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Abstract: Due to its widespread usage in many applications, numerous deep learning algorithms
have been proposed to overcome Light Field’s trade-off (LF). The sensor’s low resolution limits
angular and spatial resolution, which causes this trade-off. The proposed method should be able
to model the non-local properties of the 4D LF data fully to mitigate this problem. Therefore, this
paper proposes a different approach to increase spatial and angular information interaction for LF
image super-resolution (SR). We achieved this by processing the LF Sub-Aperture Images (SAI)
independently to extract the spatial information and the LF Macro-Pixel Image (MPI) to extract the
angular information. The MPI or Lenslet LF image is characterized by its ability to integrate more
complementary information between different viewpoints (SAIs). In particular, we extract initial
features and then process MAI and SAIs alternately to incorporate angular and spatial information.
Finally, the interacted features are added to the initial extracted features to reconstruct the final output.
We trained the proposed network to minimize the sum of absolute errors between low-resolution (LR)
input and high-resolution (HR) output images. Experimental results prove the high performance of
our proposed method over the state-of-the-art methods on LFSR for small baseline LF images.

Keywords: light field; image super-resolution; Lenslet images; convolutional neural network

1. Introduction

Light field (LF) captures the intensity and direction of light rays reflected by objects
in three-dimensional surroundings. Unlike conventional imaging, which captures the 2D
projection of light rays, LF imaging collects data with many dimensions [1]. This abundance
of visual information in LF pictures, in addition to their immersive description of the real
world, may help several image processing and computer vision tasks, such as depth
estimation [2,3], de-occlusion [4,5], salient object detection [6,7], and image post-refocus [8].

Nonetheless, obtaining LF data using plenoptic cameras, such as Raytrix [9], compro-
mises spatial and angular resolutions. Due to a restricted sensor resolution, a plenoptic
camera must reduce the spatial resolution of each view to collect more images at a higher
angular sampling rate or conversely. Improving LF images’ resolutions is vital, as low-
resolution images diminish the performance of low-frequency vision applications. In this
paper, we study the LF super-resolution (LFSR) problem.

LFSR methods anticipate subpixel information using the difference between adjacent
views [10–13]. Where these adjacent view images are closely connected in LF, sub-pixel
information in each view image may be calculated by leveraging this cross-view correlation,
allowing for its super-resolution (SR) reconstruction.

Several deep learning methods with diverse network topologies [14–23] were recently
proposed to accomplish LFSR with enormous LF datasets [24–28]. These methods provide
various learning-based SR methods using cross-view correlation through convolutional neural
networks (CNN) and transformer-based networks. Although LFSR performance has been
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steadily improved via careful network design, most present LFSR algorithms underutilize the
rich angular information, resulting in performance deterioration, particularly in complicated
scenarios. For example, in [19,23], they only considered the spatial and angular information
to model the non-local properties of the 4D LF. These methods have been improved upon
in [21], by extracting horizontal and vertical epipolar information and spatial and angular
information to improve the quality of the resulting images. We argue that Lenslet LF images
can provide epipolar and angular information more compactly, allowing the network to model
the relationship better and provide more pleasing results [29].

Therefore, this paper proposes a learning-based approach to obtain spatial SR using
Lenslet LF images. The Lenslet image is formed by mapping the 4D images into one image
using a Periodic Shuffling Operator (PS). We first extract features from input LF images
independently. Then, we map the extracted 4D features into Lenslet 2D features. These
features are then processed using a sequence of residual groups (RGs) to enhance the
spatial resolution and restore some missing details. However, using Lenslet LF images
has a blurring effect on the images, which increases with the LF images’ disparity value.
Therefore, we process the Lenslet image and sub-aperture images alternately to incorporate
angular and spatial information and mitigate the blur effect caused by processing the
Lenslet image only. Finally, the final features are aggregated to reconstruct the output
image. The quality of the super-resolved images is inversely proportional to the maximum
disparity of the scene. In the case of a large disparity, the result is modest and increases
inversely with the disparity. In the case of LF with a small disparity, our model comes first
in LFSR quality compared with other SR methods.

