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Abstract: The efficiency of vehicles and travel comfort are maintained by the effective management
of road pavement conditions. Pavement conditions can be inspected at a low cost by drive-by
monitoring technology. Drive-by monitoring technology is a method of collecting data from sensors
installed on a running vehicle. This technique enables quick and low-cost inspections. However, most
existing technologies assume that the vehicle runs at a constant speed. Therefore, this study devises a
theoretical framework that estimates road unevenness without prior information about the vehicle’s
mechanical parameters even when the running speed changes. This paper also shows the required
function of sensors for this scheme. The required ability is to collect the three-axis acceleration
vibration and position data simultaneously. A field experiment was performed to examine the
applicability of sensors with both functions to the proposed methods. Each sensor was installed on a
bus in service in this field experiment. The vehicle’s natural frequency estimated from the measured
data ranges from 1 to 2 Hz, but the natural frequency estimated by the proposed method is 0.71 Hz.
However, the estimated road unevenness does not change significantly with changes in the vehicle’s
estimated parameters. The results found that the accuracy of road unevenness estimation seems to be
acceptable with the conventional method and the new method. Future work will include improving
the algorithm and accuracy verification of the schemes.

Keywords: drive-by monitoring; vehicle; system identification; GPS synchronization; field test

1. Introduction

Road traffic networks have expanded rapidly since motorization in the 1960s. Today,
paved road networks are indispensable for people’s lives and industrial activities. However,
asphalt pavement deteriorates day by day due to repeated traffic loads. Therefore, road
inspections are frequently required. Pavement inspection usually consists of an appearance
inspection and measurement of the spatial distribution of road unevenness. While the
appearance inspection can be performed to check cracks and ruts on the pavement visually,
the measurement of spatial distribution requires obtaining the absolute displacement of
the pavement from the standard elevation. The latter creates a heavy workload.

The measurement of road unevenness can be classified into several types. The most
reliable and accurate method is leveling. However, it is challenging to set leveling mea-
surement points with sufficient resolution to evaluate the comfort and safety of running
vehicles. Therefore, road unevenness is generally measured using a road profiler or a laser
displacement measurement vehicle. The former is highly accurate, but it cannot measure
rough roads as its measurement range is small. In addition, as a road profiler scans road
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surfaces slowly, the required measurement time is relatively long [1]. The latter has no such
problem but is extremely expensive [2]. In developing countries such as Africa, large-scale
road construction is underway, and a more efficient road evaluation method is required.
Note that the International Roughness Index (IRI) is used for investment decisions at the
World Bank [3].

Therefore, a road unevenness evaluation method using drive-by monitoring [4–6]
has been proposed. McGetrick et al. [7] estimate the dynamic axle force from the vehicle
vibration and assess the road unevenness. Zhao et al. [8] propose a technique to estimate
the IRI from vehicle vibration measured by a smartphone. Zhao et al. [9] also use the
Kalman filter to estimate the IRI and the road unevenness with high accuracy in field tests.
Xue et al. [10] propose a method that does not require the calibration of vehicle parameters.
It has been confirmed that Xue’s method is robust to changes in vehicle speed. He et al. [11]
estimate bridge vibration and road unevenness from vehicle vibration using a Kalman filter.
Yang et al. [1] estimate bridge vibration components and extract road unevenness from
vehicle vibration. The road unevenness is evaluated by removing the bridge deflection from
the unknown input of the vehicle system, calculated using the Kalman filter. Road surface
information can be acquired more frequently and more economically by these drive-by
monitoring technologies [1,6].

The coefficients of the IRI acceleration regression model vary greatly with vehicle
speed [12]. Therefore, some methods have been proposed to deal with vehicle speed
fluctuations. These schemes can be classified into (1) correction coefficients, (2) regression
parameter variations, and (3) high-pass filters [2]. However, as the vehicle usually stops,
there is a limitation in mitigating the effect of vehicle speed using the correction factor.
Wang et al. [13] show that different vehicle types have different magnitudes of acceleration
responses to the same road profile. In addition, the coefficients of the regression model
differ according to the type of vehicle [14]. Therefore, correction based on vehicle vibration
is premised on accumulating multiple data.

To fully demonstrate the potential advantages of drive-by monitoring technologies,
such as high frequency and economic performance, it is essential to apply this method
to general vehicles. However, it is difficult and unsafe for ordinary drivers to drive their
vehicles at a constant speed for road roughness estimation. The effect of speed changes
is an unavoidable issue with regard to the social implementation of large-scale drive-by
monitoring.

