
Citation: Shin, E.; Yoo, C.D. Efficient

Convolutional Neural Networks for

Semiconductor Wafer Bin Map

Classification. Sensors 2023, 23, 1926.

https://doi.org/10.3390/s23041926

Academic Editors: Kelvin K.L. Wong,

Dhanjoo N. Ghista, Andrew W.H. Ip

and Wenjun (Chris) Zhang

Received: 30 December 2022

Revised: 2 February 2023

Accepted: 3 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Efficient Convolutional Neural Networks for Semiconductor
Wafer Bin Map Classification
Eunmi Shin and Chang D. Yoo *

Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
* Correspondence: cd_yoo@kaist.ac.kr; Tel.: +82-10-3774-1007

Abstract: The results obtained in the wafer test process are expressed as a wafer map and contain
important information indicating whether each chip on the wafer is functioning normally. The defect
patterns shown on the wafer map provide information about the process and equipment in which
the defect occurred, but automating pattern classification is difficult to apply to actual manufacturing
sites unless processing speed and resource efficiency are supported. The purpose of this study was to
classify these defect patterns with a small amount of resources and time. To this end, we explored an
efficient convolutional neural network model that can incorporate three properties: (1) state-of-the-art
performances, (2) less resource usage, and (3) faster processing time. In this study, we dealt with
classifying nine types of frequently found defect patterns: center, donut, edge-location, edge-ring,
location, random, scratch, near-full type, and None type using open dataset WM-811K. We compared
classification performance, resource usage, and processing time using EfficientNetV2, ShuffleNetV2,
MobileNetV2 and MobileNetV3, which are the smallest and latest light-weight convolutional neural
network models. As a result, the MobileNetV3-based wafer map pattern classifier uses 7.5 times
fewer parameters than ResNet, and the training speed is 7.2 times and the inference speed is 4.9 times
faster, while the accuracy is 98% and the F1 score is 89.5%, achieving the same level. Therefore, it
can be proved that it can be used as a wafer map classification model without high-performance
hardware in an actual manufacturing system.

Keywords: wafer map; defect pattern; pattern classification; light-weight convolutional neural
networks

1. Introduction
1.1. Background

The semiconductor manufacturing process consists of the front-end process and the
back-end process. In the front-end process, processes such as oxidation, photo, etching,
deposition, and ion implantation are repeatedly performed on the surface of the wafer
to make the wafer into a semiconductor. In the back-end process, a wafer test process
is performed to check whether all processes have been performed properly. Then, the
packaging process of cutting and assembling wafers into chips and final quality inspections
are performed. The wafer test process is important because it provides information to
determine if a problem has occurred in the front-end process and whether each wafer is
operating normally.

Through the wafer test process, the number of normal chips that can be used on one
wafer is counted, and the ratio of the number of normal chips to the total number of chips is
defined as the yield. The yield calculated here is used as a key indicator of semiconductor
productivity, so it is managed with great importance. During the wafer test process, the
defects of each chip are classified into several categories and stored in the form of letters.
In order to check this information at a glance, a wafer bin map is made by distinguishing
defective chips from normal chips and expressing them in different colors. Figure 1 is
an example of a common defect pattern frequently found on wafers. It is a wafer map

Sensors 2023, 23, 1926. https://doi.org/10.3390/s23041926 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23041926
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23041926
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23041926?type=check_update&version=1


Sensors 2023, 23, 1926 2 of 18

image for each defect pattern type obtained from the open dataset WM-811K used in this
study. Clustered defect patterns, such as center, edge-loc, and loc, are commonly found
when particles, which mean foreign substances, such as dust, are generated during the
process. Circular patterns such as donuts often occur when the uniformity is low due to an
improperly performed etching process that cuts off the rest of the circuit pattern. Types
such as random and near-full could be wrong from the initial process. When a defect
pattern like this occurs, it indicates a problem with a particular process or equipment. So it
is filtered out through visual inspection and used for defect analysis. Even in the front-end
process, there are several visual inspection processes, but they are only conducted on some
sample wafers, whereas wafer tests are conducted on all wafers and are more important
because they are directly related to yield. Therefore, in this study, we would like to focus
on the problems related to the wafer bin map among visual inspections.

Figure 1. Wafer bin map defect patterns.

The entire semiconductor process generally takes more than 3 months to complete,
and as the circuit becomes more refined, the process of the front-end process becomes more
complex and more difficult, requiring more than 2 months. As the process becomes longer,
the cost of production increases. To reduce this, the inspection process is minimized in
the front-end process and a wafer test is performed after the front-end process is finished.
The wafer test process is a process closely related to productivity because it includes the
process of checking whether the wafer is good or not and repairing it if possible. Yields are
usually calculated automatically, but still visual inspection of wafer patterns is performed
manually by a human. However, as production volume continues to increase and factory
automation accelerates, various attempts are being made to automatically classify wafer
map patterns in order to reduce the manpower and time required for this task.

