state of size 28 dimensions
and enters the branching fully connected layer after a fully connected layer of dimension size 64.
The two branching fully connected layers of dimension size 64 and 32, DenseA and DenseV, are
the advantage network and value network, respectively. The outputs of the two branching fully
connected layers are calculated by Equation (13) to output the final Q value, and the action with the
largest Q value is selected for execution.

3.3.4. Reward-Based ε-Greedy

We propose a reward-based ε-greedy approach to solve this decaying strategy problem.
When an agent achieves a larger reward, it has a higher probability of choosing the optimal
strategy. And when the reward obtained in the current round is less than or equal to the
reward in the previous round, the agent will have a higher probability to choose the action
randomly. This approach removes much of the uncertainty surrounding the nature of
exploration by an agent, i.e., should the agent explore more? It is natural to think that this
parameter controlling the degree of exploration is the reward, which is adjusted to obtain
the result we want. This parameter depends heavily on the environment and the task. So
it must be set according to the specific problem. RND3QN uses the reward to determine
the ε decay, and the ε decreases only when the agent exceeds a certain reward threshold,
otherwise the ε remains unchanged. Thus, the Q-value is close to the effort close to the
optimal value. Also, each time the ε decreases, we set a higher goal for the agent and wait
for the agent to reach the new goal. The same steps are repeated. The epsilon probability
decay is calculated as in Equation (14) where the initial ε and the minimum ε are used
as hyperparameters.

ε = (εinit − εmin) ·max
(

N − nstep

N
, 0
)
+ εmin (14)

Based on the above sections we propose an extended version of dueling double DQN
by adding the n-step method and simply improving the ε-greedy exploration strategy.
Where the pseudocode of the reward-based ε-greedy strategy is shown in Algorithm 1, and
the pseudocode of the ND3QN as algorithm is shown in Algorithm 2.

Sensors 2023, 23, 2036 12 of 24

Algorithm 1 reward-based ε-greedy

Input:
Initialize total training episodes E, total steps G, ε-greedy initial probability ε, min ε εmin
Initialize reward threshold R and reward increment I

Output: selected actions
for e = 1 to E do

if epsilon > εmin and lastreward > rewardthreshold then
ε = (εinit − εmin)max

(
E−G

E , 0
)

R = R + I
end if
random selection of actions with the probability of ε
select the optimal action with a probability of 1− ε

end for

Algorithm 2 ND3QN

Input: Initialize a dueling network Q(s, a; θ) and a target dueling network Q(s, a; θ−)
Initialize replay memory R, batch size B, discount factor γ, learning rate α, total training
episodes E, the max steps of each episode M
Initialize n-step n, ε-greedy initial probability ε

Output: Q value for each action
for i = 1 to B do

Taking a random subscript finish in the interval (n, R.size)
begin = finish − n
Randomly take state and action in the interval (begin, finish)
for t = 1 to n do

G ← ∑
min(begin+n,R.size)
i=begin γ(i−begin)Ri

end for
end for
for e = 1 to episodes do

for t = 1 to S do
action a is chosen according to a reward-based ε-greedy policy
get the next state, reward, and done from the environment
store transition (st, at, rt, st+1) in replay buffer
if memory.length > train_start then

randomly sample n pieces of transitions from the replay memory;
obtain the optimal action
a∗ = argmax

a
Q(St+n, a; θ)

target =

{
G if done
G + γnQ(St+n, a∗; w−) else

Calculate the loss Q(si, ai; θt)− yi)
2 with network parameters θ

update target network θ− = θ every C step
end if

end for
end for

3.3.5. Design of the Reward Function

The reward function is an important part of deep reinforcement learning, which
determines the speed and degree of convergence of reinforcement learning algorithms.
Reward shaping related work [39,40] has been studied to address the problem that agent
does not recognize key actions and is not motivated to explore in more complex scenarios.
Sparse rewards can lead to meaningful rewards that are not available most of the time
during training, and it is difficult for the agent to learn in the direction of the goal without

Sensors 2023, 23, 2036 13 of 24

feedback. In contrast, an effective reward function not only accelerates the training speed
of the algorithm but also improves the convergence accuracy of the algorithm. In this paper,
we shape the auxiliary reward function and divide the reward function into two parts.
The main line reward is designed as follows (1) collision obstacle penalty, when the robot
hits an obstacle or hits a wall, it is given a large negative reward robstacle. (2) if the agent
reaches the target point without collision, it is given a large positive reward rgoal .

