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Abstract

:

Due to its widespread usage in many applications, numerous deep learning algorithms have been proposed to overcome Light Field’s trade-off (LF). The sensor’s low resolution limits angular and spatial resolution, which causes this trade-off. The proposed method should be able to model the non-local properties of the 4D LF data fully to mitigate this problem. Therefore, this paper proposes a different approach to increase spatial and angular information interaction for LF image super-resolution (SR). We achieved this by processing the LF Sub-Aperture Images (SAI) independently to extract the spatial information and the LF Macro-Pixel Image (MPI) to extract the angular information. The MPI or Lenslet LF image is characterized by its ability to integrate more complementary information between different viewpoints (SAIs). In particular, we extract initial features and then process MAI and SAIs alternately to incorporate angular and spatial information. Finally, the interacted features are added to the initial extracted features to reconstruct the final output. We trained the proposed network to minimize the sum of absolute errors between low-resolution (LR) input and high-resolution (HR) output images. Experimental results prove the high performance of our proposed method over the state-of-the-art methods on LFSR for small baseline LF images.
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1. Introduction


Light field (LF) captures the intensity and direction of light rays reflected by objects in three-dimensional surroundings. Unlike conventional imaging, which captures the 2D projection of light rays, LF imaging collects data with many dimensions [1]. This abundance of visual information in LF pictures, in addition to their immersive description of the real world, may help several image processing and computer vision tasks, such as depth estimation [2,3], de-occlusion [4,5], salient object detection [6,7], and image post-refocus [8].



Nonetheless, obtaining LF data using plenoptic cameras, such as Raytrix [9], compromises spatial and angular resolutions. Due to a restricted sensor resolution, a plenoptic camera must reduce the spatial resolution of each view to collect more images at a higher angular sampling rate or conversely. Improving LF images’ resolutions is vital, as low-resolution images diminish the performance of low-frequency vision applications. In this paper, we study the LF super-resolution (LFSR) problem.



LFSR methods anticipate subpixel information using the difference between adjacent views [10,11,12,13]. Where these adjacent view images are closely connected in LF, sub-pixel information in each view image may be calculated by leveraging this cross-view correlation, allowing for its super-resolution (SR) reconstruction.



Several deep learning methods with diverse network topologies [14,15,16,17,18,19,20,21,22,23] were recently proposed to accomplish LFSR with enormous LF datasets [24,25,26,27,28]. These methods provide various learning-based SR methods using cross-view correlation through convolutional neural networks (CNN) and transformer-based networks. Although LFSR performance has been steadily improved via careful network design, most present LFSR algorithms underutilize the rich angular information, resulting in performance deterioration, particularly in complicated scenarios. For example, in [19,23], they only considered the spatial and angular information to model the non-local properties of the 4D LF. These methods have been improved upon in [21], by extracting horizontal and vertical epipolar information and spatial and angular information to improve the quality of the resulting images. We argue that Lenslet LF images can provide epipolar and angular information more compactly, allowing the network to model the relationship better and provide more pleasing results [29].



Therefore, this paper proposes a learning-based approach to obtain spatial SR using Lenslet LF images. The Lenslet image is formed by mapping the 4D images into one image using a Periodic Shuffling Operator (PS). We first extract features from input LF images independently. Then, we map the extracted 4D features into Lenslet 2D features. These features are then processed using a sequence of residual groups (RGs) to enhance the spatial resolution and restore some missing details. However, using Lenslet LF images has a blurring effect on the images, which increases with the LF images’ disparity value. Therefore, we process the Lenslet image and sub-aperture images alternately to incorporate angular and spatial information and mitigate the blur effect caused by processing the Lenslet image only. Finally, the final features are aggregated to reconstruct the output image. The quality of the super-resolved images is inversely proportional to the maximum disparity of the scene. In the case of a large disparity, the result is modest and increases inversely with the disparity. In the case of LF with a small disparity, our model comes first in LFSR quality compared with other SR methods.



We conducted several experiments to show our model’s performance in LF super-resolution. The main contributions of our paper are as follows:




	
We propose a different paradigm to increase the spatial-angular interaction by processing the Lenslet image and sub-aperture images to incorporate more information for LFSR.



	
We propose a CNN-based network to work for LFSR using Lenslet Images with superior performance over the state-of-the-art methods in the case of small-baseline LFSR.



