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Abstract: Underwater marine object detection, as one of the most fundamental techniques in the
community of marine science and engineering, has been shown to exhibit tremendous potential for
exploring the oceans in recent years. It has been widely applied in practical applications, such as
monitoring of underwater ecosystems, exploration of natural resources, management of commercial
fisheries, etc. However, due to complexity of the underwater environment, characteristics of marine
objects, and limitations imposed by exploration equipment, detection performance in terms of speed,
accuracy, and robustness can be dramatically degraded when conventional approaches are used.
Deep learning has been found to have significant impact on a variety of applications, including
marine engineering. In this context, we offer a review of deep learning-based underwater marine
object detection techniques. Underwater object detection can be performed by different sensors, such
as acoustic sonar or optical cameras. In this paper, we focus on vision-based object detection due to
several significant advantages. To facilitate a thorough understanding of this subject, we organize
research challenges of vision-based underwater object detection into four categories: image quality
degradation, small object detection, poor generalization, and real-time detection. We review recent
advances in underwater marine object detection and highlight advantages and disadvantages of
existing solutions for each challenge. In addition, we provide a detailed critical examination of the
most extensively used datasets. In addition, we present comparative studies with previous reviews,
notably those approaches that leverage artificial intelligence, as well as future trends related to this
hot topic.

Keywords: underwater marine object detection; vision; image quality degradation; small object
detection; poor generalization; popular datasets

1. Introduction

With constant exploration and usage, natural resources on land have been gradually
depleted, driving the hunt for new alternatives. The oceans, which cover about 70% of the
planet, have become the next destinations for exploration, as they are magnificent treasure
troves of precious resources, providing humans with food, medicine, minerals, and other
necessities [1–3].

In recent years, the development of marine robots has opened up new opportunities for
ocean exploration. When combined with advanced machine vision techniques [4], marine
robots have been demonstrated to have significant potential for exploring the underwater
environment. In ocean exploration, object detection plays an important role; it is capable of
detecting instances of visual objects in digital images, which provide essential information
for many downstream tasks. The fundamental question that object detection resolves is:
What objects are where? [5]. The goal of underwater object detection, as shown in Figure 1, is
to predict a bounding box (position) and category label for each object of interest.
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Figure 1. Illustration of vision-based underwater object detection. The detection result is presented
as a bounding box with a label, where (xi, yi) denotes the ith object’s center coordinates and (wi, hi)

denotes the box’s width and height. Here, (x, y) are the axis frames, with the origin in the image’s
upper left corner (image from DUO dataset [6]).

Equipped with underwater object detection, marine robots have been widely applied
in many real-world applications. For example, in monitoring of marine ecosystems, infor-
mation about species, size, population density, health state, and other characteristics of
marine organisms can be gathered by appropriate underwater object detection techniques,
which is significant for decision-making [7]. In management of commercial fisheries, it can
be applied to extract important information for cultivation, status surveillance, and early
warning of diseases [8]. Underwater object detection is an essential technique for robot
grabbing tasks, e.g., picking holothurians, echinus, scallops, and other marine products [9].
Furthermore, underwater object detection plays an important role in the operation of
self-driving marine robots, supporting the activities of path planning, collision avoidance
and control, etc. These pieces of evidence clearly show that underwater object detection
plays a critical role in exploration of the ocean.

In recent years, deep learning techniques, which are capable of learning feature rep-
resentation from data directly, have attracted great attention in many fields, including
underwater object detection. However, due to interference from the underwater environ-
ment, such as the complex background structures and characteristics of marine objects
and the limitations imposed by exploration equipment, underwater object detection is
an extremely challenging task. For instance, the attenuation and scattering effects that
occur when light passes through the water can result in substantial degradation in the raw
pictures collected by marine robots. On the other hand, most underwater objects, especially
marine organisms, are usually very small and tend to congregate in dense distributions,
making underwater object detection more difficult. Low-resolution underwater images
due to limitations imposed by exploration equipment can result in a loss of information
about underwater marine objects. These issues impose great challenges when working
with conventional underwater object detection techniques.

In this context, we offer a review of deep learning-based underwater marine object
detection techniques. To facilitate a thorough understanding of this subject, we first con-
duct a rigorous analysis of the research challenges involved in detecting marine objects
in the underwater environment. Next, we survey detection techniques that are based on
deep learning and present a comprehensive taxonomy within the framework of identi-
fied research challenges. In addition, we present a comprehensive discussion of popular
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datasets and provide a prediction of futuristic trends in underwater marine object detection.
Through this paper, readers will be able to arrive at a good grasp of the state of the art in
underwater object detection and to appreciate the pros and cons of existing techniques
when conducting their own research and development work.

The remainder of this paper is organized as follows. Section 2 discusses related
preliminary issues and research challenges. In Section 3, typical deep learning-based object
detection techniques in the underwater environment are systematically reviewed within the
framework of existing research challenges. Popular datasets and a critical analysis thereof
are presented in Section 4. A comparison with previous reviews is provided in Section 5,
along with a discussion of future directions in underwater marine object detection. Finally,
our conclusions are drawn in Section 6.

2. Preliminaries and Research Challenges
2.1. Preliminaries

Two kinds of sensors, namely, sonar and cameras, are commonly used in marine
exploration. As is well known, it is often more convenient to perform object detection by
relying on sound reflections rather than optical information in underwater scenarios. Both
sonars and cameras have distinct advantages and disadvantages. Sonar is an acoustic-
based exploration device with a range of hundreds of meters [10]. However, only a little
information can be carried by images captured by sonar. As illustrated in Figure 2a, it is
only possible to identify a vague sketch of the shipwreck shown in the image. On the other
hand, optical images captured by a camera contain a great deal of semantic information,
which is beneficial for recognition of target objects. The echinus and starfish in the image
can be easily recognized from the texture information, as shown in Figure 2b. However,
the exploration range of cameras is severely limited by interference in the underwater
environment. Another major benefit of optical cameras is their low cost, which has led to
their dominance over other sensors.

(a) (b)

Figure 2. Illustration of (a) sonar image and (b) camera image (images from [11] and DUO dataset [6]),
respectively.

Therefore, in this review we focus on vision-based underwater marine object detection.
In fact, in deep learning, object detection based on sonar images and optical images share
the same technology stack except for certain specialized preprocessing methods. We do
not dwell on the distinction between sonar images and optical images in this review. On
the other hand, marine organisms, shipwrecks, other man-made things, and so forth are
among the most interesting objects in the underwater object detection task. In this work,
we primarily concentrate on the detection of marine organisms because of their enormous
economic worth. Next, we formally define underwater marine object detection and the
accompanying evaluation matrices.

2.1.1. Definition of Underwater Marine Object Detection

In underwater object detection, it is necessary to recognize all the objects of interest as
well as to locate their positions in the image. As illustrated in Figure 1, position information
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is generally represented by a rectangular bounding box defined by (xi, yi, wi, hi), where
(xi, yi) denotes the center coordinates of the ith object, which measures the top left corner
of image as 0-indexed, and (wi, hi) denotes the width and height of the box. Formally, the
underwater object detection problem can be formulated as follows:

X
f (θ)−→ {(pi, ci, xi, yi, wi, hi) | i ∈ (1, ..., N)} (1)

where f (θ) indicates an object detector that is based on some neural networks parameter-
ized by θ. It takes as its input an image X, and finally outputs N predictions for objects
in that image. Each prediction contains a confidence indicator pi, the category label ci
that the object belongs to, and the position information encoded in the bounding box, i.e.,
(xi, yi, wi, hi). Underwater object detection can provide valuable information for seman-
tic understanding of the underwater environment, and as indicated, it is fundamentally
important in the community of marine science and engineering.

2.1.2. Evaluation Metrics

Most of the underwater object detection algorithms are inherited from the community
of generic object detection, as are the evaluation metrics. Precision and recall rate are the
most widely used evaluation metrics, and are computed based on a confusion matrix,
as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(2)

where TP, FP, and FN denote ’True Positive’, ’False Positive’, and ’False Negative’, re-
spectively, and are defined by the Intersection over Union (IoU) between the prediction
bounding box and the ground truth. Different thresholds of IoU result in different precision
and recall rates.

In the MS COCO dataset [12], three kinds of thresholds are employed. Precision as
averaged across all 10 IoU thresholds (IoU = 0.50:0.05:0.95) and all categories of objects
is called AP or mAP. Accordingly, we have AP50 and AP75 when the thresholds are set to
IoU = 0.50 and IoU = 0.75. General speaking, prediction can be evaluated across different
scales of objects, such as APS (area < 322), APM (322 < area < 962), and APL (962 < area).
Recall rates are similarly defined.

2.2. Research Challenges

Conventional object detection methods often fail to provide accurate results due to a
number of research challenges faced in the underwater environment [13]. To facilitate a
comprehensive understanding of this issue, we organize the research challenges into four
main categories.

2.2.1. Image Quality Degradation

Raw underwater images captured in the underwater environment usually suffer from
the effect of quality degradation, which is mainly caused by selective absorption and
scattering of light in a water body [14].