Numerical simulations have been conducted to simulate vehicle vibration changes
due to speed fluctuations and to evaluate the IRI from the obtained vehicle vibration with
high accuracy [13,15]. As Yu et al. [2] point out, Moghadam [15] did not investigate the
responses under the condition of speed fluctuations. In addition, Wang et al. [13] have not
been able to consider realistic speed fluctuations yet. Thus, one of the unsolved problems of
drive-by monitoring is vehicle speed fluctuations. The proposed method by Xue et al. [10]
shows high accuracy in field tests even when considering vehicle speed fluctuations. Their
method uses time-domain analysis, which makes it less sensitive to changes in vehicle
speed. Therefore, the problem of vehicle speed changes has not been solved but ignored in
this scheme. Keenahan et al. [16] verify a similar scheme to estimate road unevenness from
measured vehicle vibration and randomly assumed parameters.

Thus, this paper proposes a method for estimating road unevenness under the condi-
tion of speed changes. This study does not measure the correct value of road unevenness.
This research aims to construct a sensor system that enables the proposed scheme and
confirms that the proposed method can be performed practically by the developed devices
with each having an accelerometer and a global navigation satellite system (GNSS) unit.

The academic contributions of this research are as follows:

1. This study shows two methods that can estimate the input road unevenness from ve-
hicle vibration data even without information on the vehicle’s mechanical parameters.

2. Applying the proposed method to vehicle vibration data both of vertical and traveling
directions, the road unevenness angle and curvature can be estimated.
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3. The suggested device with a vibration sensor and a GNSS device makes the proposed
method practical. Position synchronization realizes this.

According to a previous study [16], the road unevenness estimated by synchronizing
the positions of multiple vehicles is also equal to the correct values.

2. Sensor System
2.1. Concept of Sensor

A GNSS receiver and a three-axis accelerometer were installed on four traveling buses
in service. The GNSS unit used in this study receives satellite signals at 1 Hz. The satellite
signals contain position information and accurate time within ±100 ns. This accurate time
was used to synchronize the clocks of all accelerometers in the different buses. The accuracy
of this GNSS-based time synchronization can be realized by the pulse per second (PPS)
signals of the GNSS receivers. The position information is acquired after correction in the
GNSS unit. Therefore, a time lag occurs. This time lag is corrected by referring to the
acquisition time of the corresponding PPS signal. The clock time, the vehicle position, and
the acceleration vibration data are simultaneously recorded at 300 Hz. As the sampling
rate of the position information is 1 Hz, it is converted to 300 Hz by interpolation.

2.2. Specification and Function

Figure 1 shows a block diagram of the Zynq chip on the ZYBO Z7-10 board (by
Xilinx, Inc., San Jose, CA, USA) used for the vibration measurement system. The vibration
measurement system consists of a ZYNQ7 Processing System (by Xilinx, Inc., San Jose, CA,
USA) powered by an ARM processor (by ARM Ltd., Cambridge, England, UK), a reset
circuit, and two field-programmable gate array (FPGA)-based MicroBlaze (MB) processors
(by Xilinx, Inc., San Jose, CA, USA) named mb_iic and gps_uartlite. ADXL355 (by Analog
Devices Inc., Norwood, MA, USA) is adopted as the 3-axis accelerometer module in
this system; this module has 20-bit ADC resolution and ±8 G range. ADXL355 and the
GNSS receiver (AE-GYSFDMAXB by TAIYO TUDEN, Tokyo, Japan) are mounted on an
expansion board. The communication standard between ZYBO Z7-10 and ADXL355 is the
I2C interface, while the serial interface is used between ZYBO Z7-10 and the GNSS unit.
The ARM processor operates the FPGA-based MB processors and writes measured data to
the MicroSD card every 3.333 ms. As the data are also acquired every 3.333 ms, the writing
time of the MicroSD card fluctuates. Therefore, data acquisition is forcibly performed by
interrupts, while writing to the MicroSD card is asynchronously performed through the
first in, first out (FIFO) block memories.
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Figure 1. Block diagram of the Zynq chip adopted in the vibration measurement system; this sensor
has two FPGA-based MB processors to obtain vibration and position data. MB processors are
controlled by the ARM processor on the ZYNQ7 Processing System.
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Figure 2 shows a block diagram of the mb_iic module. The mb_iic module is equipped
with an MB processor, which controls the 3-axis acceleration sensor. The general-purpose
input/output (GPIO) connected to the MB processor and the GPIO connected to the
ARM processor are linked through parallel ports allowing data exchange. When a start
command is sent from the ARM processor, the MB processor acquires the values of the
3-axis acceleration sensor. It then writes those values to the GPIO along with the launch
command. The ARM processor then receives the startup code and data. Figure 3 also
shows a block diagram of the gps_uartlite module. This processor receives serial data from
the GNSS unit, edits the data, and passes the data to the ARM processor via GPIO.
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A photograph of this vibration sensor system is shown in Figure 4. The accelerometer
ADXL355 and the GNSS unit are installed on the extension board. This board is connected to
the ZYBO Z7-10 board through PMOD connectors, as shown in this photograph. This sensor
system is slightly over-specified when considering only the vehicle vibration measurement.
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The saved data of the suggested sensor system consist of (1) longitude and latitude
(GPRCMC: dddmm.mmmm), (2) GNSS time (coordinated universal time), (3) PPS, (4) CPU
time (ms), (5) three-axis accelerations (travel, lateral, and vertical directions). The position-
ing information and the clock time from the GNSS device are automatically calculated and
updated inside the GNSS. Therefore, the time lag between when the radio waves from the
satellite reach the receiver and when the updated position/time information is acquired is
calculated from the PPS time. The position information updated at 1 Hz is interpolated
into the 300 Hz data. Then, the distance xi(t) is calculated, where i represents the vehicle
number and t is the GNSS clock time. Note that t = 0 is determined appropriately. As the
vertical acceleration response,