	
The remainder of the paper is structured as follows: Section 2 briefly examines the related work. In Section 3, we present our technique for LFSR. Section 4 introduces the conducted experiments to compare our work with the state-of-the-art and discusses the meaning of the obtained results. Finally, Section 5 brings this paper to a close and presents future work to improve the proposed work.









2. Related Work


The objective of LF spatial SR, also known as LF image SR, is to produce high-resolution (HR) LF pictures from low-resolution (LR) inputs. Applying independent single image SR (SISR) algorithms to each sub-aperture picture is a basic way of achieving LF spatial SR (SAI). However, straight SISR for LF spatial SR cannot yield adequate results due to the absence of correlation between distinct viewpoints. Therefore, state-of-the-art methods try to fully model the non-local properties of the 4D LF data by using the information inside every single view (i.e., spatial information) and between multiple views (i.e., angular information) to perform well in LFSR. Since using CNNs in the field of LFSR, their utilization has grown exponentially, and the reconstruction performance has improved continually. Zhang et al. [14] presented a residual network for LFSR. The images in four directions are first stacked and given to separate branches to extract sub-pixel correlations. Then the information from these branches is combined for the final reconstruction. Because just a few side views may be employed, the performance of side views will suffer when compared to the performance of the center view, resulting in undesired inconsistencies in the reconstructed LF pictures. The performance of their later work [15] was increased considerably by using 3D convolutions applied to view image stacks of diverse angle orientations. Jin et al. [16] utilized an all-to-one technique for LFSR and used structural consistency regularization to retain the parallax structure. Yeung et al. [17] proposed to shuffle LF spatial-angular features alternately at a single forward pass using separable convolutions. Wang et al. [18] used deformable convolution on LF images to overcome the disparity problem for LFSR. Wang et al. [19] presented an interactive network (LF-InterNet). In particular, spatial and angular features are extracted and repeatedly interact to extract complementary information step by step. Then, each view image is super-resolved by fusing the interacting features. A network with two parallel branches was suggested by Liu et al. [20]. The top one collects global interview data. The bottom one separately projects each view to deep representations and then models the correlations between all intra-view characteristics using a multi-view context block. Wang et al. [21] designed a disentangling approach by dividing LF into several subspaces. They extracted features using three feature extractors (spatial, angular, horizontal, and vertical epipolar information). The network’s convolution layers only need to analyze information in a single subspace, facilitating LF representation learning. Different from CNN and inspired by recent achievements in Transformers [30], Wang et al. [22] developed a detail-preserving Transformer (DPT) to recover the features of light field (LF) pictures by using gradient maps of light field to direct sequence learning. However, the frameworks of these techniques are all-inclusive models whose supplementary information is not effectively employed for performance enhancement. Later, Liang et al. [23] suggested a Transformer-based LF image SR network in which a spatial Transformer and an angular Transformer were built to simulate, respectively, long-range spatial interdependence and angular correlation.




3. Our Approach


3.1. Problem Formulation


In our approach, the LF is formulated as a 2D array of Sub-Aperture Images (SAI), as shown in Figure 1c, and given by   L ∈      R     u    ×    v    ×    h    ×    w     , with (h, w) and (u, v) spatial and angular resolutions. Therefore, given a low-resolution LF input as    L  LR   ∈      R     u    ×    v    ×    h    ×    w     , we aim to reconstruct its high-resolution counterpart    L  HR   ∈      R     u    ×    v    ×    α h    ×    α w     , by enhancing the spatial resolution, where α represents the super-resolution factor. Following recent approaches [14,15,16,17,18,19,20,21,22,23], we set   ∝ = 2 , 4   and assume that SAIs are distributed in a square array, i.e., u = v = A, where A represents the vertical or horizontal angular resolution. Before feeding    L  LR     to the network, we up-sample the input LF epipolar plane images (EPIs) to the desired output size with α utilizing the Bicubic interpolation. Finally, we arrange the input from the 4D representation into the 3D representation    L  LR   ∈      R     uv    ×    h    ×    w     .