Reward =

{
rgoal , if goal
robstacle , if obstacle

(15)

The sub-target of the auxiliary reward function reaction task echoes the state space
and is designed as follows: the angle θ between the robot direction and the target, and the
robot rotation angle is the yaw angle. The clockwise rotation angle is [0,2π]. When the
angle is π or −π, the robot direction is exactly opposite to the target direction.{

rθ > 0 , if −π
2 < θ < π

2

rθ < 0 , otherwise
(16)

(1) A shaping reward is added to the original reward function. It is a potential energy
function whose difference in distance from the final target determines the magnitude of
the potential energy. That is, the closer the distance to the target, the higher the reward,
and vice versa. The distance is calculated using the two-dimensional Euclidean formula.
Euclidean distance is a commonly used definition of distance, which represents the true dis-
tance between two points in m-dimensional space, and this question discusses the problem

in two dimensions, the equation of two-dimensional space is d =
√
(x2 − x1)

2 + (y2 − y1)
2.

The auxiliary reward from distance is calculated by the following equation{
rd > 2 , if Dc < Dg

1 < rd > 2 , otherwise
(17)

where Dc denotes the current distance of the robot from the target, and Dg is the absolute
distance (the distance of the robot’s initial position from the target point), as shown in
Figure 5.

rd = 2
Dg
Dc (18)

where Rd is the prize for distance. When the distance is smaller, it means that the robot is
closer to the target point and thus receives more reward.

(a) (b)

Figure 5. (a) Describes absolute distance as a function of current distance ratio and Rd reward.
(b) Explains absolute and relative distances.

Sensors 2023, 23, 2036 14 of 24

(2) Setting the source of the exceptional auxiliary reward as an angle to motivate
the robot to orient itself with less possibility of taking a detour, and continuously guides
the robot to the target position through successive rewards, where the angle reward is
calculated by the Equation (20).

ϕθ = 4
∣∣∣∣12 − b

(
1
4
+

θ

2
mod 2π

)
c
∣∣∣∣ (19)

rθ = 5(1− ϕθ) (20)

where ‘bc’ mathematically means taking the integer part of the floating point number,
the robot head, and the target point angle heading = goalangle − φ. The φ is the yaw angle,
the yaw angle rotates around the y-axis, also called the yaw angle, the robot head yawing
to the right is positive and vice versa, θ is the angle with the target, and rθ is the reward
from the angle. In the ros-based experiments, we obtained the yaw angle by obtaining the
quaternion issued by odom, then converting it to an Euler angle and taking the heading
angle of it.

As shown in Figure 6, the robot takes different actions corresponding to different
heading angles, thus obtaining different reward values. The setting of the reward function
affects the speed and degree of convergence of the algorithm. The reward function is
divided into three parts main line reward and two parts of auxiliary reward, and the
essential purpose is to let the robot reach the destination in the shortest time without
collision. More than 500 steps per episode is a timeout and the turn ends. In contrast,
the robot’s line speed is fixed, so the robot is encouraged to reach as many destinations as
possible in a short time. In summary, the reward function serves the robot to complete the
path planning efficiently.

(a) (b)

Figure 6. This is a graph of the function between angle and action. (a) Describes at this point θ = 0,
indicating that the robot is moving in the direction of the target. (b) Denotes the function of theta
generated by the robot action corresponding to φ(θ).

Combining the objective’s distance and angle components, we derive the auxiliary
reward function: R = rθ · rd.

4. Results
4.1. Experiment Settings

To verify the effectiveness of the algorithm, while considering different application
scenarios, three turtlebot3_stage_n.world from turtlebot3 open source turtlebot3_gazebo
are used to verify the effectiveness of the RND3QN algorithm for obstacle avoidance and
the path specification. The first is a static obstacle environment, the second is a dynamic
obstacle environment, and the third is a more challenging and complex dynamic obstacle
environment. The simulation environments stage 2 and stage 3 are raster maps of size
4 × 4 and stage 4 is a raster map of size 5 × 5. As shown in Figure 7.