..
zi(t), is related to xi(t), it can be easily transformed into the

spatial function
..
zi(x).

3. Road Unevenness Estimation

Signal processing for estimating road unevenness from vehicle vibration can be consid-
ered an input estimation problem. The easiest way to solve this problem is the application
of the frequency response function (FRF) of the monitoring vehicle. If the FRF is known,
the product of the inverse FRF and measured vehicle vibration in the frequency domain
becomes the road profile input. However, this method has two technical issues: (1) the FRF
of the vehicle is required; (2) it is difficult to consider the effect of vehicle speed fluctuations.
Thus, this paper presents a new method to estimate road unevenness components from
vehicle vibration data without prior information about the vehicle’s mechanical parameters
and overcome the above two issues.

First, to avoid measurement of the FRF, all possible combinations of the mechanical
parameters of the vehicle are enumerated. The most likely combination of the parameters
can be identified to find the combination with the least contradiction. However, the remain-
ing technical issue is the difficulty of how to find an indicator for evaluating inconsistency
among measured data, assumed parameters, and equation of motion. For this issue, Xue’s
method [10] and Keenahan’s method [16] are applicable.

Second, to consider vehicle speed fluctuations, it is necessary to manage the road
profile components affected by the acceleration and speed of the traveling vehicle. This
paper adopts the time derivatives of road unevenness spatial functions.

3.1. Vehicle System

The vehicle system can be modeled as a simple mass-spring-dashpot system [4–6],
shown in Figure 5. The vehicle mass, m, includes the total mass of the vehicle body, tires,
suspension, engine, fuel, other mechanical parts, and passengers. The spring and damp-
ing coefficients, k and c, respectively, mainly represent the performance of the vehicular
suspension.
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Figure 5. The vehicle system is modeled as a single degree of freedom (SDOF) system with mass, m,
damping, c, and stiffness, k. The input of the vehicle system is only the road profile, ri(t) = R(xi(t)),
while the output is the vertical acceleration response, zi(t).
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Letting zi(t) and ri(t) be the vehicle vibration displacement and the road profile of the
i-th vehicle, respectively, the equation of motion of the i-th vehicle is expressed as

m
..
zi(t) + c

.
zi(t) + kzi(t) = c

.
ri(t) + kri(t) (1)

where
.
( ) and

..
( ) represent the first-order and second-order derivatives with respect to

time, t. The road profile, ri(t), is originally a spatial function but is transformed to a time
function by using the vehicle position, xi(t).

ri(t) = R(xi(t)) (2)

It is noted that the road unevenness, R(x), does not change if the driving route is the same,
while the road profile, ri(t), changes due to the running speed. Fourier’s transform of
Equation (1) is given by the following formula:

ẑi(ω) = ĥ(ω)r̂i(ω) (3)

where ĥ(ω) is the frequency response function (FRF) and ω represents the angular fre-
quency.

ĥ(ω) =
icω + k

−mω2 + icω + k
=

j
( c

m
)
ω +

(
k
m

)
−ω2 + j

( c
m
)
ω +

(
k
m

) (4)

where j is the imaginary unit. It is assumed that the FRF of the vehicle does not change
even in repeated runs. When the vehicle’s acceleration responses,

..
zi(t), are available, the

road unevenness, R(x), can be estimated from the following equation:

r̂i(ω) =
ẑi(ω)

ĥ(ω)
=
−ω2ẑi(ω)

−ω2ĥ(ω)
=

( .̂.
zi(ω)

)
−ω2ĥ(ω)

(5)

because
.̂.
zi(ω) = −ω2ẑi(ω). The conventional method for estimating road profiles from

vehicle vibrations has been based on Equation (5). The road profile, ri(t), can be obtained
by the inverse Fourier transform of r̂i(ω).