In the transmission of light in water, red light has a longer wavelength than blue and
green light, and as such has faster attenuation. This is a phenomenon known as selective
absorption, making most underwater images have a bluish or aqua tone, as illustrated in
Figure 3. Because the color is distorted, this phenomenon is referred the color distortion
problem, and is well known in underwater imagery analysis.
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(a) (b)

Figure 3. Most underwater images have (a) a bluish or (b) an aqua tone, which is due to the selective
absorption of light in open water (images from DUO dataset [6]).

On the other hand, sediments and particles in water can cause a strong scattering
phenomenon, which results in blurry and low-contrast images, as illustrated in Figure 4.
To highlight this phenomenon, the image can be converted to grayscale to eliminate other
sources of interference. However, even in the absence of color distortion, underwater
images suffer from strong haziness. Color distortion and blurring lead to serious quality
degradation in underwater images.

Figure 4. Illustration of blurry image caused by scattering (image from DUO dataset [6]).

2.2.2. Small Object Detection

In underwater marine object detection, most of the objects of interest, such as fish
schools [15] and benthic organisms [16], are usually very small, and tend to congregate in
dense distributions due to their natural habits, as illustrated in Figure 5. This fact leads to
the canonical “small object detection trap”, whereby objects only occupy a tiny fraction of
an image. In the DUO dataset [6], the vast majority of objects occupy only 0.3% to 1.5% of
the image area. Most underwater object detection datasets contain a massive number of
small instances.

(a) (b)

Figure 5. (a) Fish school and (b) benthic organisms (images from Fish4knowledge dataset [17] and
DUO dataset [6]), respectively.
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Small object detection has been a long-standing and challenging problem [18,19].
The low resolution of small objects provides little visual information, and it is difficult
to extract discriminative features for locating and recognizing these objects. In addition,
there is a significant imbalance between positive and negative samples in small object
detection, which is not conducive to model training, as because background samples
dominate training loss and the gradient updates are too deviated to learn the features of
foreground positive samples.

Meanwhile, it should be highlighted that existing neural network architectures and
datasets are not optimized specifically for small object detection. In the hierarchical features
of Convolutional Neural Networks (CNNs), increases in convolution and downsampling
operations lead to semantic information being enhanced while details are lost, which is
very unfavorable for small object detection. Furthermore, there is a lack of large-scale
datasets for small objects, making this problem even more challenging.

2.2.3. Poor Generalization

Unlike scenarios on land, there is a huge discrepancy in environmental conditions
between different oceans. Images from the natural seabed at Zhangzidao and Jinshitan,
Dalian, China are collected in [20], and the collected images are visualized in Lab Color
Space [21]. Experimental result shows that there is a huge discrepancy in image distribution
between these two ocean areas.

It is generally accepted that most algorithms based on deep learning strongly rely
on the i.i.d. assumption between source and target domains [22]. The performance of
algorithms often degrades when this assumption is not fulfilled (sometimes known as
domain shift), leading to poor generalization. Hence, generic object detectors suffer from
seriously degraded detection accuracy when a detector trained for one ocean region is
applied to another. The i.i.d. assumption is often violated in practical underwater object
detection, creating a major generalization challenge.

2.2.4. Real-Time Detection

Real-time detection is a challenge imposed by the limitations of marine robots. Con-
strained by the limitations of existing technology, marine robots are usually equipped with
embedded platforms that only provide extremely limited computing power. However,
deep learning models often require high-performance computing hardware that is not easy
to deploy. A standard ResNeXt-50 network has about 25.0× 106 parameters and 4.2× 109

FLOPS on eight of NVIDIA M40 GPUs [23]. The consumption of computing resources
has become a crucial challenge when applying deep learning-based detection models to
an underwater scenario. We refer to this research challenge as "real-time detection", as
it measures whether a deep learning algorithm can meet the requirements of resource
consumption, which is the most important prerequisite for practical applications.

2.2.5. Other Challenges

Another challenge in underwater object detection is the inter-class similarity between
different species or background due to similar appearance and camouflage types. This
inter-class similarity makes it highly infeasible to distinguish these objects, and has become
a huge headache for researchers. This problem has been noted by the community of
computer vision researchers [24]; however, due to its extreme intractability the problem of
inter-class similarity in underwater object detection does not allow for any clear solution.
Here, we treat this challenge as a problem for future work, and do not discuss it further.

3. Underwater Object Detection Based on Deep Learning

Having presented a systematic discussion of the existing research challenges in un-
derwater marine object detection in the previous section, we now move to a review of the
related literature on underwater object detection within the framework of the research chal-
lenges identified above. As illustrated in Figure 6, image enhancement is first introduced
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to deal with the image quality degradation problem, then four techniques are proposed to
support small object detection in underwater environments. Next, two different strategies
that aim to solve the poor generalization problem are systematically analyzed.

Underwater object 

detection

Image enhancement

      as preprocess module

      Image enhancement

      integrated into object

      detection networks

Data augmentation

    Domain transformation

      Multi-scale 

      representation

   Context information

      Super-resolution

      Balance positive and

      negative samples

Poor 

generalization

Image quality 

degradation

Small object 

detection

Figure 6. Framework of underwater object detection according to the main challenges identified in
underwater environments.

3.1. Object Detection Coupled with Image Enhancement

Image quality degradation is the main challenge that differentiates underwater ob-
ject detection from generic object detection on land. To cope with this problem, image
enhancement and restoration techniques have been proposed with the aim of correcting
color, improving clarity, and addressing blurring and background scattering [25]. In the
literature, image enhancement and restoration are used either as a preprocessing module
in the underwater object detection pipeline or are integrated into detection networks.

3.1.1. Image Enhancement as Preprocessing Module

In [26], a typical pipeline in which image enhancement works as a preprocessing
module in the underwater object detection pipeline is presented for gripping marine
products. As illustrated in Figure 7, an effective image enhancement approach based on
the Retinex theory is proposed to enhance the images captured by forward and downward
views of marine robots. Next, a real-time lightweight object detector based on SSD [27] is
proposed for marine object detection. The locations and categories of objects are determined
by the detection result. Through enhanced images, underwater robots can examine the
seabed environment more precisely.

Forward

 View

Downward

 View

Image 

Enhancement

Object 

Detection

Position-

Size 

Estimation

Output

Figure 7. Workflow of the underwater sensing system proposed in [26].

The image enhancement method presented in this pipeline is based on the improved
multi-scale Retinex method with color preservation (IMSRCP) [28]. In IMSRCP, color pre-
correction is first used to balance the color of damaged underwater photos and decrease
dominant color. Next, to estimate the reflectance and illumination component, the enhanced
multi-scale Retinex is employed in conjunction with intensity computation via channels.
Furthermore, the picture is recovered from the logarithmic domain while the compensation
dynamics are adjusted. Finally, the color of the original image might be kept depending on
the actual application.

Such a pipeline that enhances images before object detection has been a dominant
approach in the underwater object detection community for a long time, and research
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works in this area are ongoing. In [29], the combination of a Max-RGB filter [30] and
the Shades of Gray method [31] for improving underwater vision was used to enhance
underwater images. Next, a CNN was proposed to handle the weak illumination problem
in underwater images. Following image processing, a deep CNN detector was proposed
for underwater object detection and classification. Experimental results demonstrated that
the improved underwater vision system can assisting a robot in executing underwater
missions more efficiently. Similar works on underwater object detection include [32–34].

Underwater image degradation is mainly due to the selective absorption and scattering
effect, which can be depicted by a physical image formation model. In [35], a widely used
Simplified Model is proposed. As illustrated in Figure 8, natural light penetrates from the
air to an underwater scene, and direct transmission reflected off the object can propagate
towards the camera. Another portion of the light meets suspended particles, causing much
scattering. As such, the radiance perceived by the camera is the sum of two components,
that is, the background light formed by multi-scattering and the direct transmission of the
reflected light.

airlight

particle

objectcamera
Object-camera 

distance d(x)

Figure 8. Simplified image formulation model in underwater environment, as proposed in [35].

It is well known that light with different wavelengths are attenuated at different rates
in water. Therefore, the image formation model illustrated in Figure 8 can be formulated
as follows:

Iλ(x) = Jλ(x) · tλ(x) + (1− tλ(x)) · Bλ, λ ∈ {r, g, b},
tλ(x) = exp(−βλd(x))

(3)

where x denotes a point in the scene, λ denotes the red/green/blue component of the
light, Jλ(x) is the scene radiance from x, tλ(x) is the transmission of Jλ(x) after the light is
reflected and has reached the camera, Bλ is the background light, and Iλ(x) denotes the
captured image. Here, tλ(x) depends on the object–camera distance d(x) and the water
attenuation coefficient of each channel βλ.

Most common scenes of quality degradation in underwater images can be explained
based on the image formation model. The different attenuated rates of light describe
the selective absorption, which leads to the problem of color distortion. The scattering
phenomenon is depicted by the background light component Bλ, which can provide insight
for solving this problem.

In [36], Dana et al. proposed an advanced underwater single-image color restoration
method based on a physical image formation model. As illustrated in Figure 9, veiling
light pixels are first detected by structured edges and used to calculate the background
light component B for de-scattering. The object–camera distance is measured by stereo
images. Unlike existing works, Dana et al. considered different Jerlov water types in order
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to estimate transmissions based on a haze-lines model. Finally, color corrections were
performed using a physical image formation model and the best result was selected from
different water types.