We conducted several experiments to show our model’s performance in LF super-
resolution. The main contributions of our paper are as follows:

• We propose a different paradigm to increase the spatial-angular interaction by processing
the Lenslet image and sub-aperture images to incorporate more information for LFSR.

• We propose a CNN-based network to work for LFSR using Lenslet Images with superior
performance over the state-of-the-art methods in the case of small-baseline LFSR.

• The remainder of the paper is structured as follows: Section 2 briefly examines the
related work. In Section 3, we present our technique for LFSR. Section 4 introduces the
conducted experiments to compare our work with the state-of-the-art and discusses
the meaning of the obtained results. Finally, Section 5 brings this paper to a close and
presents future work to improve the proposed work.

2. Related Work

The objective of LF spatial SR, also known as LF image SR, is to produce high-resolution
(HR) LF pictures from low-resolution (LR) inputs. Applying independent single image SR
(SISR) algorithms to each sub-aperture picture is a basic way of achieving LF spatial SR (SAI).
However, straight SISR for LF spatial SR cannot yield adequate results due to the absence of
correlation between distinct viewpoints. Therefore, state-of-the-art methods try to fully model
the non-local properties of the 4D LF data by using the information inside every single view
(i.e., spatial information) and between multiple views (i.e., angular information) to perform well
in LFSR. Since using CNNs in the field of LFSR, their utilization has grown exponentially, and
the reconstruction performance has improved continually. Zhang et al. [14] presented a residual
network for LFSR. The images in four directions are first stacked and given to separate branches
to extract sub-pixel correlations. Then the information from these branches is combined for the
final reconstruction. Because just a few side views may be employed, the performance of side
views will suffer when compared to the performance of the center view, resulting in undesired
inconsistencies in the reconstructed LF pictures. The performance of their later work [15] was
increased considerably by using 3D convolutions applied to view image stacks of diverse
angle orientations. Jin et al. [16] utilized an all-to-one technique for LFSR and used structural
consistency regularization to retain the parallax structure. Yeung et al. [17] proposed to shuffle
LF spatial-angular features alternately at a single forward pass using separable convolutions.
Wang et al. [18] used deformable convolution on LF images to overcome the disparity problem
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for LFSR. Wang et al. [19] presented an interactive network (LF-InterNet). In particular, spatial
and angular features are extracted and repeatedly interact to extract complementary information
step by step. Then, each view image is super-resolved by fusing the interacting features. A
network with two parallel branches was suggested by Liu et al. [20]. The top one collects global
interview data. The bottom one separately projects each view to deep representations and
then models the correlations between all intra-view characteristics using a multi-view context
block. Wang et al. [21] designed a disentangling approach by dividing LF into several subspaces.
They extracted features using three feature extractors (spatial, angular, horizontal, and vertical
epipolar information). The network’s convolution layers only need to analyze information in
a single subspace, facilitating LF representation learning. Different from CNN and inspired
by recent achievements in Transformers [30], Wang et al. [22] developed a detail-preserving
Transformer (DPT) to recover the features of light field (LF) pictures by using gradient maps
of light field to direct sequence learning. However, the frameworks of these techniques are all-
inclusive models whose supplementary information is not effectively employed for performance
enhancement. Later, Liang et al. [23] suggested a Transformer-based LF image SR network in
which a spatial Transformer and an angular Transformer were built to simulate, respectively,
long-range spatial interdependence and angular correlation.