As the process of Equation (5) can be considered to include numerical integration, the
robustness of this process is low. If the FRF is directly applied to the road profile estimation
instead of −ω2ĥ(ω) to avoid numerical integration, the obtained signal becomes

..
ri(t):

.̂.
ri(ω) =

.̂.
zi(ω)

ĥ(ω)
(6)

This process can be robust. However, the road profile acceleration,
..
ri(t), derived from

the inverse Fourier transform of
.̂.
ri(ω) includes the effect of running speed vi(t) =

.
xi(t)

and acceleration/deceleration ai(t) =
..
xi(t) as the following formula.

..
ri(t) =

d2

dt2 R(xi(t)) = ai(t)R′(xi(t)) + vi(t)
2R′′ (xi(t)) (7)

where ( )′ and ( )′′ represent the first-order and second-order derivatives with respect to
position x. R′(x) and R′′ (x) are common like R(x). However, the obtained input

..
ri(t)

includes ai(t) and vi(t), which change in every run. As this variation makes the evaluation
of

..
ri(t) difficult, road unevenness, R(x), has been mainly used in existing studies [10,16–18].

3.2. Traditional Method

The measurement of vehicle parameters is usually complicated. Many existing studies
assume that the vehicle parameters are known [2,7,11] or calibrated from vehicle vibra-
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tions [8,9]. However, Xue et al. [10] and Keenahan et al. [16] assume the parameters
randomly first and apply a genetic algorithm (GA) to vehicle vibration data to simultane-
ously estimate the road profile and vehicle parameters.

Therefore, this paper considers a method of estimating vehicle parameters
( c

m
)

and(
k
m

)
and road unevenness, R(x), using only the measured vehicle vibration,

..
zi(t). It is

assumed that the vehicle travels the same route many times.
The algorithm is shown in Figure 6. First, the vehicle acceleration vibration,

..
zi(t), is

measured and the parameters
( c

m
)

and
(

k
m

)
are randomly assumed. By substituting these

data and properties into Equation (5), the road unevenness, Ri(x), can be obtained. Let
R(x) be the mean of Ri(x):

R(x) =
1
n

n

∑
i=1

Ri(x) (8)

where n is the number of repeated runs. The likelihood of the vehicle parameters
( c

m
)

and(
k
m

)
can be evaluated by the following formula:

J1 =
n

∑
i=1

N

∑
k=1

(
Ri(xk)− R(xk)

)2 (9)

where xk denotes the position of the k-th representative point and N is the number of
representative points. The most likely vehicle parameters

( c
m
)

and
(

k
m

)
are those that

minimize the matching degree of road unevenness, J1, calculated by Equation (9), and the
road unevenness obtained at that time can be taken as the estimated road unevenness, R(x).
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Figure 6. Flowchart of the traditional method of estimating road unevenness, R(x), without prior

information about the vehicle parameters
( c

m
)

and
(

k
m

)
.

The scheme shown above is a simplified version of Xue’s drive-by process, so it is
not new. However, as Xue et al. [10] estimate many vehicle parameters simultaneously,
searching for the optimal solution in a vast space is necessary. That is the reason why they
adopt a GA. However, this method limits the number of vehicle parameters to only two,( c

m
)

and
(

k
m

)
. Therefore, the computational cost is significantly reduced and it is possible

to try all patterns. Note that it is necessary to measure the position information of the
vehicle as well as the vibration data to execute this method.

3.3. The New Method

The novel scheme for evaluating road unevenness using R′(x) and R′′ (x) is shown in
Figure 7. This scheme is based on input estimation without numerical integration, even
considering vehicle speed changes.



Sensors 2023, 23, 2004 8 of 17

Sensors 2023, 23, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 6. Flowchart of the traditional method of estimating road unevenness, 𝑅 𝑥 , without prior 
information about the vehicle parameters  and . 

The scheme shown above is a simplified version of Xue’s drive-by process, so it is not 
new. However, as Xue et al. [10] estimate many vehicle parameters simultaneously, 
searching for the optimal solution in a vast space is necessary. That is the reason why they 
adopt a GA. However, this method limits the number of vehicle parameters to only two, 

 and . Therefore, the computational cost is significantly reduced and it is possible 
to try all patterns. Note that it is necessary to measure the position information of the 
vehicle as well as the vibration data to execute this method.  