Pattern classification studies using well-known CNN models have already been per-
formed, and a recent study showed that the classification accuracy of the model is over 95%.
However, in most cases, in order to apply a classification model to a real system, new hard-
ware investment is required because the time and hardware resources required for model
training and inference are insufficient or may affect the existing system. Manufacturing



Sensors 2023, 23, 1926 3 of 18

companies tend to be reluctant to introduce systems that apply machine learning models
due to the burden of investment and maintenance costs following the introduction of
high-performance hardware. They are also concerned about an increase in total production
time due to delayed response times of automated systems. Therefore, no matter how good
the classification performance is, if excessive resources are used or the size of the model
is too large, it cannot be used. In this study, we want to find a classification model that
uses a minimum of resources and significantly reduces training and inference time while
achieving good classification performance.

In addition, there are two main obstacles to the wafer map classification problem. The
first is that it is difficult to obtain labels, which are information about defects or types of
patterns. For general image pattern classification, there must be enough labels, but these
labels do not exist in wafer maps gathered in actual manufacturing facilities. The second is
that the dataset is imbalanced because the percentage of bad wafers in the data is much less
than normal. Overfitting is a common problem when dealing with classification problems
with imbalanced data. In this study, in order to minimize the side effects caused by the
two problems mentioned above, the experiment was conducted by mitigating the data
imbalance problem through data augmentation.

1.2. Contributions

In this study, we tried to find a way to improve the inefficient manual map pattern
classification task, find an efficient deep learning classification model applicable to man-
ufacturing, and compare it with the existing model to prove that good performance can
be obtained even with a light-weight model. Light-weight models such as EfficientNetV2,
ShuffleNetV2, and MobileNetV3, which have not been tried before, were applied to wafer
map classification to confirm performance, and the applicability in the field was con-
firmed through performance comparison according to platforms as well as classification
performance.

1.3. Structure of This Paper

The structure of this paper is as follows. Section 2 introduces related works on the
topic. Section 3 deals with the method proposed in this study. Section 4 is about the
experimental details and their results. Section 5 is the conclusion. Finally, Section 6
describes the limitations of this study and future work.

2. Related Works
2.1. Wafer Map Classification

A stacking ensemble model combining several manually extracted features with a
convolutional neural network was proposed in [1]. Manual feature extraction involves
extracting geometric, radon-based, and density-based features, and classifying the ex-
tracted features through machine learning models such as support vector machines, logistic
regression, and feed-forward neural networks. Combining the two methods of classifying
patterns through manual extraction and convolutional neural networks has been shown to
improve classification performance compared to classification using each model.

To improve wafer map classification performance, [2] first extracted image features
with a convolutional neural network model without preprocessing, and then applied
pattern classification by combining error correction output code (ECOC) and support
vector machine (SVM). Through experiments, it was demonstrated that the combined
method of ECOC and SVM is effective in improving classification performance without
preprocessing. Another study [3] considered that, although deep convolutional neural
networks have made great strides in classifying wafer map patterns, they are difficult to
apply due to the lack of real labeled data. They proposed a model pre-trained on unlabeled
data via self-supervised learning and fine-tuned with labeled data.

In [4], in order to solve the problem caused by the imbalanced data distribution
of the wafer map, good samples of defect pattern data are replicated or transformed in



Sensors 2023, 23, 1926 4 of 18

various ways to increase little defect pattern data. Then they showed that classification
performance improves using a convolutional neural network model. Similarly, in [5],
after making the number of data per class equal using data augmentation, patterns were
classified with a model of a relatively simple 8-layer convolutional neural network structure,
and performance was compared with other models.

Nakazawa and Kulkarni generated synthetic wafer maps with defect patterns via a
deep convolutional encoder-decoder in [6]. The model used in this study succeeded in
detecting a new type of defect pattern by learning eight basic defect patterns. Wang et al.
proposed a model that can classify two or more mixed type defect patterns in [7].

In [8], Yoon and Kang proposed a semi-automated system that measures the uncer-
tainty of wafer defect pattern classification results through reliability, entropy, and Gini
coefficient. If the uncertainty is below the threshold, the system automatically classifies the
defect pattern, and if the uncertainty is high, the system rejects the classification and allows
the engineer to make a decision.

Tsai and Lee performed pattern classification through light-weight deep convolutional
neural network models MobileNetV1 and MobileNetV2 in [9]. After augmenting the data
with a convolutional encoder-decoder, a light-weight deep convolutional model has been
shown to reduce model parameters and computational load and improve accuracy.

Chen et al. performed wafer map classification on the WM-811K dataset by combining
a dual-channel CNN and an ECOC-SVM classifier in [10]. Zheng et al. performed wafer
map classification by comparing ML-based and DL-based models, demonstrating that DL-
based models achieve better performance [11]. In [12], high accuracy was achieved by image
augmentation with G2LGAN followed by wafer map classification with MobileNetV2
classifier. In [13], Cha and Jeong combined improved U-Net with residual attention block
to perform classification on mixed-type wafer maps.

Yu et al. demonstrated a good performance as a result of classifying the WM-811K
dataset with only a very small number of parameters and FLOPs through PeleeNet-based
WM-PeleeNet [14]. Doss et al. proposed a model that performed transfer learning over a
pretrained ShuffleNetV2 model in [15].

Table 1 summarizes the accuracies and F1 scores presented in the related works. In
the same way as in this study, the experimental results using the WM-811K dataset are
summarized.