Input image
Background light 

estimation

Transmission 

estimation 1
Restored image 1

Transmission 

estimation 1
Restored image 1

Transmission 

estimation 1
Restored image 1

Transmission 

estimation 1
Restored image 1

Transmission 

estimation 1
Restored image 1

Transmission 

estimation 1
Restored image 1

Repeated color correction with different Jerlov 

water types

Best restored 

image

Figure 9. The color restoration and transmission estimation method proposed in [36].

There are other complicated image formation models, such as the revised model
proposed in [37] that can depict the process of real-world underwater imaging more
precisely by considering the impacts of sensors, ambient illumination, etc. However, due
to its complexity, the revised model has received barely any attention, and the simplified
model continues to play the vital role in underwater imaging research.

3.1.2. Image Enhancement Integrated into Object Detection Networks

Image enhancement has proven to be helpful for conventional hand-crafted features
(e.g., HOG [38], SIFT [39]). How visual enhancement has contributed to deep-learning-
based object detection in underwater scenes is discussed in [20]. The authors of [20] showed
that enhancement cannot improve within-domain detection accuracy due to the degrading
recall efficiency; however, it provides a basic guarantee of generalization in cross-domain
scenarios. Many researchers believe that this is caused by the inconsistency resulting from
decoupled image enhancement and object detection. As a consequence, another solution
for the image quality degradation problem is to integrate image enhancement and object
detection into a single model via multi-task learning [40].

In [41], a lightweight deep neural network was proposed for joint learning of color
conversion and object detection from underwater images. As illustrated in Figure 10, to al-
leviate the problem of color distortion, an image color conversion module is first employed
to convert color pictures into grayscale images. Then, object detection is performed on the
converted images. Color conversion and object detection are learned jointly by a combined
loss function:

LTotal = λTV × LTV + λ f eature × L f eature + λstyle × Lstyle + λdetection × Ldetection (4)

The color-converted image is measured by three different loss function, namely, the
total variation (TV) loss LTV [42], feature reconstruction loss L f eature [43], and style recon-
struction loss Lstyle [43]. To train the multi-scale object detector, the loss function in YOLO
v3 [44] is employed directly, denoted as Ldetection, while λTV , λ f eature, λstyle, and λdetection
respectively denote the four weight coefficients. With the combined loss function, color
conversion is guided in a direction that boosts the performance of object detection.

Multi-scale Object 

detector

RGB image

[320,320,3]

Converted image

[320,320,3]

Color conversion 

Network

Figure 10. Joint learning of color conversion and object detection in underwater images (figure
from [41]).
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A comparison is summarized in Table 1. Here, “GFLOPs” denotes gigaflops (floating
point operations per second), which reflects the computation complexity of the model, and
“Epochs” denotes the number of training epochs. As illustrated in Table 1, experimental
results show that the proposed deep model outperforms models without color conversion
or with standard color conversion as a preprocessing module when tested on the authors’
custom dataset for object detection. Without interference from color distortion, object
detection performance can be improved while maintaining low computational complexity.

Table 1. Comparison of different methods on custom dataset collected in [41]. The numbers in bold
indicate the best.

Metric No Conversion As Preprocessing Proposed

mAP 0.878 0.844 0.896
GFLOPs 4.88 5.02 5.06
Epochs 107 81 76

Another similar work is [45], where an end-to-end marine organism detection frame-
work was developed to handle underwater image quality degradation problems caused by
noise pollution, color cast, and motion blurring. As illustrated in Figure 11, the framework
consists of underwater image enhancement, feature extraction, and back-end detection.
Three submodules are employed in the underwater image enhancement module to com-
plete step-by-step denoising, color correction, and deblurring enhancement. Notably, three
submodules must be jointly pretrained and optimized with object detection. With image
enhancement, the capability of the detector to deal with highly damaged underwater
images is significantly promoted. Experimental results show that the proposed framework
can improve detection precision by at least 6% compared to existing models for marine
organism detection without image enhancement.

D
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Feature 

Extraction Detection
Recognition and 

classification results

Underwater 

image

Input image
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image

Feature map and 

region proposals

Classification and 

bounding box regression

Figure 11. Marine organism detection framework with joint optimization of both image enhancement
and object detection (figure from [45]).

Unlike integration of image enhancement using the combined loss function, the Com-
posited FishNet proposed in [46] provides a novel and unified solution for alleviating interfer-
ence in the underwater environment caused by variance in picture brightness, fish orientation,
seabed structure, aquatic plant movement, fish species form, and texture differences.

In Composited FishNet, the authors propose a new composite backbone network,
illustrated in Figure 12. The scene change information is encoded by an auxiliary backbone
network from the background images without fish; next, the learned background feature is
subtracted from the of upper layer feature in the main backbone network. Experimental
results show superior performance when the interference is eliminated. Compared with
integration through the combined loss function mentioned above, the strategy in Compos-
ited FishNet that models the image enhancement process in the neural network is both
more elegant and more powerful.
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Figure 12. CBresnet backbone network; the interference is encoded and eliminated by the Source
Domain Backbone (figure from [46]).

3.1.3. Summary

In this section, we have reviewed two different strategies for solving image quality
degradation in underwater object detection. The most prominent characteristic of image
enhancement using a preprocessing module is that image enhancement and object detection
are decoupled. This decoupling sometimes leads to unexpected results, such that even
images with high perceptual quality may not be able to achieve excellent performance in
object detection. One possible explanation is that decoupled image enhancement is not
desirable for the object detection task. Thus, the second strategy involves joint learning
of image enhancement and object detection, which is a more promising technique. In this
paradigm, joint learning guides the enhancement module in a direction that can boost
detection performance. Research on this topic is in its infant stages, and additional efforts
should be directed towards research into joint learning.

3.2. Detection of Small Objects

Small object detection has always been a priority in the marine community due to the
characteristics of underwater marine objects, as illustrated in Section 2. Here, we outline
the four pillars of small object detection in underwater environments, namely, multi-
scale representation, contextual information, super-resolution, and balance of positive and
negative examples.

3.2.1. Multi-Scale Representation

In the hierarchical features of CNNs, low-level detailed features are useful for ob-
ject localization, while semantic information in high-level feature maps is significant for
classification of objects. Obviously, most features of a small objects are lost in high-level
feature maps, making small object detection extremely difficult. In the literature, a number
of researchers have proposed multi-scale feature fusion to generate a more discriminative
representation for small object detection.

The first canonical solution for multi-scale representation is the feature pyramid
network (FPN) [47]. As illustrated in Figure 13, high-level feature maps are upsampled and
added to lower-level ones in order to generate an information-rich representation that is
significant for detecting and classifying small objects.
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Input
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Figure 13. Structure of Feature Pyramid Network (figure from [47]).

The FPN has long been a fundamental block in most deep-learning architectures
for underwater object detection. In [9], an efficient detector (termed AquaNet) based on
CenterNet [48] was presented, in which multi-scale feature maps from different stages are
fused by the FPN to recognize masses of tiny objects from foggy underwater images. In [49],
a Multi-scale ResNet (M-ResNet) model based on a modified residual neural network for
underwater object detection was proposed. The M-ResNet leverages multi-scale feature
fusion by the FPN to allow accurate detection of objects of different sizes, especially
small ones. Experimental results show that the proposed approaches always provide
improved performance thanks to enhancement of predictive feature representations created
by the FPN.

The traditional FPN, on the other hand, is constrained by its one-way top-down
information flow. A bottom-up path augmentation can be applied to enrich the entire
feature hierarchy in the Path Aggregation Network (PANet) [50] with precise localization
signals in lower layers by shortening the information path between the lower layers and
the topmost feature. In [50], PANet was integrated with FPN, complementing it in a way
that allowed a mixed multi-scale feature structure to be generated, which was then used in
an uneaten feed pellet detection model for aquaculture. Experimental results show that the
mAP increased by 27.21% compared to the original YOLO-v4 method [51].

To solve the problem of insufficient utilization of semantic information caused by
linear upsampling in PANet, an Enhanced Path Aggregation Network (EPANet) was
proposed in Composited FishNet [46] for automatic detection and identification of fish
from underwater videos. Compared with PANet, the main differences are twofold: (1) a
jump connection method is used to merge the backbone network output with the EPANet
output information, and (2) the linear interpolation upsampling method is replaced by
PixelShuffle [52] to avoid information loss.

Table 2 illustrates a comparison of different feature fusion approaches for underwater
object detection on the SeaLife 2017 dataset [46]. Experimental results show that the EPANet
exhibits a 1.4% increase in mAP over FPN under the same condition. Compared with PANet,
the accuracy is increased by 0.8% due to nonlinear fusion. EPANet outperforms alternatives
in terms of the AP50 metric, though it suffers from slight degradation in the AP75 metric.
Comprehensive experiments have demonstrated the effectiveness and efficiency of the
EPANet module.

Table 2. Comparison of different feature fusion networks on SeaLife 2017 dataset [46]. The numbers
in bold indicate the best.

Methods AP AP50 AP75

FPN 0.727 0.921 0.875
PANet 0.733 0.917 0.866

EPANet 0.741 0.924 0.872

Unlike EPANet, the Bidirectional Feature Pyramid Network (BiFPN) [53] is enhanced
by removing nodes with only one input edge. These nodes contribute less to the rep-
resentation that seeks to fuse various features. As illustrated in Figure 14, white nodes
represent feature maps from backbone network, arrows represent information flow, and
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colored nodes represent fused representation. Meanwhile, the BiFPN layers are repeated
multiple times to allow additional high-level feature fusion. It is worth mentioning that
weighted feature fusion is used in the BiFPN, as feature maps of different resolutions
usually contribute to the output representation unequally.