Sensors 2023, 23, 2036 15 of 24

(a) (b) (c)

Figure 7. Simulation environment. (a) stage 2; (b) stage 3; (c) stage 4.

The simulation experiments were conducted on a laptop virtual machine configured
with ubuntu 16.04, 8 GB RAM, 60 G hard drive, no graphics, and Intel(R) Core(TM) i5-
11300H processor (6 processor cores were assigned to the virtual machine). Real-world
experiments were conducted on a robotic turtlebot3 waffle pi. The turtlebot3 waffle pi
is powered by ubuntu 18.04 and uses an NVIDIA Jetson TX2 development board with
8 GB of RAM and 32 GB of storage. It comes with its own antenna to increase the sig-
nal receiving capability. The simulated and real experiments are run at 200 episodes,
300 episodes, and 830 episodes for the three stages, and the maximum number of steps is
set to 500. The hyperparameters of the algorithm are shown in the Table 3, total reward per
turn and success rate are used as evaluation criteria.

Table 3. Hyperparameter table.

Parameters Value Description

ε 1.0 The probability of randomly selecting an action in the ε-greedy strategy.
εinit 0.99 Initial ε (not change).
εmin 0.1 The minimum of ε.

learning_rate 0.00025 Learning rate.
episode_step 6000 The time step of one episode.
discount_factor 0.99 Discount factor, indicating the extent to which future events lose their

value compared to the moment.
batch_size 64 Size of a group of training samples.

memory_size 1,000,000 The size of replay memory.
train_start 64 Start training if the replay memory size is greater than 64.

n_multi_step 3 Number of n-step steps.

4.2. Simulation Experiments

Training a robot using reinforcement learning in the real world is not only time
consuming, but also inevitably causes damage to the robot during training. Therefore, DRL
algorithms are usually trained in a simulated environment. Simulation experiments are
performed in the gazebo, and to reduce the observed differences between simulation and
the real world, the algorithm uses laser ranging results as abstract input. The discrete action
space is not only insensitive to errors, but also easy to learn. So the discrete action space
is used for the control of wheeled robots. In this experiment, the environment was reset
if the robot encountered an obstacle or timed out. If the robot reaches the target location,
the target location is regenerated at another location and the robot continues the task.
The total reward at the end of that round may be a relatively large positive value, while
the total reward at the beginning of the next round reverts to 0. Also, due to the highly
random nature of the reinforcement learning algorithm, the total reward at the end of the
next round may be a small positive value. So the total reward value can produce relatively
large fluctuations. The results of the simulation experiments are shown in Figures 8–14.

Sensors 2023, 23, 2036 16 of 24

Videos of the experiments can be found at https://youtu.be/guBYRJDHx1A (accessed on
9 December 2022).

(a) (b)

(c) (d)

(e) (f)

Figure 8. Robot path planning simulation results. The image above shows the total rewards ob-
tained by the robot in six algorithms under stage 2, which contains an unknown environment of
static obstacles. (a) Original DQN; (b) Double DQN; (c) Dueling DQN; (d) D3QN; (e) ND3QN;
(f) RND3QN.

For Q-learning related algorithms, the value of the value function is the predicted
expectation of future rewards. If the average value function output for each time step
of each episode keeps rising with training iterations, it represents that the agent learns a
good strategy.

To further compare the performance of different algorithms, we define the average
number of successful arrivals p. It reflects the maximum number of times the robot reaches
the target location on average per episode.

p =
∑n

i=m goali
n−m

https://youtu.be/guBYRJDHx1A

Sensors 2023, 23, 2036 17 of 24

DQN’ represents DQN without auxiliary reward functions and RND3QN stands for
joining the ND3QN reward-based ε-greedy exploration strategy. The average number of
successful arrivals is calculated by randomly selecting n − m rounds after the network
converges, where goali is the number of times the i-th episode reaches the target location.
From the data in the Table 4, it is concluded that the success planning rate of the RND3QN
algorithm improves 745%, 313% and 610% over DQN, and 173%, 65% and 60.5% over
D3QN in the three simulation environments, respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Average total reward curve per episode for stage 2. The increasing mean of the total
rewards obtained from the environment per episode interaction indicates that the agent learns
effective strategies. (a) Original DQN; (b) Double DQN; (c) Dueling DQN; (d) D3QN; (e) ND3QN;
(f) RND3QN.