Table 1. Classification performance of the WM-811K dataset presented in related works.

Model Accuracy F1 Score

CNN-WDI[5] 0.962 -
DMC1 [9] 0.940 -
DCNN+ECOC-SVM [10] 0.964 -
DCNN [11] 0.938 0.938
G2LGAN+MobileNetV2 [12] 0.984 0.930
WM-PeleeNet [14] 0.954 -
ShuffleNet-v2-CNN [15] 0.969 0.957

2.2. Light-Weight Convolutional Neural Networks

Iandola et al. proposed SqueezeNet [16], a small convolutional neural network model
with AlexNet-like accuracy, 50x fewer parameters, and a model size of less than 0.5 MB
on the ImageNet dataset. They designed the model through three strategies. The first
strategy is to reduce the number of parameters by replacing the 3×3 filter with the 1×1
filter, and the second strategy is to reduce the number of parameters by reducing the
number of input channels of the 3×3 filter. A third strategy is to maximize accuracy
by using late downsampling in the network so that the convolutional layer has a large
activation map. They introduced building blocks called fire modules that implemented
strategies 1 and 2 and, combined with strategy 3, they designed SqueezeNet, a model that
uses far fewer resources while retaining AlexNet-level accuracy.



Sensors 2023, 23, 1926 5 of 18

Howard et al. proposed MobileNet, an efficient model based on depthwise separable
convolution for mobile and embedded applications [17]. A depthwise separable convolu-
tion consists of a depthwise convolution and a pointwise convolution (1×1 convolution).
In MobileNet, we reduce the computational cost by applying a single filter to each in-
put channel and then combining the outputs of the 1×1 convolution and the depthwise
convolution.

Zhang et al. proposed a ShuffleNet with a computationally efficient CNN structure
optimized for mobile devices [18]. They used pointwise group convolution and channel
shuffle to minimize computational cost while maintaining accuracy. In [18], a channel
sparse connection method such as group convolution was applied. Group convolution can
reduce computational cost because it performs operations between corresponding groups,
but when multiple group convolutions are accumulated, it is difficult to share features
because information flows only between specific channels. Therefore, a method called
channel shuffle was used to connect channels between different groups to create a more
robust structure.

Tan and Le introduced a new complex coefficient to show that models with better
performance can be found by balancing the scale of network depth, width, and resolution.
In order to improve the performance of convolutional neural networks, it is necessary to
expand the model structure. The expansion method can be implemented by applying depth
direction expansion, width direction expansion, input resolution expansion, or all three at
the same time. However, as the size of the model scales up, the amount of computation also
increases. Therefore, as a way to efficiently expand the model, they studied how to find the
optimal combination of depth, width, and resolution, and also proposed EfficientNet [19]
as a basic network.

As a follow-up study, MobileNetV2 [20] improved resource efficiency compared to
MobileNetV1 by designing a structure using linear bottlenecks and inverted residuals.
MobileNetV3 [21] uses network search to find the optimal network structure. The Ne-
tAdapt algorithm is used in the layer search method, which is a block-by-block search
method called platform-aware neural network structure search. Ma et al. proposed
ShuffleNetV2 [22], which improved ShuffleNet by finding a structure suitable for the
target platform by considering direct metrics such as speed. EfficientNetV2 [23] is a model
that points out three factors that slow down the learning speed and introduces a method to
remove them in order to speed up the learning.

3. Method

The flowchart of wafer map classification proposed in this study is shown in
Figure 2. The method is divided into two phases. In the training phase, we trained a
light-weight CNN model by normalizing labeled wafer map images and mitigating imbal-
ances through data augmentation. In the testing phase, after undergoing preprocessing
that applies only normalization to the unlabeled wafer map image, the trained model was
tested to predict the label.



Sensors 2023, 23, 1926 6 of 18

Preprocessing

Wafer map image + 

Class label

Data Augmentation

Training models

Preprocessing

Wafer map image

Testing models

Prediction

Training phase

Testing phase

Figure 2. Wafer map classification flowchart.

3.1. Data Augmentation

Wafer bin maps contain important information related to wafer defects. In particular,
defects that appear in a specific pattern become clues to the cause of major defects in the
manufacturing process, so quality problems can be minimized through quick detection,
cause analysis, and action. In general, since all wafers are tested in the wafer test process,
all wafer bin maps are also required to be inspected. Currently, a person visually checks
the wafer bin map one by one , and when there is a specific pattern, the wafer is filtered out
or further analyzed. At this time, labeling is sometimes assigned according to somewhat
subjective standards depending on the engineer, and above all, since the percentage of
defects in the entire data is relatively small, it is difficult to obtain defective samples that
can be labeled with a specific defect pattern. The WM-811K dataset used in this study
also had the distribution of Table 2, and only a small number of samples exist for specific
patterns.

Table 2. Distribution of class labels in the WM-811K dataset.