Figure 14. Structure of Bidirectional Feature Pyramid Network (figure from [53]).

Following the improvements in BiFPN, Faster R-CNN was adapted in [54] for under-
water organism detection. The authors created a ResNet–BiFPN structure to enhance the
capability of feature extraction and multi-scale feature fusion. On the URPC dataset [55],
the detection accuracy was 8.26% higher than the original Faster R-CNN. Experimental
results showed that BiFPN was able to achieve better accuracy with fewer parameters
and FLOPs.

On the other hand, inspired by shortcut connections in residual neural networks [56],
a Shortcut Feature Pyramid Network (S-FPN) was proposed in [57] to improve an existing
multi-scale feature fusion strategy for holothurian detection. A shortcut connection was
attached to the FPN model, with auxiliary information flow merged into conventional multi-
scale feature fusion. Shortcut connection enhances feature fusion and reduces information
loss in deep networks. Experimental results showed that the mAP of S-FPN reaches 91.5%,
outperforming baseline methods on the authors’ custom datasets.

Unlike conventional feature fusion, which crosses multiple stages of the backbone,
the idea of fusing multi-scale features that cross different channels using different sizes
of kernels or complex connections in one block was proposed in [58,59]. This is a method
for enhancing the representational learning ability of a neural network by using the idea
of multi-scale feature fusion rather than feature fusion across multiple stages of the back-
bone network.

A Multi-scale Contextual Features Fusion (MFF) block was proposed in AquaNet [9].
In the MFF module, as illustrated in Figure 15, the input is first expanded by 1× 1 convolu-
tion, then split into groups by channel allocation. Each group is convoluted by a kernel,
with different kernel sizes used for extraction of multi-scale features. Shortcut connections
between different grounds are employed for feature enhancement. For final feature fusion,
outputs from all grounds are concatenated and convoluted by 1× 1 kernels.
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Input 

feature

Figure 15. Multi-scale Contextual Features Fusion (MFF) block (figure from [9]).

Most of the aforementioned FPN-based modules and their variants always suffer
from a deficiency of context-independent characteristics. There is a substantial risk of
information redundancy and negative influence in such feature representations for specific
tasks. To alleviate this problem, the attentional mechanism can be integrated into the
feature fusion module.

In [60], a Multi-scale Attentional Feature Fusion Module (AFFM) was proposed to
fuse semantic and scale-inconsistent features between different convolution layers. As
illustrated in Figure 16, feature maps from different stages of the backbone network are first
summed and sent into the Multi-Scale Channel Attention Module (MS-CAM). The MS-CAM
outputs the attention scores through a Sigmoid function. Finally, attention scores are used
as references for weighted aggregation of multi-scale features. Experimental results showed
that attentional multi-scale feature fusion is superior in underwater object detection.
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Figure 16. Multi-scale Attentional Feature Fusion Module (figure from [60]).

Similarly, in [61], J. Chen et al. claimed that multi-scale representation should be
both spatially aware and scale-aware, and presented a dynamic feature fusion module
based on spatial attention and scale attention. This method can fuse different scale fea-
ture maps adaptively, thereby enhancing the ability to detect small marine objects by a
considerable amount.

From the aforementioned discussion, it is apparent that multi-scale representation for
small object detection in underwater environments has been well-studied. However, as
an efficient technique of information aggregation, attentional mechanisms have not been
studied enough. This creates a need for further investigation of attention-based multi-scale
feature fusion. Fully exploiting the potential of attention is expected to effectively promote
the development of underwater object detection.

3.2.2. Contextual Information

It is widely acknowledged that lack of visual information severely degrades the
performance of small object detection. Many researchers believe contextual information
can aid in detecting small objects by leveraging the relationship between objects and their
coexisting environment.
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(1) Spatial Contextual Information

In the paradigm of anchor-based object detection, the most natural way of extracting
contextual information is to enlarge the candidate boxes, which means taking more sur-
rounding environmental information into consideration. In [62], contextual information
was extracted from a context region 1.5 times larger than the proposed candidate region.
Similarly, in [63], four region with ‘foveal’ fields of view of 1×, 1.5×, 2× and 4× of the orig-
inal proposed box that are all centered on the object of interest were added to the proposed
model in order to incorporate contextual information. Experimental results showed that the
introduction of spatial contextual information can always result in improved performance.

However, what is noteworthy is that incorporating contextual information for small
object detection does not mean taking into account the entire background region, which is
redundant and ambiguous, without any restraints. On the contrary, extracting predictive
features more precisely is crucial for small object detection.

Deformable convolutional networks are often used to detect marine organisms that
are in variable scale forms (e.g., echinus, starfish). In [64], it was employed to improve the
capability of the SSD detector in detecting fish, bionics, and other objects in the underwater
environment. With precise feature extraction, the detection accuracy and speed in complex
underwater environments can be improved significantly.

In [65], two drawbacks that degrade performance of the single-stage detector were
identified: first, the detection head regresses coordinates from pre-defined anchors directly,
although most anchors are far from matching object regions; second, the information used
for classification likely originates from erroneous places, where characteristics may not be
precise enough to describe objects. To alleviate these two problems, a novel neural network
based on anchor refinement and feature location refinement mechanism was proposed
in [65].

As the left image in Figure 17 shows, classic SSD-style detectors rely on hand-crafted
anchors that are stiff and invariably inaccurate. The Anchor Refinement Module (ARM)
generates refined anchors that provide better initialization for the second-step regression. A
location head performs convolution to generate an anchor offset ar using backbone-based
ARM features fARM, i.e.,

ar = War ∗ fARM, (5)

where the anchor offset ar is the coordinate offset from original anchors, War is the learnable
convolutional weight, and ∗ denotes convolution. Anchor refinement is urgently needed,
because on one hand it greatly relieves the difficulty of localization, while on the other it
can guide the refinement of feature location.

Pre-defined anchor Pre-defined feature location Refined anchor Refined feature location

Figure 17. Illustration of Anchor Refinement and Feature Location Refinement mechanisms proposed
in [65].

The original SSD employs a normal 3× 3 grid R (kernel) to estimate the category
probability and the coordinates of a feature map cell. Thus, the prediction is provided by

Pp0 = ∑
p∈R

w(p) · fODM(p), (6)
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where P denotes the prediction of category probability or coordinate offset, w denotes the
convolution weight, fODM represents features from object detection module, p indicates
positions in R, and p0 is the center of the respective field.

It is believed that the respective field of R usually fails to describe the refined anchor
region. As such, allowing R to deform to fit various anchor changes, the deformable
convolution is developed to capture accurate features with the feature offset δp, as follows:

Pp0 = ∑
p∈R

w(p) · fODM(p + δp) (7)

where the feature offsets ∆p = {δp} are predicted based on anchor offsets in the Anchor
Refinement Module, i.e., feature location refinement is provided by

∆p = W f r ∗ ar (8)

where W f r denotes another learnable convolutional weight and ar is the anchor offset from
the ARM module.

Based on the anchor refinement and feature location refinement mechanisms, a Dual
Refinement Network (DRNet) has been developed for high-performance detection and applied
to online underwater object detection and grasping with an autonomous robotic system.

Spatial context information describes the relationship between objects and their sur-
rounding environment. By leveraging this relationship, objects can usually be recognized
more easily, as their camouflage is usually not perfect enough to blend in with the envi-
ronment. However, the extraction of context information must be carried out cautiously
and meticulously, as inappropriate operations are noisy for the detection of underwater
marine objects.

(2) Temporal Contextual Information

In addition to spatial contextual information, features from previous frames of under-
water video are useful for detecting small objects in the current frame. These features are
referred to as temporal context information.

Motion information is an important piece of temporal context information. In [66],
motion information was obtained by Gaussian Mixture Modeling (GMM) [67] and optical
flow [68] from adjacent frames. As illustrated in Figure 18, by leveraging temporal context
information in combination with the original image, a more accurate fish detector based on
Faster R-CNN was built for underwater object detection.

Optical flow

GMM

Raw image

Detector

Output

Figure 18. Combining motion information for small underwater object detection (figure from [66]).

The GMM model represents a probability density function P(xt) of data x at time
t as a weighted sum of multiple individual normal distributions g(xi) for pixel i. The
background features can be learned by GMM in a statistical model using the mean and
covariance values of the pixel data. Any random and rapid changes in the pixel values of
a frame according to the GMM produces a mismatch with the background model of that
pixel, in which case motion is presumed to be detected.
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The optical flow is represented by a 2D motion vector in the video footage caused by
3D motion of the moving objects. Optical flow is captured by Taylor series approximation
with partial derivatives to spatial and temporal coordinates [69]. Based on the optical flow,
the proposed method captures a motion between two successive video frames at times t
and t + δt at every position.