3. Our Approach
3.1. Problem Formulation

In our approach, the LF is formulated as a 2D array of Sub-Aperture Images (SAI), as
shown in Figure 1c, and given by L ∈ Ru × v × h × w, with (h, w) and (u, v) spatial and angular
resolutions. Therefore, given a low-resolution LF input as LLR ∈ Ru × v × h × w, we aim to
reconstruct its high-resolution counterpart LHR ∈ Ru × v × αh × αw, by enhancing the spatial
resolution, where α represents the super-resolution factor. Following recent approaches [14–23],
we set ∝ = 2,4 and assume that SAIs are distributed in a square array, i.e., u = v = A, where A
represents the vertical or horizontal angular resolution. Before feeding LLR to the network, we
up-sample the input LF epipolar plane images (EPIs) to the desired output size with α utilizing
the Bicubic interpolation. Finally, we arrange the input from the 4D representation into the 3D
representation LLR ∈ Ruv × h × w.
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Figure 2. An illustration of the spatial and Lenslet feature extractors. Here, we have 3 × 3 LF images 
with nine pixels in each view image and a different color. The spatial feature extractor is shown in 
black color, while the Lenslet extractor is shown in yellow. We utilize a convolution filter for both 
extractors with a kernel of size 3 × 3 and a stride of 1. The spatial extractor is applied to each view 
image independently, as shown in (a), while the Lenslet extractor is applied to the Lenslet image, as 
shown in (b). 

Figure 1. 4D vs. Lenslet LF representation. (a) 4D representation: 3 × 3 LF images where each image
has four pixels, and each image is represented by a different color, (b) The mapping from the 4D LF
of size (u, v, h, w) into the Lenslet image of size (u × h, v × w) using the shuffling operator, (c) a real
example of LF scene represented by 3 × 3 images, (d) the Lenslet LF image of the 3 × 3 images in (c).
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3.2. Features Extractors

We aim to extract spatial information along with horizontal epipolar, vertical epipolar,
and angular information to model the non-local properties of the 4D LF fully. We utilize a
convolution filter with a kernel of size 3 × 3 as a spatial feature extractor, as shown in black
in Figure 2. This filter is applied to SAI separately. To extract horizontal epipolar, vertical
epipolar, and angular information, we utilize another convolution filter with a kernel of
size 3 × 3 as a Lenslet feature extractor, as shown in yellow in Figure 2. However, we apply
this filter to the Lenslet image. The idea behind operating on the Lenslet image is that
rows of the Lenslet image represent horizontal epipolar lines, columns of the Lenslet image
represent vertical epipolar lines, and pixels in the Lenslet image represent the angular
information. Therefore, one of the key benefits of dealing with a Lenslet image is extracting
a large amount of information with a single convolution filter.
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Figure 2. An illustration of the spatial and Lenslet feature extractors. Here, we have 3× 3 LF images with
nine pixels in each view image and a different color. The spatial feature extractor is shown in black color,
while the Lenslet extractor is shown in yellow. We utilize a convolution filter for both extractors with a
kernel of size 3× 3 and a stride of 1. The spatial extractor is applied to each view image independently, as
shown in (a), while the Lenslet extractor is applied to the Lenslet image, as shown in (b).

3.3. Network Overview

In our method, we process the Lenslet LF similar to the method proposed in [29] for LF
angular super-resolution. At the same time, the proposed architecture is designed similarly
to the deep residual channel attention networks [31]. Figure 3 depicts the overall design
of our network. The proposed network consists of three cascaded stages: initial feature
extraction, convolutional neural network (CNN)-based super-resolution network, and final
image reconstruction, as shown in Figure 3a. The first and last stages of the network consist
of a single 3 × 3 convolution layer, and the middle consists of a long skip connection with
cascaded residual angular and residual spatial groups (RG). The angular and spatial groups
share the same structure, as shown in Figure 3b. The input LF is processed differently by
different network components. For example, the initial feature extractor and spatial groups
process each 2D view image VILR ∈ Rh × w independently. While angular groups and the
final reconstruction stage process the 2D Lenslet image LLR ∈ Ruh × vw.
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Figure 3. (a) The overall design of our network for LFSR. (b) The residual group (RG) design is used
as an angular and spatial group in (a). (c) Residual block (RB) design.