3.2. Features Extractors


We aim to extract spatial information along with horizontal epipolar, vertical epipolar, and angular information to model the non-local properties of the 4D LF fully. We utilize a convolution filter with a kernel of size 3 × 3 as a spatial feature extractor, as shown in black in Figure 2. This filter is applied to SAI separately. To extract horizontal epipolar, vertical epipolar, and angular information, we utilize another convolution filter with a kernel of size 3 × 3 as a Lenslet feature extractor, as shown in yellow in Figure 2. However, we apply this filter to the Lenslet image. The idea behind operating on the Lenslet image is that rows of the Lenslet image represent horizontal epipolar lines, columns of the Lenslet image represent vertical epipolar lines, and pixels in the Lenslet image represent the angular information. Therefore, one of the key benefits of dealing with a Lenslet image is extracting a large amount of information with a single convolution filter.




3.3. Network Overview


In our method, we process the Lenslet LF similar to the method proposed in [29] for LF angular super-resolution. At the same time, the proposed architecture is designed similarly to the deep residual channel attention networks [31]. Figure 3 depicts the overall design of our network. The proposed network consists of three cascaded stages: initial feature extraction, convolutional neural network (CNN)-based super-resolution network, and final image reconstruction, as shown in Figure 3a. The first and last stages of the network consist of a single 3 × 3 convolution layer, and the middle consists of a long skip connection with cascaded residual angular and residual spatial groups (RG). The angular and spatial groups share the same structure, as shown in Figure 3b. The input LF is processed differently by different network components. For example, the initial feature extractor and spatial groups process each 2D view image     VI   LR   ∈      R     h    ×    w      independently. While angular groups and the final reconstruction stage process the 2D Lenslet image    L  LR   ∈      R     uh    ×    vw     .



The mapping between the 3D LF   ∈      R     uv    ×    h    ×    w      and the 2D Lenslet LF   ∈      R     uh    ×    vw      is done using a periodic shuffling operator (PS) [32,33], as shown in Figure 4. In Figure 3a, the three arrows before each block indicate that this block processes each view image independently, while other blocks process the Lenslet image. Initial features are extracted in the first stage of the network to be fed to the main part of the network for processing, where features are extracted from each view image independently and then rearranged to the Lenslet image using a PS. The main part of the network consists of a long skip connection with cascaded angular and spatial RGs. Each RG consists of three residual blocks (RB) in our implementation. Each RB has three cascaded convolution layers with a ReLU in between with a skip connection.




3.4. Loss Function and Training Details


We trained our network only on the luminance component while we upsample the chrominance components using the Bicubic interpolation. We trained our network to learn a mapping from the Low-Resolution (LR) LF image     LF   LR     to the High-Resolution (HR) LF image     LF   HR    . We can write the problem can as follows:


     LF ′    HR   = f  (    LF   LR   ,    θ   )   



(1)




where   f  ( . )    is the function mapping from the LR image to the HR image, and  θ  is the network parameters to be learned while training.



We trained the proposed network to reduce the L1 distance. L1 loss is defined as follows, given a training set with N pairs of LR input and HR output images:


   L 1   ( θ )  =  1 N    ∑   i = 1  N     |    LF   HR  i  − f  (    LF   LR  i   )   |   1   



(2)







Following recent approaches [14,15,16,17,18,19,20,21,22,23], we used 144 LF images for training and 23 for testing from publicly available synthetic and real-world datasets [24,25,26,27,28], as shown in Table 1. The original angular resolution of these datasets is 9 × 9, while we used the middle 5 × 5 views for training and testing. These datasets are divided into three categories based on their disparity value. For example, small-disparity LF includes EPFL and INRIA, medium-disparity LF includes HCInew and HCIold, and large-disparity LF includes STFgantry. The HCInew and HCIold are Synthetic, while other datasets are real-world datasets captured by the Lytro Illum camera.



We extract patches of size 32 × 32 with a stride of one from input and ground-truth images to prepare the training dataset. Our model was trained by ADAM optimizer [34] with β1 = 0.9, β2 = 0.999, and ǫ = 10−8. The initial learning rate is set to 2 × 10−4 and then decreases exponentially by 0.1 every 80 epochs. Our model was trained for 85 epochs in Tensorflow [35] with NVIDIA TITAN RTX GPU.