Table 4. Average number of successful arrivals.

Models DQN’ DQN Double DQN Dueling DQN D3QN ND3QN RND3QN

stage 2 0 1.1 2.7 3.3 3.4 7.8 9.3
stage 3 0 0.8 0.9 1.2 2.0 2.8 3.3
stage 4 0 0.1 0.1 3.4 3.8 5.7 6.1

Sensors 2023, 23, 2036 18 of 24

(a) (b)

(c) (d)

(e) (f)

Figure 10. The curve of the cumulative sum of all rewards per episode for stage 3. (a) Original DQN;
(b) Double DQN; (c) Dueling DQN; (d) D3QN; (e) ND3QN; (f) RND3QN.

(a) (b)

(c) (d)

Figure 11. Cont.

Sensors 2023, 23, 2036 19 of 24

(e) (f)

Figure 11. Average total reward value per episode for stage 3. The simulation results show that
the episodes of RND3QN algorithm to learn an effective policy are half of those of DQN algorithm.
(a) Original DQN; (b) Double DQN; (c) Dueling DQN; (d) D3QN; (e) ND3QN; (f) RND3QN.

(a) (b)

(c) (d)

(e) (f)

Figure 12. The curve of the cumulative sum of all rewards per episode for stage 4. (a) Original DQN;
(b) Double DQN; (c) Dueling DQN; (d) D3QN; (e) ND3QN; (f) RND3QN.

Sensors 2023, 23, 2036 20 of 24

(a) (b)

(c) (d)

(e) (f)

Figure 13. The curve of the cumulative sum of all rewards per turn for stage 4. The simulation results
illustrate that the more challenging the environment is the higher the performance improvement of
RND3QN compared to the DQN algorithm. (a) Original DQN; (b) Double DQN; (c) Dueling DQN;
(d) D3QN; (e) ND3QN; (f) RND3QN.

(a) DQN (b) RND3QN

Figure 14. The average of the value functions for each episode in the stage 4. (a) Is the average curve
of the maximum Q-values of the original DQN algorithm. (b) Is the average curve of the maximum
Q-values of the RND3QN algorithm. The goal of reinforcement learning is to continuously improve
the value of the value function. It can be seen from the figure that the maximum Q-values of the
original DQN are all less than 0. The agent has not learned an effective policy. While the maximum
Q-value of the RND3QN algorithm steadily increases.

4.3. Real-World Experiments

To test the effectiveness of the algorithm in practice, we deployed the algorithm on a
real robot turtlebot3 waffle pi for experiments. The robot is shown in Figure 15. The weights
of 200 episodes trained in the simulated environment were assigned to the real world for

Sensors 2023, 23, 2036 21 of 24

path planning. The robot needs to bypass obstacles to reach the target location. Equipped
with 2D LiDAR A2, turtlebot3 waffle pi robot has a detection range of 360 degrees around
the robot, and the algorithm uses 24 radar detection lines.

Figure 15. Turtlebot3 waffle pi.

For the real-world experiments, we laid out a map similar to turtlebot3_stage_2, as
shown in Figure 16. The RND3QN algorithm was deployed to waffle pi, and the randomly
generated target location was modified to generate target locations by posting topics.
The target location data is of PoseStamped type. The weights of 200 episodes trained in
the simulation environment are loaded for testing. The experimental results show that the
robot can perform the path planning task well.

(a) (b)

Figure 16. Robot performs path planning in real environments. (a) Initial Environment. (b) Robot
arrives at target location.

5. Discussion

We conducted ablation experiments on the RND3QN algorithm. The effects of double
DQN, dueling DQN, n-step bootstrapping and adding reward-based exploration strategies
on the performance of the algorithm are observed, respectively. The average total reward
per round can effectively reflect the performance of the algorithm. The experiments show
that adding the n-step approach and the reward-based exploration strategy has the greatest
improvement in the algorithm performance. Finally, the effectiveness of the algorithm is
demonstrated on the real robot waffle pi.