The mapping between the 3D LF ∈ Ruv × h × w and the 2D Lenslet LF ∈ Ruh × vw is
done using a periodic shuffling operator (PS) [32,33], as shown in Figure 4. In Figure 3a,
the three arrows before each block indicate that this block processes each view image
independently, while other blocks process the Lenslet image. Initial features are extracted
in the first stage of the network to be fed to the main part of the network for processing,
where features are extracted from each view image independently and then rearranged
to the Lenslet image using a PS. The main part of the network consists of a long skip
connection with cascaded angular and spatial RGs. Each RG consists of three residual
blocks (RB) in our implementation. Each RB has three cascaded convolution layers with a
ReLU in between with a skip connection.
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Figure 4. Periodic shuffling (PS) operation (Depth-to-Space and Space-to-Depth). (a) A sequence of
view images with size (H, W, D). (b) Lenslet Image with size (3H, 3W, D/9) contains all the view
images in a different order. The mapping from (a) to (b) is called depth-to-space, while from (b) to
(a) is called space-to-depth.

3.4. Loss Function and Training Details

We trained our network only on the luminance component while we upsample the
chrominance components using the Bicubic interpolation. We trained our network to learn
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a mapping from the Low-Resolution (LR) LF image LFLR to the High-Resolution (HR) LF
image LFHR. We can write the problem can as follows:

LF′HR = f(LFLR, θ) (1)

where f(.) is the function mapping from the LR image to the HR image, and θ is the network
parameters to be learned while training.

We trained the proposed network to reduce the L1 distance. L1 loss is defined as
follows, given a training set with N pairs of LR input and HR output images:

L1(θ) =
1
N

N

∑
i=1

∣∣∣LFi
HR − f

(
LFi

LR

)∣∣∣
1

(2)

Following recent approaches [14–23], we used 144 LF images for training and 23
for testing from publicly available synthetic and real-world datasets [24–28], as shown
in Table 1. The original angular resolution of these datasets is 9 × 9, while we used
the middle 5 × 5 views for training and testing. These datasets are divided into three
categories based on their disparity value. For example, small-disparity LF includes EPFL
and INRIA, medium-disparity LF includes HCInew and HCIold, and large-disparity LF
includes STFgantry. The HCInew and HCIold are Synthetic, while other datasets are
real-world datasets captured by the Lytro Illum camera.

Table 1. LF datasets used for training and testing.

Dataset Training Testing Disparity Data Type

HCInew [24] 20 4 [−4, 4] Synthetic
HCIold [26] 10 2 [−3, 3] Synthetic
EPFL [25] 70 10 [−1, 1] Real-world

INRIA [27] 35 5 [−1, 1] Real-world
STFgantry [28] 9 2 [−7, 7] Real-world

We extract patches of size 32 × 32 with a stride of one from input and ground-truth
images to prepare the training dataset. Our model was trained by ADAM optimizer [34]
with β1 = 0.9, β2 = 0.999, and ǫ = 10−8. The initial learning rate is set to 2 × 10−4 and then
decreases exponentially by 0.1 every 80 epochs. Our model was trained for 85 epochs in
Tensorflow [35] with NVIDIA TITAN RTX GPU.

4. Experiments and Discussion
4.1. Comparison with the State-of-the-Art Methods

To demonstrate the performance of our model in the LFSR task, we compare it with state-
of-the-art single image SR (SISR) methods, including VDSR [36], EDSR [37], RCAN [31], and
LFSR methods, including resLF [14], MEG-Net [15], LF-ATO [16], LFSSR [17], LF-InterNet [19],
LF-DFnet [18], LF-IINet [20], DPT [22], LFT [23], DistgSSR [21] with all models retrained with
the same datasets.

4.1.1. Quantitative Comparison

Average PSNR and SSIM are used for the luminance images over all the output views to
measure the super-resolution quality. We present numerical results in terms of (PSNR/SSIM) in
Table 2 and for 2× and 4× LFSR, respectively. The best results are shown in red, and the second-
best results are in blue. The quality of the super-resolved images is inversely proportional to
the maximum disparity of the scene. In the case of a large disparity, the result is modest and
increases inversely with the disparity. In the case of LF with a small disparity, our model comes
first compared with other SR methods and achieves competitive PSNR and SSIM. For example,
0.96 dB and 0.23 dB are higher than the LFT method [23] on the EPFL dataset for 2× and 4×,
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respectively. Moreover, 1.85 dB and 0.88 dB are higher than the LFT method [23] on the INRIA
dataset for 2× and 4×, respectively.