4. Experiments and Discussion


4.1. Comparison with the State-of-the-Art Methods


To demonstrate the performance of our model in the LFSR task, we compare it with state-of-the-art single image SR (SISR) methods, including VDSR [36], EDSR [37], RCAN [31], and LFSR methods, including resLF [14], MEG-Net [15], LF-ATO [16], LFSSR [17], LF-InterNet [19], LF-DFnet [18], LF-IINet [20], DPT [22], LFT [23], DistgSSR [21] with all models retrained with the same datasets.



4.1.1. Quantitative Comparison


Average PSNR and SSIM are used for the luminance images over all the output views to measure the super-resolution quality. We present numerical results in terms of (PSNR/SSIM) in Table 2 and for 2× and 4× LFSR, respectively. The best results are shown in red, and the second-best results are in blue. The quality of the super-resolved images is inversely proportional to the maximum disparity of the scene. In the case of a large disparity, the result is modest and increases inversely with the disparity. In the case of LF with a small disparity, our model comes first compared with other SR methods and achieves competitive PSNR and SSIM. For example, 0.96 dB and 0.23 dB are higher than the LFT method [23] on the EPFL dataset for 2× and 4×, respectively. Moreover, 1.85 dB and 0.88 dB are higher than the LFT method [23] on the INRIA dataset for 2× and 4×, respectively.




4.1.2. Qualitative Comparison


We compare our results for 2× LFSR visually with one of the state-of-the-art methods [23], as shown in Figure 5. However, it isn’t easy to differentiate between output images as they are very similar, so we urge the reader to check Table 2 and Table 3 for more details. We attribute the significant improvement in the case of small-disparity LF to Lenslet images, which permits the network to accurately understand and simulate the linking between different views of the same scene, recover more texture information, and improve the quality.




4.1.3. Model Efficiency


We compare our proposed model to several competitive methods in terms of the number of parameters, average PSNR, and average SSIM scores. As presented in Table 4, our model achieves the highest PSNR score and second-highest SSIM score for 2× LFSR. For 4× LFSR, our model achieves the second-highest PSNR score and second SSIM score. Except for LFT [23], a transformer-based model, our model is considered the best regarding the number of parameters and average PSNR and SSIM.





4.2. Ablation Study


In this subsection, we validate the effectiveness of two parameters on the final results, including our approach to using Lenslet extractors along with spatial extractors and the patch size used to train the network.



4.2.1. Feature Extractors


As shown in Table 5, we examine three alternatives to highlight the impact of the model’s various components. First, we train the proposed model utilizing the spatial feature extractor only and then utilizing the Lenslet feature extractor only. Finally, we train the proposed model using spatial and Lenslet feature extractors. It is clear from the results that the spatial extractor or Lenslet extractor alone cannot super-resolve LF images with high quality. It is also shown that even though the Lenslet extractor cannot super-resolve high-quality LF images, it may give better results when compared to the spatial extractor alone as it can extract angular information along with the epipolar information.



However, when comparing the model’s efficiency trained using only Lenslet extractor on the small-disparity LF, including EPFL and INRIA, this model performs better than the state-of-the-art methods, which validates our point that Lenslet images can provide a huge amount of information regarding the relationship between different view images.




4.2.2. Patch Size


As shown in Table 6 and Table 7, we examine the effect of patch size on the model using three different sizes 16 × 16, 32 × 32, and 64 × 64. When training for 2× LFSR, the 16 × 16 shows a slightly better performance than the 32 × 32. However, when training for 4× LFSR, the 32 × 32 achieves the best performance. The patch size affects the model trained for 4× LFSR more, especially with the degradation of the input image more than the 2× model.






5. Conclusions and Future Work


In this paper, we proposed a residual convolutional network for LFSR. To effectively explore the non-local property of 4D LF, we adopted the Lenslet LF representation. The Lenslet representation is compact and can provide abundant information. The Lenslet rows represent horizontal epipolar lines, columns represent vertical epipolar lines, and pixels in the Lenslet image represent angular information. Therefore, we alternately process the Lenslet image and view images to incorporate angular and spatial information. We used five datasets for training and testing, and our proposed model achieves the highest average PSNR and the second-highest average PSNR on 2× and 4× LFSR, respectively. In addition, experimental results show that the spatial or Lenslet extractor alone cannot super-resolve LF pictures well. The Lenslet extractor can extract epipolar and angular information; therefore, even though it cannot super-resolve high-quality LF pictures, it may produce better results than the spatial extractor alone. Furthermore, using three different patch sizes, 16 × 16, 32 × 32, and 64 × 64 to train the model, we found that 32 × 32 achieves the best performance on 2× and 4× LFSR.