Different combinations of hyperparameters were tested in the hyperparameter se-
lection experiments, where the number of layers of the neural network is also a very
important aspect. In conjunction with the problem solved in this work, RND3QN was set

Sensors 2023, 23, 2036 22 of 24

up with 3 layers of size 64 fully connected layers. Two sets of optimizer combinations,
RMSprop+Huber Loss and Adam+Mse Loss, were selected for comparison experiments,
and the experimental results show that the latter is more effective than the former. A ran-
dom gradient descent approach was chosen for network training, and the size of each batch
of data was the same as the network size.

We did not solve all the problems of the DQN algorithm. Due to the small dimen-
sionality of the state space and the dense rewards, this work does not improve the replay
buffer part, which is left as future work. The traditional exploration strategy is difficult to
encounter trajectories with high reward values during exploration, and the value-based
approach may not pay sufficient attention to the near-optimal trajectories, resulting in slow
learning or failure. To solve the problem of exploration, imitation learning, intrinsic reward,
and hierarchical reinforcement learning can be introduced.

6. Conclusions

In this work, the RND3QN algorithm can handle local path planning and obstacle
avoidance in complex unknown dynamic environments. The robot acquires data through
LiDAR and passes the data through special processing as state values to the algorithm.
These real-time data allow the robot to perform flexible path planning in unknown dynamic
environments. At the same time, we shape the auxiliary reward function, which effectively
solves the problem of non-convergence of the algorithm due to the reward sparsity of the
state space. Secondly, we improve the exploration-utilization strategy to make the robot
more intelligent in selecting actions. Simulation and real experimental results show that
our algorithm has a higher average to reward than other algorithms for local path planning
in unknown dynamic environments, and the success rate of reaching the target location is
significantly improved. However, our algorithm is only applicable to discrete action spaces.
A large number of actions in the continuous action space corresponds to outputting a large
number of Q-values, causing memory overload. Since RND3QN uses an n-step approach,
it requires more transitions, which needs more memory requirements for the algorithm,
so it is necessary to adopt a more reasonable sampling method to reduce memory space.
Future work will be carried out in the following areas.

1. Agents need more internal drivers to explore in sparsely rewarded environments. One
possible solution is to introduce curiosity as an internal driver. This would increase
the agent’s ability to learn, allowing for more exploratory strategic improvements.

2. We will explore path planning and obstacle avoidance solutions for robots in continu-
ous action space.

3. A better strategy will be designed to optimize the robot’s path trajectory.
4. For the sample efficiency aspect, the uncertainty weights of each action will be consid-

ered. More rational and efficient sampling methods to reduce memory overhead and
improve sampling efficiency will be adopted.

Author Contributions: Conceptualization, Y.Y. and Z.C.; Data curation, J.G.; Formal analysis, Y.Y.
and Z.C.; Funding acquisition, G.L. and Z.C.; Investigation, Y.Y., Z.C. and G.L.; Methodology, Y.Y.,
Z.C. and J.G.; Project administration, G.L. and J.G.; Resources, Y.Y., Z.C. and J.G.; Writing—review &
editing Z.C. and J.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Internet+Smart Home Care Information Service
Platform (Fund No. 2017C034-4), a provincial industrial innovation special fund program project in
Jilin Province.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that there is no conflict of interest.

Sensors 2023, 23, 2036 23 of 24

References
1. Sinisa, M. Evaluation of SLAM Methods and Adaptive Monte Carlo Localization. Doctoral Dissertation, Vienna University of

Technology, Vienna, Austria, 2022. [CrossRef]
2. Gurel, C.S. Real-Time 2D and 3D Slam Using RTAB-MAP, GMAPPING, and CARTOGRAPHER PACKAGES; University of Maryland:

College Park, MD, USA, 2018. [CrossRef]
3. Shi, H.; Shi, L.; Xu, M.; Hwang, K.S. End-to-end navigation strategy with deep reinforcement learning for mobile robots. IEEE

Trans. Ind. Inform. 2019, 16, 2393–2402. [CrossRef]
4. Leiva, F.; Ruiz-del Solar, J. Robust RL-based map-less local planning: Using 2D point clouds as observations. IEEE Robot. Autom.