In [70], unlike traditional techniques such as GMM and optical flow, temporal context
information is learned by a deep neural network automatically. As illustrated in Figure 19,
in order to leverage rich temporal information in videos, each frame of the video images
is first processed by a CNN for feature extraction, then these features are fused using the
LH-LSTM module. Through the Conv-LSTM model, temporal contextual information is
learned by a neural network automatically and integrated from previous frames for current
detection. The ConvLSTM model provides a real-world object detection maneuver for
underwater object gripping, providing significant proof of the effectiveness and efficiency
of using temporal context information.
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Figure 19. Schematic illustration of TSSD proposed in [70].

In addition to low-level vision features, detection results for the same object in previous
frames can provide stronger confidence for detection in future frames. In [71], to preserve
rare and endangered objects or eliminate exotic invasive species, a method based on the
YOLO framework [72] was proposed for properly classifying objects and counting their
numbers in consecutive underwater video images. This approach accumulates object
classification results from previous frames to the present frame. The cumulative mean for
each object Avgi(k) can be computed as follows:

Avgi(k) =
(i− 1)

i
Avgi−1(k) +

pi(k)
i

(9)

where i denotes the number of frames, k denotes a classification object, pi(k) is the probabil-
ity of classification for the kth object on the ith frame, and Avgi(k) denotes the cumulative
mean. By applying this heuristic method to YOLO, the proposed method can obtain higher
accuracy than the original YOLO detector, which uses only one frame of video images for
object detection.

From the aforementioned discussion, it is apparent that both low-level vision in-
formation and detection results have been demonstrated to provide effective temporal
context information. This is conducive to detection of small underwater objects. However,
extraction of temporal context information from previous video frames requires addi-
tional computation, resulting in higher computational complexity, which is undesirable in
marine robotics.

3.2.3. Super-Resolution

It was demonstrated in [73] that fine details of a small objects for localization can
be recovered by Generative Adversarial Networks (GANs). This leads to our discussion
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of the third pillar of small object detection, i.e., super-resolution, which revolves around
converting a low-resolution image with coarse details into a high-resolution image with
better visual quality and refined details. In this way, the lack of visual information for small
object detection can be circumvented.

In the literature, many deep-learning-based techniques have been employed for super-
resolution, including linear networks, residual networks, recursive networks, and more [73].
Linear networks map low-resolution (LR) images to high-resolution (HR) images using
a single path for signal flow. The differences between LR and HR images are learned by
convolution layers [74]. Super-Resolution Convolutional Neural Network (SRCNN) is one
of the outstanding works on super-resolution techniques that rely on pure convolutional
layers [75].

In [76], SRCNN is employed to obtain good-quality underwater images in low-light
conditions. As illustrated in Figure 20, to obtain LR components, raw data was iteratively
processed by Total Variation (TV) regularization [77]. Next, bicubic interpolation, a pre-
processing technique for CNNs, was used to increase the LR components. Thereafter,
three different convolutional layers were employed to extract features and reconstruct HR
patches. All HR patches were merged to generate suitably high HR components, and HR
feature vectors were rebuilt. Lastly, the rebuilt pictures were subjected to post-processing,
such as noise filtering. Experimental results showed that image reconstruction by the
SRCNN method can increase the number of total pixels by about 30%.

Raw data

TV

regularization

LR components

Bicubic

interpolate

Bicubic interpolate

components

9 x 9

conv

1 x 1

conv

5 x 5

conv

HR components

HR 

Enhanced

components

64 feature maps of LR image

32 feature maps of HR image

Compressed sensing Patch extraction Nonlinear mapping Reconstruction

Figure 20. Reconstruction of Underwater Single-Pixel Imaging based on CS-SRCNN (figure
from [76]).

Residual networks attach skip connections to the network to learn residues, i.e.,
high-frequency components between the input and ground truth. Several networks have
provided a boost to super-resolution performance using residual learning [78,79]. In [80],
a residual-in-residual network-based generative model (Deep SESR) was suggested to
handle simultaneous enhancement and super-resolution for underwater robot vision. This
model can be trained to restore perceptual picture quality at 2×, 3×, or 4× higher spatial
resolution. Residual connection is extensively employed in the feature extraction network
of the Deep SESR model, and deconvolution is performed for reconstruction of high-
resolution images. Similarly, a deep generative model based on the residual network for
single picture super-resolution of underwater photography was presented in [81] that is
suitable for object detection in marine robots. Compared with the linear network, the
representation capability of residual networks is enhanced significantly by the residual
connection, which is desired by super-resolution.

Many other promising techniques have exhibited their effectiveness in super-resolution,
though there has been less exploitation in underwater object detection. Recursive networks
break down harder super-resolution problems into a set of simpler ones that are easy to
solve [82]. Progressive reconstruction design is a promising choice for super-resolution
by predicting the output in multiple steps, i.e., 2× followed by 4× and so forth [83].
Super-resolution based on densely connected networks aims at utilizing hierarchical cues
available along with the network depth in order to gain more flexibility and richer feature
representation [84]. Multi-branch networks in super-resolution aim to obtain a diverse set
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of features at multiple context scales. Such complementary information can then be fused to
obtain a better HR reconstruction, as in [85]. The attention model can boost super-resolution
performance by selectively attending to essential features [86].

By recovering fine detail information, super-resolution can help to improve the perfor-
mance of small object detection in the underwater environment. Due to space constraints,
we can only provide a brief introduction to super-resolution techniques here. For more
information, please refer to [14].

3.2.4. Balancing of Positive and Negative Examples

There is always an imbalance between positive and negative examples, and small
object detection makes this problem more serious. In small object detection, an increase in
candidate locations is generated on images, resulting in an extreme class imbalance [19].
In the class imbalance scenario, the easily categorized negative samples overwhelm the
training loss; in this case, the direction of gradient updates becomes deviated, resulting in
both feature learning of foreground positive samples and the overall training procedure
being more difficult. To alleviate this problem, two crucial strategies, sampling and cost-
sensitive loss function, have been taken into consideration.

Sampling strategies, accompanied by label assignment procedures, have been devel-
oped for a long time to alleviate the class imbalance problem in small object detection. In
the training process of Faster R-CNN, the ratio of positive and negative samples in the
stage of region proposal is kept at 1:1 by random sampling, and the ratio in the detection
head is kept at 1:3 [87]. However, random sampling generally leads to simple samples
dominating selected samples. To address this case, an IoU-balanced sampling strategy was
proposed in [88] to solve the class imbalance problem more elegantly.

Assume that we need to sample N negative samples from M matching candidates.
Under random sampling, the selected probability for each sample is as follows:

p =
N
M

(10)

In the IoU-balanced sampling approach of [88], the sample interval is split into K
bins according to IoU in order to increase the chosen likelihood of hard negatives, and the
N required negative samples are spread evenly throughout the bins. Next, samples are
uniformly chosen from the bins. The probability of each sample being selected is computed
as follows:

pk =
N
K
∗ 1

Mk
, k ∈ [0, K) (11)

where Mk is the number of sampling candidates in the corresponding interval denoted
by k. Experimental results show that IoU-balanced sampling can guide the distribution
of training samples to be as near as possible to the distribution of hard negatives, which
helps to alleviate the class imbalance challenge. Many other heuristic methods have
been employed for sampling [62], although we do not address them further here due to
space constraints.

An alternative solution to class imbalance is to design a cost-sensitive loss function
with which different penalty factors (weights) for different prediction errors can be used
to adjust the balance of classes without increasing computational complexity. The most
commonly used method for this solution is Focal Loss (FL) [89], which reshapes cross-
entropy loss to a counterpart that downweights the loss assigned to well-classified examples.
Specifically, FL is defined as follows:

FL(pt) = −αt(1− pt)
γ log(pt) (12)

where pt is the estimated probability, α is a weighting factor to balance the importance of
positive/negative examples, and γ indicates a focusing parameter that adjusts the rate at
which samples are downweighted smoothly, achieving a balance between hard and easy
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samples. Due to its superior performance, FL has been used as the de facto loss function in
the anchor-free paradigm of object detection [90], and is widely used in the underwater
environment [91].

Compared with FL, the Piecewise Focal Loss (PFL) function developed in [57] pays
more attention to the difference between the loss weights of hard samples and easy samples.
It concentrates more on the training difficulty of hard samples. When the ground truth
is 1, those examples with predictive confidence smaller than 0.5 (pi < 0.5) are referred to
as hard samples, as they are hard for the detector to classify. On the contrary, the other
samples with predictive confidence greater than 0.5 (pi ≥ 0.5) are easy samples. When the
ground truth is 0, the interpretations are the other way around. Based on the distinction
between hard and easy samples, the PFL is formulated as follows:

PFL(pi, p∗i ) =

{
−(1− pi)

γ,
logpi, i f p∗i = 1

−pγ,

i log(1− pi), i f p∗i = 0

where i f p∗i = 1, γ, =

{
−1/γ, i f pi < 0.5

γ, i f 0.5 ≥ pi ≤ 1

i f p∗i = 0, γ, =

{
γ, i f pi < 0.5

−1/γ, i f 0.5 ≥ pi ≤ 1

p∗i =

{
0, negative label

1, positive label

(13)

where pi represents the probability of each candidate box being predicted as an object, p∗i
represents the label of the ground truth, 1 denotes a positive label, and 0 denotes negative
label. The term γ′ is the adjustment factor that is used to adjust exponential weights of
different confidence intervals. This strategy makes the network more inclined to learn
from hard samples. Experimental results have demonstrated superior performance of PFL,
achieving a mAP of 92.3%, outperforming the baseline cross-entropy of 91.5% and FL of
91.8% on a custom dataset.