Table 2. Numerical comparison for different 2× LFSR methods. The best results are in red, and the
second-best in blue.

Dataset EPFL HCInew HCIold INRIA STFgantry Average

Bicubic 29.74/0.941 31.89/0.939 37.69/0.979 31.33/0.959 31.06/0.954 32.34/0.954
VDSR [36] 32.50/0.960 34.37/0.956 40.61/0.987 34.43/0.974 35.54/0.979 35.49/0.971
EDSR [37] 33.09/0.963 34.83/0.959 41.01/0.988 34.97/0.977 36.29/0.982 36.04/0.974
RCAN [31] 33.16/0.964 34.98/0.960 41.05/0.988 35.01/0.977 36.33/0.983 36.11/0.974
resLF [14] 33.62/0.971 36.69/0.974 43.42/0.993 35.39/0.981 38.36/0.990 37.50/0.982
LFSSR [17] 33.68/0.974 36.81/0.975 43.81/0.994 35.28/0.983 37.95/0.990 37.51/0.983
MEG-Net [15] 34.30/0.977 37.42/0.978 44.08/0.994 36.09/0.985 38.77/0.991 38.13/0.985
LF-ATO [16] 34.27/0.976 37.24/0.977 44.20/0.994 36.15/0.984 39.64/0.993 38.30/0.985
LF-InterNet [19] 34.14/0.972 37.28/0.977 44.45/0.995 35.80/0.985 38.72/0.992 38.08/0.984
LF-DFnet [18] 34.44/0.977 37.44/0.979 44.23/0.994 36.36/0.984 39.61/0.993 38.42/0.985
LF-IINet [20] 34.68/0.977 37.74/0.979 44.84/0.995 36.57/0.985 39.86/0.994 38.74/0.986
DPT [22] 34.48/0.976 37.35/0.977 44.31/0.994 36.40/0.984 39.52/0.993 38.41/0.984
LFT [23] 34.80/0.978 37.84/0.979 44.52/0.995 36.59/0.986 40.51/0.994 38.85/0.986
DistgSSR [21] 34.80/0.979 37.95/0.980 44.92/0.995 36.58/0.986 40.37/0.994 38.92/0.987
Ours 35.76/0.979 37.49/0.979 44.50/0.994 38.44/0.986 39.16/0.993 39.05/0.986

4.1.2. Qualitative Comparison

We compare our results for 2× LFSR visually with one of the state-of-the-art methods [23],
as shown in Figure 5. However, it isn’t easy to differentiate between output images as they are
very similar, so we urge the reader to check Tables 2 and 3 for more details. We attribute the
significant improvement in the case of small-disparity LF to Lenslet images, which permits the
network to accurately understand and simulate the linking between different views of the same
scene, recover more texture information, and improve thequality.

Table 3. Numerical comparison for different 4× LFSR methods. The best results are in red, and the
second-best in blue.