Class Label No. of Samples Proportion

Center 4294 2.48%
Donut 555 0.32%
Edge-loc 5189 3.00%
Edge-ring 9680 5.60%
Loc 3593 2.08%
Near-full 149 0.09%
Random 866 0.50%
Scratch 1193 0.69%
None 147,431 85.24%
Total 172,950 100.00%



Sensors 2023, 23, 1926 7 of 18

This data imbalance problem can cause overfitting when training is performed through
a classification model. Therefore, we additionally generated defect image data through
data augmentation and used it for model training. Images in the dataset were normalized
before use, and the training images were augmented by transformation. RandomRotation,
RandomErasing, Resize, RandomCrop, GaussianBlur, RandomHorizontalFlip, and Ran-
domVerticalFlip were applied as image transformation methods for augmentation. All
of the aforementioned transformations were applied to each image, but all of them were
randomly applied. As a result, images that have been transformed into various forms, such
as in Figure 3, have been added.

Figure 3. Data augmentation sample.

3.2. Light-Weight Convolutional Neural Network Models

Pattern classification was performed using ShuffleNetV2, MobileNetV2, MobileNetV3,
and EfficientNetV2 models, which are the state-of-the-art light-weight convolutional neural
network models.

In the light-weight model, the main task was to secure the number of usable channels
within limited resources, but channel shuffle used in ShuffleNet is a method to obtain
the effect of increasing the number of channels without greatly increasing the amount of
computation. Furthermore, a structure that additionally proposed various methods for
more efficient structure design appeared in [22]. As a practical guideline, the first is to use
balanced convolution to have the same channel width, the second is to consider the cost of
group convolution, the third is to reduce the degree of network fragmentation that hinders
parallel processing. The last thing is to reduce element-wise operations. Taking this into
account, channel split operations were introduced in ShuffleNetV2 to keep the number of
channels larger and wider. The basic unit using channel split can be represented as shown
in Figure 4c,d. It is a downsampling unit for increasing the number of channels, which is
performed without a channel split operation, and the number of channels doubles after
passing this unit. ShuffleNetV2 is composed of (c) and (d) units in Figure 4, and the overall
structure of the model used for wafer map classification is shown in Table 3. The size of
the wafer map input image was given as 224 × 224, and the first convolution applied a
filter with a size of 3 × 3 and a max pooling layer. Stages 2, 3, and 4 repeatedly used the
basic unit and downsampling unit of ShuffleNetV2 to build layers and, in Conv5, 1 × 1
convolution was used. Right before the last fully connected layer, the feature map was
reduced in the global average pooling layer and then classified into nine classes.



Sensors 2023, 23, 1926 8 of 18

Figure 4. ShuffleNetV2 [22]. (a) Basic unit (b) A unit for downsampling (2×).

Table 3. Structure of ShuffleNetV2.

Layer Output Size Filter Size Stride Repeat Output Channel

0.5 × 1 ×

Input 224 × 224 3 3

Conv1
MaxPool

112 × 112
56 × 56

3 × 3
3 × 3

2
2

1 24 24

Stage2 28 × 28
28 × 28

2
1

1
3

48 116

Stage3 14 × 14
14 × 14

2
1

1
7

96 232

Stage4 7 × 7
7 × 7

2
1

1
3

192 464

Conv5 7 × 7 1 × 1 1 1 1024 1024

Global
Pool 1 × 1 7 × 7

FC 9 9

MobileNet even came out to V3, and we used V2 and V3 for performance comparison.
The main differences between V1 and V2 and V3 are the linear bottleneck and the use of
inverted residual blocks. The structure of MobileNetV2 used in this study is shown in
Table 4. There are two types of block layers. The first block is an inverted residual block
with a stride of 1, and the second block is a block with a stride of 2. In both blocks, the first
layer is pointwise convolution and ReLU6, and the second layer is depthwise convolution.
The third layer is again a pointwise convolution, but here there is no activation function.



Sensors 2023, 23, 1926 9 of 18

Each input and output has a constant t value called the expansion factor used to scale the
output channel. A value between 5 and 10 is recommended for the constant t. As a result
of the experiment, the best performance was shown at about 6, so t = 6 was also applied to
this model.

Table 4. Structure of MobileNetV2.

Layer Input Size Kernel Size Stride Repeat Output
Channel

Conv2d 224 × 224 × 3 3 × 3 2 32
Block1 112 × 112 × 32 3 × 3 1 1 16
Block2 112 × 112 × 15 3 × 3 2 2 24
Block3 56 × 56 × 24 3 × 3 2 3 32
Block4 28 × 28 × 32 3 × 3 2 4 64
Block5 14 × 14 × 64 3 × 3 1 3 96
Block6 14 × 14 × 96 3 × 3 2 3 160
Block7 7 × 7 × 160 3 × 3 1 1 320

Conv2d 7 × 7 × 320 1 × 1 1 1 1280
AvgPool 7 × 7 × 1280 7 × 7 1
Conv2d 1 × 1 × 1280 1 × 1 9

MobileNetV3 uses the network search algorithm to find the optimal network structure
while using the basic structure of version 2 as it is. The first of the major improvements
was to replace the 1×1 convolution used in the last step of version 2 for expansion into
a high-dimensional feature space with an average pooling layer, reducing the amount of
computation without loss of accuracy. Secondly, instead of ReLU, a nonlinear activation
function called swish was introduced. The swish function is defined as:

swishx = x · σ(x). (1)