There are further studies on cost-sensitive loss functions that have paid attention to
different topics, such as hard example mining [92], gradient harmonizing mechanism [93],
and long-tail imbalance [94]. However, we mainly focus on sample imbalance between
positive and negative examples for small object detection. Due to space constraints, further
discussions are omitted.

3.2.5. Summary

In this section, the four pillars of small object detection in underwater environment
have been systematically reviewed. Multi-scale representation aims to fuse multi-scale
features for discriminative prediction. Attentional multi-scale feature fusion is a research
area that is expected to be further explored for the promotion of underwater small object
detection. Both spatial contextual information and temporal contextual information are
conducive to small object detection by leveraging the relationship between objects and their
coexisting environment. However, inappropriate operations on contextual information
are be noisy, and result in higher computational complexity. By recovering fine detail
information, super-resolution improves the performance of small object detection. Comple-
menting super-resolution with image enhancement is a promising direction for underwater
small object detection research. The last pillar, proposed for solving the imbalance between
positive and negative samples, involves respective sampling strategies and cost-sensitive
loss functions. Both of these can guide the detector to focus on learning features from
positive samples, thereby avoiding being overwhelmed by the much larger number of
negative samples.
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3.3. Generalization in Underwater Object Detection

Generalization is a crucial challenge in underwater object detection and is highly
important for real-world applications, as domain shifts can dramatically degrade detection
performance. In general, a large-scale dataset with high diversity can address the general-
ization problem. However, massive and varied underwater scenes make domain-diverse
data collection impossible. In this context, two strategies for improving generalization,
namely, data augmentation and domain transformation, are discussed.

3.3.1. Data Augmentation

Data augmentation is a basic yet effective technique for improving generalization.
It refers to a set of approaches that are capable of increasing the diversity of training
datasets [95], such as MixUp [96], Mosaic [51], and PhotoMetricDistortion [97]. These
approaches have been fully explored, and have proven to be effective methods of improving
generalization in deep learning [98].

In [99], three different data augmentations were employed to train a Faster R-CNN
detector for identification and recognition of marine organisms. First, inverse restoration
was adopted to mimic various kinds of marine turbulence. Next, perspective transformation
was exploited to simulate diverse camera shooting perspectives. Finally, illumination
synthesis was employed to simulate varied and uneven lighting situations in underwater
environments. Leveraging these three data augmentations, an improvement in both the
generalization and robustness of the resulting Faster R-CNN for underwater marine object
detection was confirmed by experimental results.

In [100], a detector for detecting marine organisms based only on a tiny underwater
dataset with a limited water quality category was proposed. A data augmentation technique
based on Water Quality Transfer (WQT) was developed to expand the domain diversity
of the initial dataset. WQT is a wavelet-corrected transfer that is based on whitening and
coloring transforms. Leveraging WQT, the URPC dataset was transferred to different types
of water quality, and promising generalization in underwater object detection was achieved.

In addition to traditional augmentation techniques, further research based on deep
learning was conducted in [101,102]. In [101], an approach called Region of Interest Mixed
(RoIMix) was proposed to create different training examples by fusing several pictures
at the Regions of Interest (RoI) level. RoIMix seeks to mimic overlapping, occlusion, and
blurring, allowing the model to implicitly learn to recognize underwater organisms in
different conditions.

Let x ∈ RH×W×C and y represent a proposal and its label. RoIMix seeks to combine two
random RoIs, (xi, yi) and (xj, yj), which when extracted from a batch of images generate
virtual proposals (x̃, ỹ):

x̃ = λ
′
xi + (1− λ

′
)xj, ỹ = yi,

λ = B(a, a)

λ
′
= max(λ, 1− λ)

(14)

where B(a, a) is a Beta distribution with parameter a, as xi is assigned with a larger
coefficient λ

′
and yi is used to label virtual proposal x̃.

For example, we have x1 and x2, which are two RoIs containing a scallop and an
echinus, respectively; x1 is in a blurring environment, while x3 denotes an occluded
sample cropped from a training image, e.g., it represents an echinus lying on a scallop.
RoIMix combines x1 and x2 to generate a new virtual proposal x̃, similar to x3, which
is used to simulate occlusion and blurring. Experimental results demonstrate that the
RoIMix can enhance detection performance on the URPC dataset and Pascal VOC dataset,
achieving results 1.18% mAP and 0.8% mAP better, respectively, than the original Faster
R-CNN model.

The above proposals can be refined to construct a high-quality training sample for
implicitly good generalization. In [102], a proposal-refined object detector was proposed to
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deal with the detection task in underwater images, which is characterized by insufficient
annotation. First, a segmentation network with a poor match for foreground–background
segmentation was developed. Next, segmentation was utilized to enhance the region
proposals and generate a high-quality training dataset. Leveraging this segmentation,
proposal refinement can potentially improve the generalization of object detection.

Traditional augmentation techniques usually work as pre-processing procedures in the
detection pipeline, and have become an important cornerstone for superior performance
and generalization of underwater object detection. Modern augmentations that leverage
deep neural networks represent promising techniques for achieving robust generalization.

3.3.2. Domain Transformation

Domain transformation is an opportunistic strategy for archiving good generalization
in underwater object detection by transforming images from distinct domains to middle
representations or transforming the trained detector from the source domain to a target
domain, as illustrated in Figure 21.

Source domain Source domainTarget domain Target domain

middle 

representations

(a) (b)

Figure 21. Two kinds of domain transformation for generalization in underwater object detection,
where (a) transforms distinct domains to middle representations and (b) transform source domain to
target domain.

In [20], it was shown that distributions of two domains are highly overlapped after the
same GAN-based restoration (GAN-RS) is applied to images from different ocean regions.
By adopting the GAN-based restoration approach of [21], the problem of domain shift
is bypassed subtly. It was shown that detectors developed for one ocean are capable of
completing the detection job in another ocean region.

Another experiment using the weak filtering-based restoration approach of [103] was
carried out in [20]. Experimental results showed that the generalization problem is allevi-
ated, though the performance does not compare favorably with GAN-based restoration.
In [20], it was demonstrated that images from different domains can be transformed into a
middle domain representation through enhancement and restoration by the same method;
favorable generalization in underwater object detection was achieved. It is apparent that
the problem of domain shift can be gradually alleviated by increasing the restoration inten-
sity. As a contribution to domain shift suppression, visual restoration is essential for object
detection in underwater environments.

Numerous visual restoration (enhancement) methods have been developed as pre-
processing procedures in the automatic pipeline of visually-guided underwater object
detection [25]. Visual restoration can provide superior performance for conventional un-
derwater object detection, as richer information can be obtained from enhanced images,
and can achieve robust generalization, as it bypasses the problem of domain shift.

Transfer learning is an alternative approach for domain transformation that can achieve
good generalization in underwater object detection by storing knowledge gained from
the source domain and applying it to a different related target domain. Transfer learn-
ing is helpful for handling scenario involving machine learning with a lack of labeled
training data.
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In [104], transfer learning was employed to alleviate the scarcity of labeled marine
data. A marine object detector was pretrained on the ImageNet and MS COCO datasets. In
the pre-training technique, the learned knowledge was stored in the parameters of detector
and applied to marine object detection, leading to a high-quality detection result with
a relatively low number of labeled images. Naturally, transfer learning is a promising
technique for addressing the generalization challenge raised by domain shift between
ocean regions, as it can transfer the knowledge gained from the source domain to the target
domain. It has been proven that transfer learning is extremely effective in underwater
object detection [104].

Domain transformation achieves robust generalization in a clever way, helping to
achieve significant breakthroughs in underwater marine object detection; as such, further
investigation is highly desirable.

3.3.3. Summary

In this section, data augmentation and domain transformation techniques for alleviat-
ing the poor generalization challenge raised by domain shift in underwater object detection
have been discussed. Both are indispensable for practical applications in real world. In the
practical scenario, there is always a lack of labeled data; furthermore, domain shifts occur
between the training and test data. Data augmentation can help to increase the diversity
of the training data, and modern techniques that leverage deep neural networks have
exhibited great potential in such augmentation. Domain transformation helps to bridge the
gap in distributions between different domains. Image enhancement and transfer learning
are two techniques that can implement domain transformation. Further investigation could
help to achieve significant breakthroughs in underwater marine object detection.

3.4. Real-Time Detection

Real-time detection is a crucial indicator that determines whether deep learning
models can really work in practical applications. Hence, there is a never-ending quest for
excellence in real-time performance of underwater object detection. In this context, we
briefly review the evolution of deep leaning-based detectors in underwater object detection
and summarize two key techniques for real-time detection. Please see [105] for a more
detailed discussion.

3.4.1. Evolution of Deep Learning Detectors for Real-Time Performance

R-CNN (Regions with CNN features) is the first deep-learning-based approach to
object detection [106]. It extracts candidate proposals by selective search [107] and employs
a CNN to extract features from each proposal. The final classification is performed by
an SVM classifier. Fast R-CNN [108] extracts features from the entire image and omits
redundant computations caused by selective search. Faster R-CNN proposes a Region
Proposal Network (RPN) that predicts candidates directly from the shared feature maps [87].
With these advancements, it can achieve significant increases in detection speed. The R-
CNN family has been widely used in underwater object detection for a long time [54,109].