3.3. The New Method 
The novel scheme for evaluating road unevenness using 𝑅 𝑥  and 𝑅 𝑥  is shown 

in Figure 7. This scheme is based on input estimation without numerical integration, even 
considering vehicle speed changes. 

 
Figure 7. Flowchart of the proposed method of estimating road unevenness components 𝑅 𝑥  and 𝑅 𝑥  without prior information about the vehicle parameters  and . This process does not 
require the vehicle’s prior information and can also estimate inputs. 

First, in this process, the vehicle’s vertical acceleration vibrations, 𝑧 𝑡 , and acceler-
ation of the traveling direction, 𝑎 𝑡 , (= 𝑥 𝑡 ) are measured directly by the vibration sen-
sor on the vehicle. The vehicle’s position, 𝑥 𝑡 , is also measured by the GNSS device. On 
the other hand, the vehicle parameters  and  are randomly assumed. The speed, 𝑣 𝑡 , (= 𝑥 𝑡 ) can be estimated by the measured position, 𝑥 𝑡 . Then, 𝑟 𝑡  is obtained 
from Equation (6). The measured time history data can be synchronized spatially. For ex-
ample, 𝑟 𝑡  can be rewritten in 𝑟 𝑥  using 𝑥 𝑡 . Similarly, 𝑣 𝑡  and 𝑎 𝑡  can be-
come 𝑣 𝑥  and 𝑎 𝑥 . Thus, the relationship between the available time history data 

Assuming           and           randomly

Fourier Transform

Measuring

Inverse Fourier Transform

Is      minimized? YES
NO

END

START

Estimated Road Unevenness

Assuming           and           randomly

Fourier Transform

Measuring

Inverse 
Fourier Transform

Is      minimized? YES
NO

END

START

Estimated 
Road Unevenness

, ,

Estimated

Accl. sensor GNSS

Calculated

Substitution

Substitution

Figure 7. Flowchart of the proposed method of estimating road unevenness components R′(x) and

R′′ (x) without prior information about the vehicle parameters
( c

m
)

and
(

k
m

)
. This process does not

require the vehicle’s prior information and can also estimate inputs.

First, in this process, the vehicle’s vertical acceleration vibrations,
..
zi(t), and accelera-

tion of the traveling direction, ai(t), (=
..
xi(t)) are measured directly by the vibration sensor

on the vehicle. The vehicle’s position, xi(t), is also measured by the GNSS device. On the
other hand, the vehicle parameters

( c
m
)

and
(

k
m

)
are randomly assumed. The speed, vi(t),

(=
.
xi(t)) can be estimated by the measured position, xi(t). Then,

..
ri(t) is obtained from

Equation (6). The measured time history data can be synchronized spatially. For example,
..
ri(t) can be rewritten in

..
ri(x) using xi(t). Similarly, vi(t) and ai(t) can become vi(x) and

ai(x). Thus, the relationship between the available time history data (
..
ri(x), vi(x), and ai(x))

and the road unevenness components (R′(x) and R′′ (x)) can be expressed by the following
formula:

..
r(x) = A(x)

{
R′(x)
R′′ (x)

}
(10)

where

..
r(x) =


..
r1(x)

...
..
rn(x)

 (11)

A(x) =

a1(x) v1(x)2

...
...

an(x) vn(x)2

 (12)

As the number of repeated runs, n, is usually more than two, the road unevenness
components R′(x) and R′′ (x) can be estimated by the following formula:{

R′(x)
R′′ (x)

}
= A(x)+

..
r(x) (13)

where A+ denotes the pseudo-inverse matrix of A. The following formula can evaluate the
estimation error:

ε(x) =
..
r(x)−A(x)A(x)+

..
r(x) (14)

Thus, the sum of the squared error can be expressed as

J2 =
N

∑
k=1

ε(xk)
Tε(xk) (15)
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J2 can be used as the objective function to update the randomly assumed vehicle
parameters

( c
m
)

and ( k
m ). The most likely vehicle parameters

( c
m
)

and ( k
m ) are those that

minimize the matching degree of road unevenness, J2, calculated by Equation (15), and
the road unevenness obtained at that time can be taken as the estimated road unevenness
components R′(x) and R′′ (x).

The originality of this method is to be able to consider vehicle speed changes. Conven-
tional methods cannot consider speed changes (acceleration/deceleration) and assume a
constant running speed. However, this condition limits the data that can be analyzed. This
study is one step toward extending the applicability of drive-by monitoring.