Dataset EPFL HCInew HCIold INRIA STFgantry Average

Bicubic 25.14/0.833 27.61/0.853 32.42/0.931 26.82/0.886 25.93/0.847 27.58/0.870
VDSR [36] 27.25/0.878 29.31/0.883 34.81/0.952 29.19/0.921 28.51/0.901 29.81/0.907
EDSR [37] 27.84/0.886 29.60/0.887 35.18/0.954 29.66/0.926 28.70/0.908 30.20/0.912
RCAN [31] 27.88/0.886 29.63/0.888 35.20/0.954 29.76/0.927 28.90/0.911 30.27/0.913
resLF [14] 28.27/0.904 30.73/0.911 36.71/0.968 30.34/0.941 30.19/0.937 31.25/0.932
LFSSR [17] 28.27/0.908 30.72/0.912 36.70/0.969 30.31/0.945 30.15/0.939 31.23/0.935
MEG-Net [15] 28.74/0.916 31.10/0.918 37.28/0.972 30.66/0.949 30.77/0.945 31.71/0.940
LF-ATO [16] 28.52/0.912 30.88/0.914 37.00/0.970 30.71/0.949 30.61/0.943 31.54/0.938
LF-InterNet [19] 28.67/0.914 30.98/0.917 37.11/0.972 30.64/0.949 30.53/0.943 31.59/0.939
LF-DFnet [18] 28.77/0.917 31.23/0.920 37.32/0.972 30.83/0.950 31.15/0.949 31.86/0.942
LF-IINet [20] 29.11/0.920 31.36/0.921 37.62/0.974 31.08/0.952 31.21/0.950 32.08/0.943
DPT [22] 28.93/0.917 31.19/0.919 37.39/0.972 30.96/0.950 31.14/0.949 31.92/0.941
LFT [23] 29.25/0.921 31.46/0.922 37.63/0.974 31.20/0.952 31.86/0.955 32.28/0.945
DistgSSR [21] 28.98/0.919 31.38/0.922 37.55/0.973 30.99/0.952 31.63/0.953 32.11/0.944
Ours 29.48/0.922 31.01/0.921 37.17/0.971 32.08/0.953 30.83/0.951 32.26/0.944
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comparison. In addition, a close-up of image portions in red boxes is provided for Bicubic, LFT [23],
our method, and ground truth, respectively.

4.1.3. Model Efficiency

We compare our proposed model to several competitive methods in terms of the
number of parameters, average PSNR, and average SSIM scores. As presented in Table 4,
our model achieves the highest PSNR score and second-highest SSIM score for 2× LFSR.
For 4× LFSR, our model achieves the second-highest PSNR score and second SSIM score.
Except for LFT [23], a transformer-based model, our model is considered the best regarding
the number of parameters and average PSNR and SSIM.
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Table 4. Comparison of the number of model parameters and average PSNR and SSIM for 2× and
4× LFSR. The best results are in red, and the second-best in blue.

Dataset
2× 4×

#Param. PSNR SSIM #Param. PSNR SSIM

EDSR [37] 38.6 M 36.04 0.974 38.9 M 30.20 0.912
RCAN [31] 15.3 M 36.11 0.974 15.4 M 30.27 0.913
resLF [14] 6.35 M 37.50 0.982 6.79 M 31.25 0.932
LFSSR [17] 0.81 M 37.51 0.983 1.61 M 31.23 0.935
MEG-Net [15] 1.69 M 38.13 0.985 1.77 M 31.71 0.940
LF-ATO [16] 1.51 M 38.30 0.985 1.66 M 31.54 0.938
LF-InterNet [19] 4.80 M 38.08 0.984 5.23 M 31.59 0.939
LF-DFnet [18] 3.94 M 38.42 0.985 3.99 M 31.86 0.942
LF-IINet [20] 4.84 M 38.74 0.986 4.89 M 32.08 0.943
DPT [22] 3.73 M 38.41 0.984 3.78 M 31.92 0.941
LFT [23] 1.11 M 38.85 0.986 1.16 M 32.28 0.945
DistgSSR [21] 3.53 M 38.92 0.987 3.58 M 32.11 0.944
Ours 3.21 M 39.05 0.986 3.21 M 32.26 0.944

4.2. Ablation Study

In this subsection, we validate the effectiveness of two parameters on the final results,
including our approach to using Lenslet extractors along with spatial extractors and the
patch size used to train the network.

4.2.1. Feature Extractors

As shown in Table 5, we examine three alternatives to highlight the impact of the
model’s various components. First, we train the proposed model utilizing the spatial
feature extractor only and then utilizing the Lenslet feature extractor only. Finally, we train
the proposed model using spatial and Lenslet feature extractors. It is clear from the results
that the spatial extractor or Lenslet extractor alone cannot super-resolve LF images with
high quality. It is also shown that even though the Lenslet extractor cannot super-resolve
high-quality LF images, it may give better results when compared to the spatial extractor
alone as it can extract angular information along with the epipolar information.

Table 5. Numerical comparison for variants of our proposed network using different feature extrac-
tors for 2× LFSR. The best results are in red, and the second-best in blue.