The R-CNN family frames object detection as a “coarse-to-fine” process. First, candi-
date proposals are extracted, then each proposal is classified. These methods are two-stage
algorithms. In the other series of detectors, the YOLO family outputs the extraction of
candidate region proposals and predicts detection results from shared feature maps di-
rectly [44,72,110]. By discarding the extraction of proposals, the inference time can be
reduced to 50 ms, whereas other two-stage competitive models require more than 200 ms.
In moving from two stages to one stage, detectors have gained a qualitative leap in real-time
performance for underwater object detection [34].

In addition, real-time detection has undergone a paradigm shift from anchor-based
to anchor-free. The speed of anchor-free detectors is substantially improved over one-
stage detectors while maintaining superior detection accuracy, as the expensive operations
associated with anchor mechanisms have been eliminated [9]. The de facto method for
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real-time detection is now anchor-free. As can be seen from the preceding discussion,
removing the complex anchor module with its high degree of computational complexity
significantly speeds up detection.

3.4.2. Lightweight Network Design

In addition to the evolution of detectors, there are other amazing efforts devoted to
real-time detection. One of these is lightweight network design, which aims to develop
effective low-complexity network architectures.

Convolution with a 1× 1 kernel is the first significant step, and can minimize compu-
tational complexity by reducing the number of feature channels. It is extensively utilized
in GoogLeNet [111], SqueezeNet [112], etc. The literature shows that 1× 1 convolution is
a powerful tool for reducing the parameters of deep learning models, resulting in higher
detection speeds while maintaining detection accuracy and avoiding degradation [111,112].

Depth-wise separable convolution factorizes a standard convolution into a depth-wise
convolution and a 1× 1 point-wise convolution, saving a significant amount of operations
and parameters while only slightly diminishing accuracy [113]. ShuffleNet proposes point-
wise group convolution and channel shuffling, which can drastically reduce computational
costs [114].

Next, 1× 1 convolution and depth-wise separable convolution are extensively em-
ployed to construct lightweight modules, such as the receptive module in [41]. Low-rank
approximation is the underlying theory behind lightweight network design. This theory
can be used to develop lightweight network architectures by employing different effective
and efficient strategies, and is unquestionably crucial in achieving real-time detection of
underwater objects.

3.4.3. Model Compression

Model compression aims to remove redundant parameters (or neurons) in pre-trained
neural networks. Parameter redundancy has been proven in the literature, and serves as
the theoretical foundation of model compression [115].

Various techniques have been developed for model compression. Network pruning
removes neurons (or parameters) based on their importance, which is measured by the
number of times it is not zero on a given dataset, over its lifetime, or based on another
measure [116]. Knowledge distillation uses a small student model to replicate the actions
of a large teacher model. It is possible to preserve a large model’s superior performance
while shrinking the model’s size and resource usage through knowledge distillation [117].
Parameter quantization aims to reorganize the parameters of neural networks with fewer
bits. For example, replacing the 32-bit floating parameters with 16-bit ones is the simplest
method. The most commonly used technique for quantization is parameter clustering [118].

Model compression is a thriving research area, and in recent years a plethora of
compression strategies have emerged in an effort to achieve an acceptable trade-off between
processing speed and application accuracy. Model compression has even influenced the
design of neural network accelerators, resulting in the achievement of extreme performance
improvements [119].

3.4.4. Summary

In this section, we have reviewed the evolution of underwater object detectors, which
is a process pursuing real-time performance. Two key techniques dedicated to real-time de-
tection, namely, lightweight network design and model compression, have been discussed.
Lightweight network design aims to create elegant lightweight network architectures,
while model compression aims to reduce the redundancy in network parameters. Both
are important for real-time detection. In order to create a more elegant model, iteratively
applying lightweight network design and model compression is recommended, as these
approaches are complementary.
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4. Popular Datasets

In Section 3, we reviewed the related literature on underwater object detection in
light of identified research challenges. In this section, we analyze and discuss the most
commonly used datasets for underwater object detection.

4.1. Fish4Knowledge

The Fish4Knowledge database was the first well-known popular dataset [17]. It
was developed as part of a project conducted at the University of Edinburgh to study
marine ecosystems. This dataset enables comparisons and analysis of fish patterns between
different water areas [120]. An underwater dataset for target detection against complex
backgrounds is one of the ground truth datasets in the Fish4Knowledge. Figure 22 shows
example images from the Fish4Knowledge dataset.

Figure 22. Example images from the Fish4Knowledge dataset (images from [17]).

Annotation: the Fish4Knowledge dataset contains 23 species of fish, and has a total of
27,370 images along with corresponding mask images. All images are annotated manually
by marine biologists. Images of different species of fish are stored in different folders.
Annotations of bounding boxes for object detection task need to be generated from their
mask images.

However, the Fish4Knowledge dataset is not well-suited for fish detection, and re-
searchers need to generate annotations from mask images and create custom training/test
sets by themselves in order to meet their special research requirements. In addition, the
Fish4Knowledge datavase has a serious class imbalance problem, with certain fish cate-
gories dominating their classes.

4.2. LifeCLEF 2014

The LifeCLEF2014 dataset was built based on the Fish4Knowledge project, and aims
to identify marine organisms in visual data for ecological surveillance and biodiversity
monitoring [121]. There are four separate subtasks for fish identification and species
recognition in LifeCLEF2014.

For the video-based fish identification subtask, four videos with 21,106 annotations
corresponding to 9852 individual fish were fully labeled to form the training dataset, with
the aim being to identify moving objects in videos. For the image-based fish identification
subtask, the training dataset contains 957 videos with 112,078 labeled fish, with the aim
being to detect fish instances in video frames. In the image-based fish identification and
species recognition subtask, the training dataset includes 285 videos with 19,868 fishes
and the species are annotated, with the aim being to identify species of fish detected in
video frames. Image-based fish species recognition is the last challenge, for which the
training dataset contains 19,868 annotated fish images and the aim is to identify fish species
using only still images containing one fish instance. Matching test datasets are supplied for
each subtask.

Annotation: the ground truth annotations of the first three subtasks are provided as
XML files which contain species, bounding box coordinates, and contour coordinates, as
illustrated in Figure 23.
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Figure 23. Ground truth annotations of LifeCLEF2014 dataset (image from ImageCLEF website).

LifeCLEF2014 was significantly extended over the next few years, allowing it to be
used with various species of marine organisms as well as in different application tasks. For
more information, please refer to [122–124]

4.3. URPC

The National Natural Science Foundation of China’s Underwater Robot Professional
Contest (URPC) offers a well-known dataset for underwater robot object grabbing [55].
Beginning in 2017, the URPC organizer has published a new dataset each year. The images
in the URPC databases depict marine organisms such as holothurians, echinus, scallops,
and starfish on an open-sea farm. The URPC datasets are widely used in the community of
marine science and engineers working on underwater object detection. Figure 24 provides
examples of images from the URPC dataset. Table 3 contains information on differnt
URPC datasets over the years. Here, ‘Class’ means the categories of objects that need
to be detected, while ‘Train’ and ‘Test’ mean the number of images in the training/test
sets, respectively.

Figure 24. Example images from the URPC dataset.

Table 3. Information on URPC datasets over years.

Dataset Train Test Class Year

URPC2017 17,655 985 3 2017
URPC2018 2901 800 4 2018
URPC2019 4757 1029 4 2019

URPC2020_ZJ 5543 2000 4 2020
URPC2020_DL 6575 2400 4 2020

Annotation: the annotations of URPC dataset are provided in XML files, with one file
for each image that contains the label and coordinates of the bounding box for each object
in the image.

The URPC dataset does not provide annotation files for testing, and cannot be down-
loaded after the contest ends. Researchers must split the original training data to create
a custom training set and test set. This custom split makes the comparison with state-of-
the-art methods impossible. In this context, the URPC datasets are unsuitable for use as
benchmark datasets.

4.4. UDD and DUO

To overcome the shortcomings of the URPC dataset, Dalian University of Technology
(DUT) has presented a new dataset (UDD) comprising 2227 photos in three categories
(holothurian, echinus, and scallop) to improve the object grasping capabilities of under-
water robots for open-sea farming [9]. This dataset comprises 1827 training images and

https://www.imageclef.org/2014/lifeclef/fish
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400 testing images with a maximum resolution of 3840 × 2160 pixels. The UDD is a high-
quality and small-scale dataset; hence, it is not a good choice as a benchmark for deep
learning-based underwater object detection.

The DUT further gathers and re-annotates the URPC datasets as well as the UDD
dataset, yielding 7782 images. Finally, [6] constructed a new Detecting Underwater Ob-
jects (DUO) dataset comprising a diversity of underwater scenes and more reasonable
annotations. In the DUO dataset, 6671 photos are used for training and 1111 for testing.

Annotation: the annotations of the UDD and DUO datasets are prepared in MS
COCO format and provided in a JSON file containing the category label, bounding box,
segmentation, and other information.

However, the UDD and DUO datasets, similar to the URPC dataset, were generated for
the task of grabbing marine organisms using robots. These datasets only have three/four
class objects, respectively, and are therefore unsuitable for generic underwater object
detection tasks.