However, the Lenslet image can provide much information for adjacent views at the same location, but it fails to provide the same amount of information for scenes with large disparity. Therefore, our model shows high performance with images with small disparity and poor performance with images with high disparity because performance is inversely proportional to the maximum disparity in the scene. In the future, we plan to:




	
Shear LF images into different disparity levels; after shearing, the disparity value will become smaller, then our network can extract better features, as proposed in [38].



	
Use a parallax-attention module (PAM) as a final stage, where PAM was designed to capture a global correspondence in stereo images super-resolution [39].



	
Adopt a transformer-based architecture, where transformers can understand the local and global features that benefit images with large disparities, such as the vision [30] and swing transformers [40].
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Figure 1. 4D vs. Lenslet LF representation. (a) 4D representation: 3 × 3 LF images where each image has four pixels, and each image is represented by a different color, (b) The mapping from the 4D LF of size (u, v, h, w) into the Lenslet image of size (u × h, v × w) using the shuffling operator, (c) a real example of LF scene represented by 3 × 3 images, (d) the Lenslet LF image of the 3 × 3 images in (c). 
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Figure 2. An illustration of the spatial and Lenslet feature extractors. Here, we have 3 × 3 LF images with nine pixels in each view image and a different color. The spatial feature extractor is shown in black color, while the Lenslet extractor is shown in yellow. We utilize a convolution filter for both extractors with a kernel of size 3 × 3 and a stride of 1. The spatial extractor is applied to each view image independently, as shown in (a), while the Lenslet extractor is applied to the Lenslet image, as shown in (b). 
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Figure 3. (a) The overall design of our network for LFSR. (b) The residual group (RG) design is used as an angular and spatial group in (a). (c) Residual block (RB) design. 
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Figure 4. Periodic shuffling (PS) operation (Depth-to-Space and Space-to-Depth). (a) A sequence of view images with size (H, W, D). (b) Lenslet Image with size (3H, 3W, D/9) contains all the view images in a different order. The mapping from (a) to (b) is called depth-to-space, while from (b) to (a) is called space-to-depth. 






Figure 4. Periodic shuffling (PS) operation (Depth-to-Space and Space-to-Depth). (a) A sequence of view images with size (H, W, D). (b) Lenslet Image with size (3H, 3W, D/9) contains all the view images in a different order. The mapping from (a) to (b) is called depth-to-space, while from (b) to (a) is called space-to-depth.



[image: Sensors 23 02018 g004]







[image: Sensors 23 02018 g005 550] 





Figure 5. Visual comparison for different 2× LFSR methods. We chose one scene from each dataset for comparison. In addition, a close-up of image portions in red boxes is provided for Bicubic, LFT [23], our method, and ground truth, respectively. 
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Table 1. LF datasets used for training and testing.
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	Dataset
	Training
	Testing
	Disparity
	Data Type





	HCInew [24]
	20
	4
	[−4, 4]
	Synthetic



	HCIold [26]
	10
	2
	[−3, 3]
	Synthetic



	EPFL [25]
	70
	10
	[−1, 1]
	Real-world



	INRIA [27]
	35
	5
	[−1, 1]
	Real-world



	STFgantry [28]
	9
	2
	[−7, 7]
	Real-world
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Table 2. Numerical comparison for different 2× LFSR methods. The best results are in red, and the second-best in blue.
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	Dataset
	EPFL
	HCInew
	HCIold
	INRIA
	STFgantry
	Average





	Bicubic
	29.74/0.941
	31.89/0.939
	37.69/0.979
	31.33/0.959
	31.06/0.954
	32.34/0.954



	VDSR [36]
	32.50/0.960
	34.37/0.956
	40.61/0.987
	34.43/0.974
	35.54/0.979
	35.49/0.971



	EDSR [37]
	33.09/0.963
	34.83/0.959
	41.01/0.988
	34.97/0.977
	36.29/0.982
	36.04/0.974



	RCAN [31]
	33.16/0.964
	34.98/0.960
	41.05/0.988
	35.01/0.977
	36.33/0.983
	36.11/0.974



	resLF [14]
	33.62/0.971
	36.69/0.974
	43.42/0.993
	35.39/0.981
	38.36/0.990
	37.50/0.982