Since the sigmoid function requires a considerable amount of calculation, a nonlinear
function called swish was used instead of ReLU to reduce the amount of calculation. A
hard version of the h-swish function with sigmoid changed to ReLU6 can be expressed as:

h-swish[x] = x
ReLU6(x + 3)

6
. (2)

Since these nonlinear functions have a computational cost saving effect in deep net-
works, h-swish was used as an activation function in the second half of the entire network.
Third, using the squeeze-and-excite bottleneck structure used in the previous study [24],
the number of channels in the extension layer was changed to be fixed to 1/4. In addition,
MobileNetV3 is defined in two versions, a large model and a small model. Since the wafer
map image works well enough even for a small model, the MobileNet V3-Small model
with the structure shown in Table 5 was used in this study. In Table 5, SE represents a
squeeze-and-excite block, NL represents nonlinearity, RE represents ReLU, HS represents
hswish and NBN is a layer that does not use batch normalization.

EfficientNetV2 [23] studied the obstacles to model training. One of the contributing
factors to long training times is the size of very large images, with larger image sizes
resulting in higher memory consumption and longer training times. Another hurdle is that
depthwise convolution works well for later layers of the network, but is slow for earlier
layers. Since increasing the network size uniformly at every step is ineffective, Efficient-
NetV2 ameliorates this problem by fine-tuning the scaling rules, such as by incrementally
increasing the image size and limiting the maximum image size. To improve the problem of
depthwise convolution, 1 × 1 convolution and 3 × 3 depthwise convolution were converted
into standard 3 × 3 convolution in the MBConv structure as shown on the left of Figure 5. A
model replaced with Fused-MBConv with the structure shown on the right of the Figure 5
changed to a solution was proposed, and when applied to EfficientNet, the training speed



Sensors 2023, 23, 1926 10 of 18

was improved. We used EfficientNetV2-S with the same structure as in Table 6. Looking at
the structure of Table 6, all steps do not use the same block, use Fused-MBConv blocks that
do not use a depthwise convolution in the first half of the network, and MBConv blocks
use a depthwise convolution in the second half of the network.

Table 5. Structure of MobileNetV3-Small.

Layer Input Size Filter
Size Stride Output

Channel SE NL

Conv2d 224 × 224 × 3 3 × 3 2 16 HS
Bneck 112 × 112 × 16 3 × 3 2 16 X RE
Bneck 56 × 56 × 16 3 × 3 2 24 RE
Bneck 28 × 28 × 24 3 × 3 1 24 RE
Bneck 28 × 28 × 24 5 × 5 2 40 X HS
Bneck 14 × 14 × 40 5 × 5 1 40 X HS
Bneck 14 × 14 × 40 5 × 5 1 40 X HS
Bneck 14 × 14 × 40 5 × 5 1 48 X HS
Bneck 14 × 14 × 48 5 × 5 1 48 X HS
Bneck 14 × 14 × 48 5 × 5 2 96 X HS
Bneck 7 × 7 × 96 5 × 5 1 96 X HS
Bneck 7 × 7 × 96 5 × 5 1 96 X HS

Conv2d 7 × 7 × 96 1 × 1 1 576 X HS
Pool 7 × 7 × 576 7 × 7 1

Conv2d,
NBN 1 × 1 × 576 1 1024 HS

Conv2d,
NBN 1 × 1 × 1024 1 × 1 1 9

Figure 5. Structure of MBConv and Fused-MBConv [23].



Sensors 2023, 23, 1926 11 of 18

Table 6. Structure of EfficientNet V2-S.

Layer SE Filter Size Stride Repeat Output
Channel

Conv2d 3 × 3 2 1 24
Fused-

MBConv1 3 × 3 1 2 24

Fused-
MBConv4 3 × 3 2 4 48

Fused-
MBConv4 3 × 3 2 4 64

MBConv4 X 3 × 3 2 6 128
MBConv6 X 3 × 3 1 9 160
MBConv6 X 3 × 3 2 15 256
Conv2d 1 × 1 1 1280

Pool 7 × 7 1
FC 1 9

In the process of training the model, the cross entropy loss function was used to
check whether the classification was successful. Cross entropy loss, commonly used for
multi-class classification, is defined as:

CELoss = −
C

∑
i

ti log( f (s)i). (3)

ti means the correct answer, s means the score predicted by the model, and C means each
class. The higher the uncertainty of the prediction result, the larger the value of the loss
function, and the lower the uncertainty, the smaller the value of the loss function. During
training, the model updated the parameters so that the value of the loss function became
smaller.