Both the conventional method and the proposed method shown in this study require
measured vibration data not only in the vertical direction,

..
zi(t), but also in the traveling

direction, ai(t). In addition, a GNSS device on the sensor system is used to measure the
running speed, vi(t), of the vehicle, as well as the position, xi(t). Thus, sensors used for
this drive-by monitoring must provide the above functions.

4. Field Test
4.1. Experimental Setting

A field test using four buses, each with one sensor shown in Figure 4, was conducted to
confirm that the schemes shown in Figure 6 (the traditional method) and Figure 7 (the new
method) can be practiced. In this experiment, the buses traveled between two bus terminals
near Kigali, Rwanda. The fundamental theory of the introduced methods assumes that one
identical vehicle would repeatedly run. However, in this field test, four buses of the same
type ran once each. Then, the four vehicle vibration data obtained were regarded as one
bus repeatedly traveling four times.

Figure 8 shows a photograph of one of the target buses. The sensor system was fixed
to the floor inside the bus. The sensor system consists of an accelerometer and a GNSS
unit. While the vertical acceleration vibration,

..
zi(t), and the acceleration/deceleration,

ai(t), are obtained from the accelerometer, the vehicle position, xi(t), and velocity, vi(t), are
calculated from the latitude and longitude information obtained from the GNSS unit. The
routes of the buses are also shown in Figure 9. The distance from the start to the endpoint is
about 21.6 km. The jagged red lines on the maps indicate the vertical acceleration responses,
..
zi(t), of the buses. The route of this field experiment is paved highway near Kigali city,
Rwanda. On the day of the experiment, it was sunny and the temperature was 27 ◦C.
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4.2. Measured Data

The vibrations of the travel, lateral, and vertical directions measured by the vibration
sensor (

..
xi(t),

..
yi(t), and

..
zi(t), respectively) are shown in Figure 10. The sampling rate of

the vibration sensors is 300 Hz. The GNSS unit synchronizes the sensor clocks, as shown
in this figure. The vertical accelerations,

..
zi(t), shown in Figure 10c include the gravity
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acceleration, 1 G. While a vehicle is running, the amplitude becomes large. According to
these figures, the timing at which the amplitude increases differs depending on the bus
because the buses depart and arrive at different times. Figure 11 shows the x–t curve of
each bus. In this figure, x = 0 indicates the start bus terminal and x = 21.6 km indicates the
end bus terminal.
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Figure 10. The measured vibration data: (a) acceleration of the travel direction,
..
xi(t) = ai(t);

(b) acceleration of the lateral direction,
..
yi(t); (c) acceleration of the vertical direction,

..
zi(t).

The Fourier’s power spectra of the obtained vibration data are shown in Figure 12. The
power of the vertical acceleration responses,

.̂.
zi(ω), can indicate vehicle natural frequencies

but the tendency of each power spectrum is very different from the others. This means
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that the vertical responses are affected significantly by the difference in running speed
fluctuations. The first predominant frequencies of the buses (i = 1 to 4) are about 1.44, 1.52,
1.61, and 1.63 Hz, respectively. The first and third buses had close modes around the first
predominant modes: 1.87 and 1.96 Hz, respectively. It can be expected that the natural
frequency of this type of bus ranges from 1 to 2 Hz. However, the buses showed higher
predominant frequencies around 25 and 30 Hz. There is a possibility that the buses used in
this test also have higher-order vibration modes around these frequencies.
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Figure 11. The x–t curve of each bus; the departure and arrival times of each bus are indicated by
black dot markers. The slope of each curve represents the running speed. Note that xi(t) is the
distance, not a coordinate.
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Figure 12. The Fourier’s power spectra of the measured vibration data. Each horizontal axis indicates
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2π ): (a) travel direction,
.̂.
xi(ω) = âi(ω); (b) lateral direction,

.̂.
yi(ω); (c) vertical

direction,
.̂.
zi(ω).

According to the GNSS data, the measured vibration data (
..
xi(t),

..
yi(t), and

..
zi(t)) can

be transformed into the form of spatial functions using vehicle position data, xi(t). The
sampling rate of the GNSS devices for obtaining xi(t) is 1 Hz. The spatially synchronized
vibrations (

..
xi(x),

..
yi(x), and

..
zi(x)) are shown in Figure 13. According to existing studies [6],

the vehicle vibration data become similar when spatially synchronized. However, the
obtained vibration data in this experiment show different tendencies even after spatial
synchronization. The different timing of the travel accelerations and decelerations may
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significantly affect the vehicle vibration tendencies. According to Figure 13a, as there is
a certain tendency in the position where the travel accelerations, ai(x) =

..
xi(t), become

large, it is considered that the influence of the traffic environment (signals and legal limited
speed) is almost the same. However, their amplitude changes because the strength of the
vehicular accelerator and brake varies depending on the driver. In addition, the effect of
vertical vibration,

..
zi(x), can be confirmed in the traveling direction,

..
xi(x), and the lateral

direction,
..
yi(x).
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Figure 13. The spatially synchronized vehicle vibration data: (a) travel direction,
..
xi(x) = ai(x);

(b) lateral direction,
..
yi(x); (c) vertical direction,

..
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4.3. Results and Discussion

The assumed values for the vehicle parameters
( c

m
)

and ( k
m ) are shown in Table 1.