	LFSSR [17]
	33.68/0.974
	36.81/0.975
	43.81/0.994
	35.28/0.983
	37.95/0.990
	37.51/0.983



	MEG-Net [15]
	34.30/0.977
	37.42/0.978
	44.08/0.994
	36.09/0.985
	38.77/0.991
	38.13/0.985



	LF-ATO [16]
	34.27/0.976
	37.24/0.977
	44.20/0.994
	36.15/0.984
	39.64/0.993
	38.30/0.985



	LF-InterNet [19]
	34.14/0.972
	37.28/0.977
	44.45/0.995
	35.80/0.985
	38.72/0.992
	38.08/0.984



	LF-DFnet [18]
	34.44/0.977
	37.44/0.979
	44.23/0.994
	36.36/0.984
	39.61/0.993
	38.42/0.985



	LF-IINet [20]
	34.68/0.977
	37.74/0.979
	44.84/0.995
	36.57/0.985
	39.86/0.994
	38.74/0.986



	DPT [22]
	34.48/0.976
	37.35/0.977
	44.31/0.994
	36.40/0.984
	39.52/0.993
	38.41/0.984



	LFT [23]
	34.80/0.978
	37.84/0.979
	44.52/0.995
	36.59/0.986
	40.51/0.994
	38.85/0.986



	DistgSSR [21]
	34.80/0.979
	37.95/0.980
	44.92/0.995
	36.58/0.986
	40.37/0.994
	38.92/0.987



	Ours
	35.76/0.979
	37.49/0.979
	44.50/0.994
	38.44/0.986
	39.16/0.993
	39.05/0.986
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Table 3. Numerical comparison for different 4× LFSR methods. The best results are in red, and the second-best in blue.
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	Dataset
	EPFL
	HCInew
	HCIold
	INRIA
	STFgantry
	Average





	Bicubic
	25.14/0.833
	27.61/0.853
	32.42/0.931
	26.82/0.886
	25.93/0.847
	27.58/0.870



	VDSR [36]
	27.25/0.878
	29.31/0.883
	34.81/0.952
	29.19/0.921
	28.51/0.901
	29.81/0.907



	EDSR [37]
	27.84/0.886
	29.60/0.887
	35.18/0.954
	29.66/0.926
	28.70/0.908
	30.20/0.912



	RCAN [31]
	27.88/0.886
	29.63/0.888
	35.20/0.954
	29.76/0.927
	28.90/0.911
	30.27/0.913



	resLF [14]
	28.27/0.904
	30.73/0.911
	36.71/0.968
	30.34/0.941
	30.19/0.937
	31.25/0.932



	LFSSR [17]
	28.27/0.908
	30.72/0.912
	36.70/0.969
	30.31/0.945
	30.15/0.939
	31.23/0.935



	MEG-Net [15]
	28.74/0.916
	31.10/0.918
	37.28/0.972
	30.66/0.949
	30.77/0.945
	31.71/0.940



	LF-ATO [16]
	28.52/0.912
	30.88/0.914
	37.00/0.970
	30.71/0.949
	30.61/0.943
	31.54/0.938



	LF-InterNet [19]
	28.67/0.914
	30.98/0.917
	37.11/0.972
	30.64/0.949
	30.53/0.943
	31.59/0.939



	LF-DFnet [18]
	28.77/0.917
	31.23/0.920
	37.32/0.972
	30.83/0.950
	31.15/0.949
	31.86/0.942



	LF-IINet [20]
	29.11/0.920
	31.36/0.921
	37.62/0.974
	31.08/0.952
	31.21/0.950
	32.08/0.943



	DPT [22]
	28.93/0.917
	31.19/0.919
	37.39/0.972
	30.96/0.950
	31.14/0.949
	31.92/0.941



	LFT [23]
	29.25/0.921
	31.46/0.922
	37.63/0.974
	31.20/0.952
	31.86/0.955
	32.28/0.945



	DistgSSR [21]
	28.98/0.919
	31.38/0.922
	37.55/0.973
	30.99/0.952
	31.63/0.953
	32.11/0.944



	Ours
	29.48/0.922
	31.01/0.921
	37.17/0.971
	32.08/0.953
	30.83/0.951
	32.26/0.944
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Table 4. Comparison of the number of model parameters and average PSNR and SSIM for 2× and 4× LFSR. The best results are in red, and the second-best in blue.
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Dataset

	
2×

	
4×




	
#Param.