4. Experiments
4.1. Dataset

For training, we used WM-811K, a data set consisting of 811,457 wafers collected
from real fabrication. The WM-811K dataset consists of 172,950 labeled data and 639,507
unlabeled data, with 632 images ranging in size from 6×21 to 300×202. Label data were
defined as a total of nine types, including eight types with different defect pattern types
and the None type classified as normal wafers. In this study, 172,950 labeled data were
converted into a 3-channel image with a size of 224×224 by dividing it into a training
dataset of 80% and an evaluation dataset of 20%. In addition, as shown in Table 7, the
number of images was increased to 10,000 for each class through data augmentation for the
eight defect pattern training data points. The experimental method used the K-fold cross-
validation method to measure generalized performance. Excluding the testing dataset,
which is 20% of the total data, the training dataset was divided into four folds and separated
into training and validation datasets. That is, the ratio of training:validation:testing data
was set to 6:2:2. Three of the four folds were divided for training and one for validation,
each model was trained and validated, and the accuracy and F1 score were measured. The
validation fold was changed, the rest of the folds were repeated, the performance results
were averaged for each fold and the standard deviation was obtained. In the case of the
testing dataset, data distribution close to the actual data was maintained without data
augmentation, and accuracy, precision, recall, and F1 score were measured.



Sensors 2023, 23, 1926 12 of 18

Table 7. The number of training and testing data.

Class Label Original Training Data Augmented Training Data Testing Data

Center 3435 10,000 859
Donut 444 10,000 111
Edge-loc 4151 10,000 1038
Edge-ring 7744 10,000 1936
Loc 2874 10,000 719
Near-full 119 10,000 30
Random 693 10,000 173
Scratch 954 10,000 239
None 117,945 117,945 29,486
Total 138,360 197,945 34,590

4.2. Settings

The experimental environment was implemented using Python 3.7 and Pytorch, and
the experiment was conducted with GPU on Quadro RTX 8000. The size of the input image
for model training was unified into three channels of 224 × 224, the batch size was 128,
the optimizer was Adam, and the learning rate was 1 × 10−4. In additional experiments,
training and inference times were measured using GPU and CPU for each model. The CPU
environment was tested on Intel(R) Core i7-9700F.

4.3. Evaluation Metric

Accuracy, precision, recall and F1 score were used to compare the performance of the
models. The prediction result of the classifier and the confusion matrix of the actual value
can be expressed as Table 8, and each index can be obtained as Equations (4)–(7).

Table 8. Confusion matrix.

Prediction

Positive Negative

Actual Positive TP; True Positive FN; False Negative

Negative FP; False Positive TN; True Negative

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1Score =
2 × Precision × Recall

Precision + Recall
. (7)

We also compared how efficiently resources were being used by measuring the size of
parameters, memory usage, MAdds, FLOPs, training time, and inference time. MAdds is
the number of multiplication and addition operations and FLOPs is the number of floating
point operations.



Sensors 2023, 23, 1926 13 of 18

4.4. Experiment Results

As a result of the experiment, the accuracy and F1 scores of the training and validation
datasets for each model are shown in Table 9. The accuracy, precision, recall, and F1 score
of the testing dataset are shown in Table 10. The models used were ResNet18, which is
well known as an image classification model, and state-of-the-art light-weight models such
as EfficientNet V2-S, ShuffleNetV2, ShuffleNetV2 0.5×, MobileNetV2, and MobileNetV3-
Small. CNN-WDI [5], at the end, was used in [5]. Compared to ResNet18, all five light-
weight models used in the experiment in this study showed a slightly lower classification
performance on training and validation datasets, but MobileNetV3 had the same F1 score
as ResNet18 for the testing dataset. Compared to CNN-WDI [5], MobileNetV3 had higher
training and validation F1 scores, and the same testing F1 scores, indicating a very good
performance even though it is a light-weight model.

Table 9. Performance comparison of training and validation datasets by model (average ± standard
deviation).

Model
Training Validation

Accuracy F1 Score Accuracy F1 Score

ResNet18 0.986±0.005 0.977±0.009 0.979±0.006 0.966±0.011
EfficientNetV2 0.979±0.005 0.965±0.012 0.973±0.005 0.958±0.013
ShuffleNetV2 0.978±0.006 0.963±0.011 0.972±0.005 0.952±0.012
ShuffleNetV2 0.5× 0.967±0.009 0.940±0.019 0.962±0.008 0.932±0.018
MobileNetV2 0.976±0.004 0.960±0.008 0.972±0.004 0.952±0.009
MobileNetV3 0.981±0.005 0.970±0.009 0.975±0.005 0.959±0.010

CNN-WDI [5] 0.977±0.005 0.961±0.010 0.970±0.007 0.947±0.015

Table 10. Comparison of performance of evaluation datasets by model.

Model Accuracy Precision Recall F1 Score

ResNet18 0.980 0.915 0.877 0.895
EfficientNetV2 0.979 0.918 0.868 0.885
ShuffleNetV2 0.980 0.929 0.871 0.892
ShuffleNetV2 0.5× 0.979 0.920 0.858 0.884
MobileNetV2 0.979 0.873 0.907 0.886
MobileNetV3 0.980 0.909 0.885 0.895

CNN-WDI [5] 0.979 0.938 0.861 0.895

Looking at the experimental results of all models in Table 10, the F1 score was lower
than the accuracy, because the evaluation dataset had an imbalanced distribution. In other
words, since most of the data were of the None type with a lot of data, even if the model
randomly classifies them as the None type, this is highly likely to be the correct answer
with a high probability. Therefore, it is unreasonable to evaluate the performance of the
model only on the basis of accuracy in this study. In fact, when the classification result is
expressed as a confusion matrix for each class, it can be seen that data are concentrated in a
specific class as shown in Figure 6.