The natural frequency corresponding to each value of ( k
m ) is also shown. These assumed

parameters are decided according to the power spectra of the vehicle responses shown in
Figure 12.

Table 1. The parameters for identification.

Parameters
c
m 1 2 3 4 5 10
k
m 5 10 20 60 100 140 180 360 540 720 1440

Natural
Frequency (Hz) 0.36 0.50 0.71 1.23 1.59 1.88 2.14 3.02 3.70 4.27 6.04

These assumed parameters and the measured vibration data are applied to the road
profile estimation schemes shown in Figure 6 (the traditional method) and Figure 7 (the
new method), respectively. The resulting values of J are shown in Figure 14. According to
these figures, the optimized parameters differ between the traditional and new methods.
As shown in Figure 14a, the traditional method has the optimal value of J1 calculated from
Equation (9), when

( c
m
)

= 2 and ( k
m ) = 5. On the other hand, as shown in Figure 14b, the

new method minimizes J2 calculated from Equation (15), when
( c

m
)

= 10 and ( k
m ) = 1440.

According to Figure 14, as the mechanical parameters
( c

m
)

and ( k
m ) optimizing J1 and

J2 differ, it is difficult to determine the mechanical parameters
( c

m
)

and ( k
m ) from these

results. According to an existing study [17], the function shape of J1 is convex downward.
However, those of J1 and J2 are monotonically increasing and decreasing, respectively.
Thus, it is difficult to limit the search area for

( c
m
)

and ( k
m ).
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Next, Figure 15 shows the estimated road profiles, ri(x), the estimated road profile
accelerations,

..
ri(x), and the reproduced road profile accelerations, A(x)A(x)+

..
r(x), when( c

m
)

= 2 and ( k
m ) = 5. In the figures of ri(x), R(x) represents the mean of the estimated

road profiles, Ri(x), shown in Equation (8). According to the results of Ri(x) shown in
Figure 15a, because the mean value R(x) and each estimated road unevenness, Ri(x),
are similar, the estimation accuracy can be expected to be relatively high. Note that the
correct value is not available in this study, and the estimation accuracy is not appropriately
evaluated. On the other hand, the estimated road profile accelerations,

..
Ri(x), shown in

Figure 15b are different from each other. This difference can be caused by the running speed
fluctuations. Figure 15c shows the reproduced road profile accelerations, A(x)A(x)+

..
r(x).

If the residual between
..
Ri and AA+ ..

r is smaller, the estimation accuracy of the new method
can be evaluated to be better. In this case, as the adopted mechanical parameters of the
vehicle are not optimal for minimizing the residual, the road profile accelerations,

..
Ri(x),

estimated from
.̂.
ri(ω) and ones reproduced by AA+ ..

r do not match well. However, as the
tendencies of the estimated

..
R(x) and the reproduced

..
R(x) become spatially similar, the

application result of the new method to the road unevenness evaluation can be reliable.
The components A+ ..

r are considered the common road unevenness components R′(x) and
R′′ (x). Those when

( c
m
)

= 2 and ( k
m ) = 5 are shown in Figure 16. From this figure, the road

unevenness curvature, R′′ (x), is much smaller than the road unevenness slope, R′(x).
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Figure 15. The estimated road profiles for
( c

m
)

= 2 and ( k
m ) = 5: (a) the road profiles, Ri(x), estimated

from r̂i(ω); (b) the road profile accelerations,
..
Ri(x), estimated from

.̂.
ri(ω); (c) the road profile

accelerations,
..
Ri(x), reproduced by A(x)A(x)+

..
r(x).
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Figure 16. The estimated road unevenness components: R′(x) and R′′ (x) for
( c

m
)

= 2 and ( k
m ) = 5.