	
PSNR

	
SSIM

	
#Param.

	
PSNR

	
SSIM






	
EDSR [37]

	
38.6 M

	
36.04

	
0.974

	
38.9 M

	
30.20

	
0.912




	
RCAN [31]

	
15.3 M

	
36.11

	
0.974

	
15.4 M

	
30.27

	
0.913




	
resLF [14]

	
6.35 M

	
37.50

	
0.982

	
6.79 M

	
31.25

	
0.932




	
LFSSR [17]

	
0.81 M

	
37.51

	
0.983

	
1.61 M

	
31.23

	
0.935




	
MEG-Net [15]

	
1.69 M

	
38.13

	
0.985

	
1.77 M

	
31.71

	
0.940




	
LF-ATO [16]

	
1.51 M

	
38.30

	
0.985

	
1.66 M

	
31.54

	
0.938




	
LF-InterNet [19]

	
4.80 M

	
38.08

	
0.984

	
5.23 M

	
31.59

	
0.939




	
LF-DFnet [18]

	
3.94 M

	
38.42

	
0.985

	
3.99 M

	
31.86

	
0.942




	
LF-IINet [20]

	
4.84 M

	
38.74

	
0.986

	
4.89 M

	
32.08

	
0.943




	
DPT [22]

	
3.73 M

	
38.41

	
0.984

	
3.78 M

	
31.92

	
0.941




	
LFT [23]

	
1.11 M

	
38.85

	
0.986

	
1.16 M

	
32.28

	
0.945




	
DistgSSR [21]

	
3.53 M

	
38.92

	
0.987

	
3.58 M

	
32.11

	
0.944




	
Ours

	
3.21 M

	
39.05

	
0.986

	
3.21 M

	
32.26

	
0.944
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Table 5. Numerical comparison for variants of our proposed network using different feature extractors for 2× LFSR. The best results are in red, and the second-best in blue.
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	Dataset
	EPFL
	HCInew
	HCIold
	INRIA
	STFgantry
	Average





	Spatial
	33.35/0.964
	34.55/0.960
	40.68/0.987
	35.58/0.977
	35.99/0.983
	36.03/0.974



	Lenslet
	35.06/0.976
	36.40/0.975
	43.35/0.993
	37.63/0.985
	36.95/0.989
	37.88/0.984



	Both
	35.76/0.979
	37.49/0.979
	44.50/0.994
	38.44/0.986
	39.16/0.993
	39.05/0.986
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Table 6. Numerical comparison for variants of our proposed network trained with different patch sizes for 2× LFSR. The best results are in red, and the second-best in blue.
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	Dataset
	EPFL
	HCInew
	HCIold
	INRIA
	STFgantry
	Average





	16 × 16
	35.78/0.980
	37.46/0.979
	44.34/0.994
	38.47/0.987
	39.36/0.993
	39.08/0.987



	32 × 32
	35.76/0.979
	37.49/0.979
	44.50/0.994
	38.44/0.986
	39.16/0.993
	39.05/0.986



	64 × 64
	35.46/0.977
	37.17/0.977
	44.14/0.994
	38.11/0.985
	38.98/0.993
	38.77/0.985
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Table 7. Numerical comparison for variants of our proposed network trained with different patch sizes for 4× LFSR. The best results are in red, and the second-best in blue.






Table 7. Numerical comparison for variants of our proposed network trained with different patch sizes for 4× LFSR. The best results are in red, and the second-best in blue.





	Dataset
	EPFL
	HCInew
	HCIold
	INRIA
	STFgantry
	Average





	16 × 16
	29.33/0.918
	30.63/0.912
	36.63/0.967
	31.44/0.949
	30.21/0.940
	31.65/0.937



	32 × 32
	29.48/0.922
	31.01/0.921
	37.17/0.971
	32.08/0.953
	30.83/0.951
	32.26/0.944



	64 × 64
	29.34/0.918
	30.80/0.919
	36.77/0.969
	31.84/0.951
	30.51/0.948
	31.85/0.941
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