Sensors 2023, 23, 1926 14 of 18

Figure 6. A confusion matrix of MobileNetV3.

Figure 7 shows the confusion matrix representing the classification results for each
class as a normalized value between 0 and 1 to compare how well the models for each class
classified. As can be seen from this normalized confusion matrix, some classes showed
results close to 1, but some classes showed relatively low classification accuracy. Since
these differences between classes cannot be sufficiently reflected in accuracy, the F1 score
for each class was set as a performance evaluation index to reduce distortion of results due
to imbalanced data distribution. Therefore, the final performance was evaluated based on
the Macro F1 score, which gives equal weight to each class.

Figure 7. A normalized confusion matrix of MobileNetV3.



Sensors 2023, 23, 1926 15 of 18

Table 11 shows the number of parameters, memory size, number of multiplication and
addition operations, and number of floating point operations for each model. Compared
to ResNet18, the number of parameters decreased by 8.6 times for ShuffleNetV2, 32 times
for ShuffleNetV2 0.5×, 5.1 times and 7.5 times for MobileNetV2 and V3, respectively, and
increased by 1.8 times for EfficientNetV2. In the case of memory, ShuffleNetV2 reduced
by 1.2 times, ShuffleNetV2 0.5× by 2.5 times, and MobileNetV3 by 1.4 times. However,
EfficientNetV2 and MobileNetV2 increased by 6.3 times and 3.4 times, respectively. The
number of arithmetic operations and floating-point operations in ShuffleNetV2 is reduced
by about 12 times compared to ResNet18, 44 times in ShuffleNetV2 0.5×, 5.8 times in
MobileNet in V2, and about 30 times in V3.

Table 11. Comparison of the number of parameters, memory usage, and computation between
models.

Model Params (M) Memory (MB) MAdds MFLOPs

ResNet18 11.2 22.1 3640 1820
EfficientNetV2 20.3 139 5780 2900
ShuffleNetV2 1.3 18.6 295 149
ShuffleNetV2 0.5× 0.4 8.9 82 42
MobileNetV2 2.2 74.2 625 319
MobileNetV3 1.5 16.1 117 60

CNN-WDI [5] 2.7 8.5 597 301

Table 12 is the result of measuring execution time for each model and indicates the
number of images processed per second during the model training and inference phases,
based on experiments using GPU and CPU on ResNet18 and light-weight models. In terms
of training speed, ShuffleNetV2 showed a 6.9 times faster processing speed, MobileNetV2
was 5.4 times faster, and MobileNetV3 was 7.2 times faster than ResNet18. It was very
slow overall on the CPU, but still achieved the fastest results on MobileNetV3. In the case
of inference speed, it was slow overall, but when compared relatively, MobileNetV3 was
the fastest, followed by ShuffleNetV2, ResNet18, and MobileNetV2. EfficientNetV2 was
excluded because the execution time on the CPU was excessively long, and ShuffleNetV2
0.5× was excluded due to its low F1 score. In real applications, models can be pre-trained
on a GPU environment and then inferred on a CPU environment.

Table 12. Comparison of throughput per unit time between models.

Model
Training (Images/sec.) Inference (Images/sec.)

GPU CPU GPU CPU

ResNet18 66.8 2.7 212.4 7.5
EfficientNetV2 171.7 - 544.7 -
ShuffleNetV2 463.8 3.9 912.4 11.8
ShuffleNetV2 0.5× 511.2 - 1026.7 -
MobileNetV2 363.1 2.0 977.5 6.2
MobileNetV3 480.1 5.4 1046.0 18.4

CNN-WDI [5] 416.7 4.7 833.3 13.4

Figure 8 shows the number of parameters, number of floating-point operations, and
F1 score to compare resource utilization and performance for each model. The smaller
the number of parameters and the amount of computation in the model, the lower the
hardware resource consumption. ShuffleNetV2 0.5× used the least amount of resources,
but its classification performance was the lowest among light-weight models. On the
other hand, MobileNetV3 showed the best classification performance while using fewer
hardware resources. Figure 9 shows the comparison result in terms of speed. The left side
shows the F1 score and inference speed for each model on the GPU, and the right side



Sensors 2023, 23, 1926 16 of 18

shows the results performed on the CPU. Again, MobileNetV3 had the best performance
and was processed in the fastest time. MobileNetV2 processed faster than ShuffleNetV2
on the GPU, but was very slow on the CPU. The processing speed in the CPU was in the
order of MobileNetV3, CNN-WDI, ShuffleNetV2, ResNet18, and MobileNetV2. As a result
of the experiment comparing resource utilization and training and inference speed, the
MobileNet V3 model showed the most efficient and good performance in the wafer map
classification task.

Figure 8. Number of parameters and F1 score (left); Number of floating point operations and F1
scores (right).

Figure 9. Comparison of F1 score and inference speed; GPU (left) and CPU (right).