To find more likely parameters, the objective function is redefined with the following
formula:

J = J2
1 J2 =

n

∑
i=1

N

∑
k=1

(
Ri(xk)− R(xk)

)4 ×
N

∑
k=1

ε(xk)
Tε(xk) (16)

Because the residual between the estimated R(x) and the mean R(x) has only a slight
variation, the error raised to the fourth power is used for this term instead of the squared
error. The redefined J is shown in Figure 17. The optimal parameters change to

( c
m
)

= 10 and ( k
m ) = 20. The estimated vehicle frequency is 0.71 Hz, which is still different

from the value expected from the power spectra shown in Figure 12. However, the value
becomes relatively closer to its expected range. The estimated road profiles and roughness
components when

( c
m
)

= 10 and ( k
m ) = 20 are shown in Figures 18 and 19, respectively.
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Figure 17. The product of objective functions: J = J2
1 J2.

When
( c

m
)

= 10 and ( k
m ) = 20, the estimated road unevenness functions, R(x), as

shown in Figure 18a, are similar to each other. From this result, there is a probability that
the accuracy of the vehicle parameters may not affect the estimation accuracy of the road
roughness. The estimated road unevenness accelerations,

..
R(x), and the reproduced road

unevenness acceleration, AA+ ..
r, are shown in Figure 18b,c, respectively. The estimated

road unevenness angle, R′(x), and curvature, R′′ (x), when
( c

m
)

= 10 and ( k
m ) = 20 are also

shown in Figure 19. Many of the extremely large values included in
..
R(x) have been erased.

However, the reproducing accuracy is not high because the parameters are not optimal.
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Figure 18. The estimated road profiles for
( c

m
)

= 10 and ( k
m ) = 20: (a) the road profiles, Ri(x),

estimated from r̂i(ω); (b) the road profile accelerations,
..
Ri(x), estimated from

.̂.
ri(ω); (c) the road

profile accelerations,
..
Ri(x), reproduced by A(x)A(x)+

..
r(x).
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Figure 19. The estimated road roughness components: R′(x) and R′′ (x) for
( c

m
)

= 10 and ( k
m ) = 20.

The methods presented in this study use the inverse FRF to estimate vehicle inputs,
while Xue et al. [10] apply the Kalman Filter and Keenahan et al. [16] apply the Newmark-
beta method. The first scheme for estimating road unevenness, R(x), seems to work well.
According to a previous study [16], when the estimated road unevenness match, they are
close to the correct value. Therefore, it can be said that the estimated result is reliable. On
the other hand, as the new suggested scheme can estimate the road unevenness slope, R′(x),
and curvature, R′′ (x), the speed fluctuations of the monitoring vehicle can be considered in
the process of the vehicle input estimation. However, its accuracy evaluation is also future
work.

According to the obtained results, the presented schemes can be practical by the
developed sensor systems. The contribution of this study is to show that the suggested
vibration sensors each with a GNSS unit make the proposed methods practical. Spatial
synchronization realizes these schemes.
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5. Conclusions

This study shows two methods that can estimate the input road unevenness even
without information on the vehicle’s mechanical parameters when the vehicle’s vibration
and position data are obtained. The first shown method is traditional and estimates the road
unevenness directly. However, as the obtained acceleration data are converted to estimated
displacement data, there is a concern about the instability caused by numerical integration.
Therefore, the second method uses both vertical and traveling direction vibration data to
estimate the road unevenness angle and curvature. A new sensor system was designed in
this study for the implementation of the above two input estimation algorithms.

Furthermore, the designed sensors were installed on four buses in commercial opera-
tion. The road unevenness and its components were estimated. In this experiment, as the
correct data of the road unevenness for the travel distance of 21.6 km was not obtained,
it was not possible to verify the accuracy. However, this field experiment has confirmed
that the sensor system and the two road estimation schemes are practicable. Future issues
include verifying the accuracy of this scheme and upgrading the algorithms by increasing
the number of sensors installed in each vehicle.

In addition, if the input estimation accuracy by the drive-by monitoring technology
is improved, it is expected that the bridge vibration component can be extracted [18–20].
However, the accuracy of the presented schemes is still insufficient for bridge inspections,
because the amplitude of bridge vibration is usually smaller than road unevenness [21,22].
It is necessary to improve both the sensor system and the estimation algorithms shown in
this paper to inspect bridges as well as road pavements. Therefore, one of the future works
includes adding measurement items such as the installation angle of the sensor.

This study is the first case of a drive-by scheme considering travel speeds and acceler-
ation. The results of this research provide a practical scheme for expanding the application
range of drive-by monitoring from specialized vehicles to ordinary vehicles. In other words,
drive-by monitoring is now practicable not only in a lab experiment where a carefully
calibrated vehicle runs at constant speed but also in an environment where the drivers are
driving as usual.
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