Dataset EPFL HCInew HCIold INRIA STFgantry Average

Spatial 33.35/0.964 34.55/0.960 40.68/0.987 35.58/0.977 35.99/0.983 36.03/0.974
Lenslet 35.06/0.976 36.40/0.975 43.35/0.993 37.63/0.985 36.95/0.989 37.88/0.984
Both 35.76/0.979 37.49/0.979 44.50/0.994 38.44/0.986 39.16/0.993 39.05/0.986

However, when comparing the model’s efficiency trained using only Lenslet extractor
on the small-disparity LF, including EPFL and INRIA, this model performs better than the
state-of-the-art methods, which validates our point that Lenslet images can provide a huge
amount of information regarding the relationship between different view images.

4.2.2. Patch Size

As shown in Tables 6 and 7, we examine the effect of patch size on the model using three
different sizes 16× 16, 32× 32, and 64× 64. When training for 2× LFSR, the 16× 16 shows a
slightly better performance than the 32× 32. However, when training for 4× LFSR, the 32× 32
achieves the best performance. The patch size affects the model trained for 4× LFSR more,
especially with the degradation of the input image more than the 2×model.
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Table 6. Numerical comparison for variants of our proposed network trained with different patch
sizes for 2× LFSR. The best results are in red, and the second-best in blue.

Dataset EPFL HCInew HCIold INRIA STFgantry Average

16 × 16 35.78/0.980 37.46/0.979 44.34/0.994 38.47/0.987 39.36/0.993 39.08/0.987
32 × 32 35.76/0.979 37.49/0.979 44.50/0.994 38.44/0.986 39.16/0.993 39.05/0.986
64 × 64 35.46/0.977 37.17/0.977 44.14/0.994 38.11/0.985 38.98/0.993 38.77/0.985

Table 7. Numerical comparison for variants of our proposed network trained with different patch
sizes for 4× LFSR. The best results are in red, and the second-best in blue.

Dataset EPFL HCInew HCIold INRIA STFgantry Average

16 × 16 29.33/0.918 30.63/0.912 36.63/0.967 31.44/0.949 30.21/0.940 31.65/0.937
32 × 32 29.48/0.922 31.01/0.921 37.17/0.971 32.08/0.953 30.83/0.951 32.26/0.944
64 × 64 29.34/0.918 30.80/0.919 36.77/0.969 31.84/0.951 30.51/0.948 31.85/0.941

5. Conclusions and Future Work

In this paper, we proposed a residual convolutional network for LFSR. To effectively
explore the non-local property of 4D LF, we adopted the Lenslet LF representation. The
Lenslet representation is compact and can provide abundant information. The Lenslet
rows represent horizontal epipolar lines, columns represent vertical epipolar lines, and
pixels in the Lenslet image represent angular information. Therefore, we alternately process
the Lenslet image and view images to incorporate angular and spatial information. We
used five datasets for training and testing, and our proposed model achieves the highest
average PSNR and the second-highest average PSNR on 2× and 4× LFSR, respectively.
In addition, experimental results show that the spatial or Lenslet extractor alone cannot
super-resolve LF pictures well. The Lenslet extractor can extract epipolar and angular
information; therefore, even though it cannot super-resolve high-quality LF pictures, it may
produce better results than the spatial extractor alone. Furthermore, using three different
patch sizes, 16× 16, 32× 32, and 64× 64 to train the model, we found that 32× 32 achieves
the best performance on 2× and 4× LFSR.

However, the Lenslet image can provide much information for adjacent views at the
same location, but it fails to provide the same amount of information for scenes with large
disparity. Therefore, our model shows high performance with images with small disparity
and poor performance with images with high disparity because performance is inversely
proportional to the maximum disparity in the scene. In the future, we plan to:

• Shear LF images into different disparity levels; after shearing, the disparity value will
become smaller, then our network can extract better features, as proposed in [38].

• Use a parallax-attention module (PAM) as a final stage, where PAM was designed to
capture a global correspondence in stereo images super-resolution [39].

• Adopt a transformer-based architecture, where transformers can understand the local
and global features that benefit images with large disparities, such as the vision [30]
and swing transformers [40].
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