Lett. 2020, 5, 5787–5794. [CrossRef]
5. Hao, B.; Du, H.; Zhao, J.; Zhang, J.; Wang, Q. A Path-Planning Approach Based on Potential and Dynamic Q-Learning for Mobile

Robots in Unknown Environment. Comput. Intell. Neurosci. 2022, 2022, 1–12. [CrossRef]
6. Park, J.; Lee, J.Y.; Yoo, D.; Kweon, I.S. Distort-and-recover: Color enhancement using deep reinforcement learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5928–5936.
[CrossRef]

7. Zhao, X.; Xia, L.; Zhang, L.; Ding, Z.; Yin, D.; Tang, J. Deep reinforcement learning for page-wise recommendations. In
Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, BC, Canada, 2–7 October 2018; pp. 95–103.
[CrossRef]

8. Yang, Y.; Li, J.; Peng, L. Multi-robot path planning based on a deep reinforcement learning DQN algorithm. CAAI Trans. Intell.
Technol. 2020, 5, 177–183. [CrossRef]

9. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

10. Hasselt, H. Double Q-learning. In Proceedings of the Advances in Neural Information Processing Systems 23: 24th Annual
Conference on Neural Information Processing Systems 2010, Vancouver, BC, Canada, 6–9 December 2010.

11. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforce-
ment learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016;
pp. 1995–2003. [CrossRef]

12. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. [CrossRef]

13. Dijkstra, E. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
14. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
15. Stentz, A. Optimal and efficient path planning for partially known environments. In Intelligent Unmanned Ground Vehicles;

Springer: Berlin/Heidelberg, Germany, 1997; pp. 203–220. [CrossRef]
16. Koenig, S.; Likhachev, M.; Furcy, D. Lifelong planning A*. Artif. Intell. 2004, 155, 93–146. [CrossRef]
17. Koenig, S.; Likhachev, M. D* lite. Aaai/iaai 2002, 15, 476–483.
18. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Iowa State University: Ames, IA, USA, 1998; pp. 98–111.
19. Karaman, S.; Walter, M.R.; Perez, A.; Frazzoli, E.; Teller, S. Anytime motion planning using the RRT. In Proceedings of the 2011

IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011 ; IEEE: Piscataway, NJ, USA , 2011;
pp. 1478–1483. [CrossRef]

20. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Chicago, IL, USA, 14–18 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 2997–3004. [CrossRef]

21. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Son: Hoboken, NJ, USA, 2014.
ISBN 978-1-118-62587-3.

22. Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. Thesis, King’s College, Cambridge, UK, 1989.
23. Jiang, L.; Huang, H.; Ding, Z. Path planning for intelligent robots based on deep Q-learning with experience replay and heuristic

knowledge. IEEE/CAA J. Autom. Sin. 2019, 7, 1179–1189. [CrossRef]
24. Anschel, O.; Baram, N.; Shimkin, N. Averaged-dqn: Variance reduction and stabilization for deep reinforcement learning. In

Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 176–185. [CrossRef]
25. Riviere, B.; Hönig, W.; Yue, Y.; Chung, S.J. Glas: Global-to-local safe autonomy synthesis for multi-robot motion planning with

end-to-end learning. IEEE Robot. Autom. Lett. 2020, 5, 4249–4256. [CrossRef]
26. Burda, Y.; Edwards, H.; Storkey, A.; Klimov, O. Exploration by random network distillation. arXiv 2018, arXiv:1810.12894.
27. Hong, W.; Zhu, M.; Liu, M.; Zhang, W.; Zhou, M.; Yu, Y.; Sun, P. Generative adversarial exploration for reinforcement learning.

In Proceedings of the First International Conference on Distributed Artificial Intelligence, Beijing, China, 13–15 October 2019;
pp. 1–10. [CrossRef]

28. Wang, B.; Liu, Z.; Li, Q.; Prorok, A. Mobile robot path planning in dynamic environments through globally guided reinforcement
learning. IEEE Robot. Autom. Lett. 2020, 5, 6932–6939. [CrossRef]