4.5. Summary

In this section, we have reviewed several popular datasets for underwater marine ob-
ject detection. At present, there is no universally accepted benchmark dataset, as each of the
aforementioned datasets has its own deficiencies. Several of them, such as Fish4Knowledge,
are poorly structured, and researchers need to build their own training and testing sets
by custom split, making comparison with state-of-the-art methods infeasible [99]. The
others are small in scale, which is undesirable for deep learning. These problems have
impeded the progress of underwater object detection research. In fact, the lack of annotated
data is a major challenge in underwater object detection, prompting the need for further
investigation into the construction of a universally accepted benchmark dataset.

5. Discussions and Analysis

In this section, we primarily compare our work with previous reviews and discuss
which directions in underwater object detection research are important in the future.

5.1. Comparison with Previous Reviews

Notable surveys on underwater object detection are summarized in Table 4. The first
survey is focused on monitoring of underwater ecosystems [125]. In ecosystem protec-
tion research, massive images are frequently collected, prompting a need for automatic
object detection and classification. In [125], related works that employ deep learning for
underwater imagery analysis are systematically described and categorized according to
the category of objects, including fish, plankton, coral, and sea grass. However, a taxonomy
based on categorization of objects is not suitable, making high-level understanding of this
research topic nearly impossible. On the other hand, the challenges around underwater
object detection were barely mentioned in [125].

The second survey reviewed underwater target recognition methods based on deep
learning [126]. In [126], the focus was on dangerous underwater target recognition, with
methods divided into three categories, namely, target recognition based on shape features,
unsupervised recognition techniques, and deep learning methods based on CNNs. The
pros and cons of various methods, as well as the challenges in few-shot target recognition
and target recognition under environmental interference, were discussed in [126]. Finally,
different algorithms were compared on the UDD dataset. The authors concluded that the
poor generalization performance of algorithms is always a major problem in this field.
However, although a variety of topics in underwater object detection were covered in [126],
there was no mention of marine organisms, and a reasonable taxonomy was lacking. The
authors briefly identified two challenges in underwater object detection; however, they did
not provide a comprehensive analysis.



Sensors 2023, 23, 1990 28 of 35

Table 4. Summary of related surveys on underwater object detection.

No. Survey title Content Deficiency Year References

1 Deep Learning in Underwa-
ter Marine Object Detection: A
Survey

Summarized deep learning object
detection and classification meth-
ods with respect to the categories
of objects, including fish, plankton,
coral, and sea grass.

Unsuitable taxonomy; the main
challenges of underwater object
detection were not discussed.

2017 [125]

2 Underwater Target Recogni-
tion Methods Based on the
Framework of Deep Learning:
A Survey

Described the application of deep
learning in underwater dangerous
target and man-made object recog-
nition. Discussed two main chal-
lenges around few-shot learning
and environmental interference.

Does not contain marine organ-
isms; used unsuitable taxonomy;
analysis of challenges not compre-
hensive.

2020 [126]

3 Robust Underwater Object De-
tection with Autonomous Un-
derwater Vehicles: A Compre-
hensive Study

Briefly discussed conventional
methods and deep learning meth-
ods for underwater object detec-
tion with AUVs.

Challenges in underwater object
detection were not discussed; tax-
onomy simple and crude; simi-
larities and differences between
two categories of methods not de-
scribed.

2020 [13]

In another survey of underwater object detection [13], several deep learning ap-
proaches and conventional object detection methods that can be deployed on autonomous
underwater vehicles were reviewed and a comparison between these methods was carried
out. Unfortunately, this survey used a coarse taxonomy, and different research works were
only elaborated in the framework of conventional methods and deep learning methods.
Moreover, the outstanding challenges in underwater object detection were not presented,
and the pros and cons of different methods were not discussed.

The main differences between our paper and existing surveys are highlighted below:

1. Systematic analysis of research challenges in underwater object detection: this
paper extensively reviews the related literature on underwater object detection. The
main challenges around object detection in underwater environments are identified
and analyzed systematically. Four challenges, namely, image quality degradation,
small object detection, poor generalization, and real-time detection, are discussed
at length.

2. Comprehensive review in light of identified challenges: an excellent literature re-
view should provide information on the research topic, the challenges researchers are
confronted with, and the different solutions that have been proposed. An in-depth
exploration of crucial technologies and state-of-the-art methods under the frame-
work of four research challenges makes this survey paper valuable and useful in
understanding of underwater marine object detection.

3. Deeper insight into futuristic trends: a discussion of how the research topic in
question is expected to evolve is an important part of any survey. Based on the
state-of-the-art methods in underwater object detection and consideration of next-
generation artificial intelligence, this paper provides deeper insight into future trends
in underwater object detection.

5.2. Future Trends in Underwater Object Detection

Based on the aforementioned discussion, we believe that future directions in underwa-
ter marine object detection must include the following aspects:

(1) A well-constructed benchmark dataset. The success of deep-learning-based un-
derwater object detection is dependent on the use of a well-constructed benchmark dataset.
For any research topic, a good benchmark dataset should be large-scale, diversified, class-
balanced, and well-constructed [12,127,128]. The Fish4Knowledge is a large-scale dataset
that includes 23 different types of fish species. However, the number of images in each
category varies greatly, resulting in a serious class imbalance problem. Although the Life-
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CLEf datasets are relatively good, they only include fish and ignore other important marine
organisms. To the best of our knowledge, no widely accepted benchmark is available at
present. Creating a large-scale and well-constructed benchmark dataset is an important
topic for future research.

(2) Inter-class similarities in underwater object detection. In order to avoid being
harmed by predators and improve their survival ability, many marine organisms are
very good at camouflage. This presents a challenge in terms of high inter-class similarity,
as marine organisms have great similarity with the background or other species. This
phenomenon makes it difficult even for humans to recognize marine organisms from
their environment, and poses a great challenge for machine learning algorithms. There is
no doubt that accounting for subtle differences between objects and their environments
can improve detection performance significantly. While it is known that deep learning is
relatively robust against inter-class similarities, research works in the area of inter-class
similarity are rare [24]. Addressing this problem is an important challenge in moving
underwater marine object detection forward.

(3) Underwater object detection based on transformers. One of the biggest surprises
in artificial intelligence research in recent years is the development of transformers. As a
promising fundamental infrastructure, transformers have dominated research on object
detection during the 2020s thanks to competitive performance and tremendous poten-
tial [129]. However, the most famous vanilla transformers are used with large models with
high computational complexity, and require very long training times to converge. Due
to these intrinsic limitations, transformers are much slower than traditional convolution
with the same FLOPs (at least 3× slower) [130]. In addition, transformer suffer from a
relatively low performance on small object detection tasks due to their non-local sensitivity
[131]. Considering the constraints in underwater environments, an efficient transformer
designed specifically for small objects could be of great significance for underwater marine
object detection.

(4) Multi-modal data fusion. Most research studies on underwater object detection
rely solely on optical or acoustic sensors. However, it is well-known that each of these
sensors has its own distinct characteristics and limitations. Optical imaging provides
high imaging resolution and rich information, as well as being more intuitive for humans.
However, the sensing range and image quality are severely influenced by absorption and
scattering effects. Sonar imaging based on acoustic waves, on the other hand, has the ad-
vantages of low loss and long propagation distance. The active [132,133] and passive [134]
acoustic approaches continue to play an important role in underwater exploration. Hence,
complementary employment of these two kinds of methods represents a way to greatly
improve object detection performance. Multi-modal data fusion is highly desirable in
underwater exploration.

(5) Multi-task learning. Rather than extending existing models to new tasks, today’s
AI models are typically trained to perform only one task. However, the human brain does
not work in this manner. A variety of capabilities that can be accessed as needed and
combined to perform new and/or more complex tasks is highly desirable [135]. Due to
the challenges of image quality degradation, new image enhancement and/or restoration
techniques are always beneficial. Therefore, engaging both underwater image enhancement
and object detection in a well-designed multi-task learning framework is a promising
direction. Multi-task learning can improve data efficiency as well, as this paradigm does
not require learning every task from scratch.

(6) Sparse model with efficient computing. It is widely accepted that the success
of deep learning is due to the unprecedented availability of big data and concurrent
advancements in computing power [136]. In the traditional dense model, the entire neural
network is activated to complete a task regardless of how simple or complex it is [137],
which is inefficient and goes against the way the human brain works. Creating a sparse
model in which only small segments of the network are activated as needed can, in
theory, result in a higher capability for different tasks, and is more energy efficient as
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well. Sparse models with efficient computing can undoubtedly make multi-task learning
more feasible, and represent a key technological infrastructure for the next generation of
ocean exploration techniques.

6. Conclusions

Deep learning-based underwater object detection has received significant attention
in the community of marine science and engineering researchers thanks to its superior
performance. It has tremendous potential to support a wide range of marine activities. This
paper presents a comprehensive and critical review of deep learning-based underwater
object detection techniques. Four research challenges in the underwater environment
are identified in this paper, namely, image quality degradation, small object detection,
poor generalization, and real-time detection. In light of these identified challenges, a
comprehensive analysis is presented to provide a thorough understanding of the subject
matter. Finally, popular datasets and future directions in underwater object detection are
discussed. We hope that readers find this survey informative and useful in helping them
to understand the recent advances in underwater object detection, and that it can guide
future research in this exciting area.
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