29. Apuroop, K.G.S.; Le, A.V.; Elara, M.R.; Sheu, B.J. Reinforcement learning-based complete area coverage path planning for a
modified hTrihex robot. Sensors 2021, 21, 1067. [CrossRef] [PubMed]

http://doi.org/10.34726/hss.2022.98536
http://dx.doi.org/10.13140/RG.2.2.14901.99049
http://dx.doi.org/10.1109/TII.2019.2936167
http://dx.doi.org/10.1109/LRA.2020.3010732
http://dx.doi.org/10.1155/2022/2540546
http://dx.doi.org/10.48550/arXiv.1804.04450
http://dx.doi.org/10.1145/3240323.3240374
http://dx.doi.org/10.1049/trit.2020.0024
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.48550/arXiv.1511.06581
http://dx.doi.org/10.48550/arXiv.1509.06461
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/ROBOT.1994.351061
http://dx.doi.org/10.1016/j.artint.2003.12.001
http://dx.doi.org/10.1109/ICRA.2011.5980479
http://dx.doi.org/10.1109/IROS.2014.6942976
http://dx.doi.org/10.1109/JAS.2019.1911732
http://dx.doi.org/10.48550/arXiv.1611.01929
http://dx.doi.org/10.1109/LRA.2020.2994035
http://dx.doi.org/10.48550/arXiv.2201.11685
http://dx.doi.org/10.1109/LRA.2020.3026638
http://dx.doi.org/10.3390/s21041067
http://www.ncbi.nlm.nih.gov/pubmed/33557225

Sensors 2023, 23, 2036 24 of 24

30. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
31. Lan, Q.; Pan, Y.; Luo, J.; Mahmood, A.R. Memory-efficient Reinforcement Learning with Knowledge Consolidation. arXiv 2022,

arXiv:2205.10868.
32. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.
33. Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.; Zaremba, W.

Hindsight experience replay. Adv. Neural Inf. Process. Syst. 2017, 30. [CrossRef]
34. Zhao, R.; Tresp, V. Energy-based hindsight experience prioritization. In Proceedings of the Conference on Robot Learning, Zurich,

Switzerland, 29–31 October 2018; pp. 113–122. [CrossRef]
35. Doukhi, O.; Lee, D.J. Deep reinforcement learning for end-to-end local motion planning of autonomous aerial robots in unknown

outdoor environments: Real-time flight experiments. Sensors 2021, 21, 2534. [CrossRef]
36. Zeng, J.; Ju, R.; Qin, L.; Hu, Y.; Yin, Q.; Hu, C. Navigation in unknown dynamic environments based on deep reinforcement

learning. Sensors 2019, 19, 3837. [CrossRef] [PubMed]
37. Kaelbling, L.P.; Littman, M.L.; Cassandra, A.R. Planning and acting in partially observable stochastic domains. Artif. Intell. 1998,

101, 99–134. [CrossRef]
38. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.
39. Badia, A.P.; Sprechmann, P.; Vitvitskyi, A.; Guo, D.; Piot, B.; Kapturowski, S.; Tieleman, O.; Arjovsky, M.; Pritzel, A.; Bolt, A.; et al.

Never give up: Learning directed exploration strategies. arXiv 2020, arXiv:2002.06038.
40. Harutyunyan, A.; Dabney, W.; Mesnard, T.; Gheshlaghi Azar, M.; Piot, B.; Heess, N.; van Hasselt, H.P.; Wayne, G.; Singh, S.;

Precup, D.; et al. Hindsight credit assignment. Adv. Neural Inf. Process. Syst. 2019, 32. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.48550/arXiv.1707.01495
http://dx.doi.org/10.48550/arXiv.1810.01363
http://dx.doi.org/10.3390/s21072534
http://dx.doi.org/10.3390/s19183837
http://www.ncbi.nlm.nih.gov/pubmed/31491927
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.48550/arXiv.1912.02503

	Introduction
	Related Work
	Traditional Algorithms
	Reinforcement Learning Algorithms

	Materials and Methods
	Background
	Problem Definition
	The n-Step Dueling Double DQN with Reward-Based -Greedy (RND3QN)
	The n-Step TD
	Mitigating Overestimation Using Double DQN
	Introduction of Dueling Network to Optimize the Network
	Reward-Based -Greedy
	Design of the Reward Function

	Results
	Experiment Settings
	Simulation Experiments
	Real-World Experiments

	Discussion
	Conclusions
	References