4.5. Ablation Study

In order to find out the effect of the size of the input image, we compared the perfor-
mance of each model. Table 13 shows the F1 score, number of operations, and throughput
when the size of the input image is set to 224×224 and 96×96 in ShuffleNetV2 and Mo-
bileNetV3 with other conditions the same. When the image size was reduced, the amount
of computation and throughput improved a lot, but as a result of classification, the F1 score
fell significantly to 0.058 for ShuffleNetV2 and 0.048 for MobileNetV3. It was found that
the larger the size of the image, the higher the amount of computation and the longer the
training time, but the better the classification performance. Depending on the application
to be applied, it was necessary to adjust the size of the input image to an appropriate level.

Table 13. Performance comparison by image size.

Model Image Size F1 Score MFLOPs Throughput

ShuffleNetV2 224 0.890 149 463.8
ShuffleNetV2 96 0.832 27 788.5 (1.7×)
MobileNetV3 224 0.893 60 480.1
MobileNetV3 96 0.845 12 672.1 (1.4×)



Sensors 2023, 23, 1926 17 of 18

5. Conclusions

In this study, we proposed a method that can classify semiconductor wafer map defect
patterns using minimal computing resources in a limited hardware environment. We
used light-weight convolutional neural network models EfficientNetV2, ShuffleNetV2,
MobileNetV2 and V3 for wafer map defect pattern classification and compared them in
terms of classification performance, hardware resource usage and execution time. It was
shown that the MobileNetV3 could perform with the best classification performance and
efficient resource utilization. As a result, by automating the classification of defect map
patterns without introducing new hardware in an actual workplace, the manpower required
for the task can be reduced, and this will help with the early detection, analysis and action
of defects. Currently, at least nine people are undertaking visual inspection of wafer maps
for defects in three shifts. If the annual salary of one skilled worker is 50 million won, it
has the effect of reducing labor costs by 450 million won a year, and this manpower can
be put into other tasks. In addition, by finding a specific pattern through wafer bin map
classification, it has the effect of reducing accident handling costs from as little as hundreds
of millions of won to as many as billions of won per case. In particular, if an automated
wafer map pattern classification system is built using the light-weight model proposed
in this study, the cost of purchasing and maintaining high-performance hardware can be
saved. Furthermore, it is expected that it can be used as a way to drive deep learning
models within limited resources when building systems that deal with similar problems.

6. Future Work

The method proposed in this study has a limitation in that it is difficult to recognize
the occurrence of a new type of defect pattern. In addition, even when two or more defect
patterns are mixed, there is a problem of predicting only one of them. Therefore, future
research will be directed in the following two directions. The first is to define one of the
defect types as an unknown type, exclude it when training the model, and model it so that
it can be recognized as a new type. The second is to train by increasing the number of
classes after additionally generating data that mix two or more types in the dataset and
adding labels. That way, even images of mixed types will be classified.

Author Contributions: Conceptualization, E.S.; methodology, E.S.; software, E.S.; validation, E.S.;
formal analysis, E.S. and C.D.Y.; writing, E.S. and C.D.Y.; supervision, C.D.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
LD Linear dichroism



Sensors 2023, 23, 1926 18 of 18

References
1. Hyungu, K.; Kang, S. A stacking ensemble classifier with handcrafted and convolutional features for wafer map pattern

classification. Comput. Ind. 2021, 129, 103450.
2. Jin, C.H.; Kim, H.J.; Piao, Y.; Li, M.; Piao, M. Wafer map defect pattern classification based on convolutional neural network

features and error-correcting output codes. J. Intell. Manuf. 2020, 31, 1861–1875.
3. Hyungu, K.; Kim, S.B. Self-supervised representation learning for wafer bin map defect pattern classification. IEEE Trans.

Semicond. Manuf. 2020, 34, 74–86.
4. Kim, E.S.; Choi, S.H.; Lee, D.H.; Kim, K.J.; Bae, Y.M.; Oh, Y.C. An oversampling method for wafer map defect pattern classification

considering small and imbalanced data. Comput. Ind. Eng. 2021, 162, 107767.
5. Muhammad, S.; Abbas, Q.; Lee, J.Y. A deep convolutional neural network for wafer defect identification on an imbalanced dataset

in semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 2020, 33, 436–444.
6. Nakazawa, T.; Deepak, V.K. Anomaly detection and segmentation for wafer defect patterns using deep convolutional en-

coder–decoder neural network architectures in semiconductor manufacturing. IEEE Trans. Semicond. Manuf. 2019, 32, 250–256.
7. Wang, J.; Xu, C.; Yang, Z.; Zhang, J.; Li, X. Deformable convolutional networks for efficient mixed-type wafer defect pattern

recognition. IEEE Trans. Semicond. Manuf. 2020, 33, 587–596.
8. Yoon, S.; Kang, S. Semi-automatic wafer map pattern classification with convolutional neural networks. Comput. Ind. Eng. 2022,

166, 107977.
9. Tsai, T.-H.; Lee, Y.-C. A light-weight neural network for wafer map classification based on data augmentation. IEEE Trans.

Semicond. Manuf. 2020, 33, 663–672.
10. Chen, S.; Zhang, Y.; Yi, M.; Shang, Y.; Yang, P. AI classification of wafer map defect patterns by using dual-channel convolutional

neural network. Eng. Fail. Anal. 2021, 130, 105756.
11. Zheng, H.; Sherazi, S.W.A.; Son, S.H.; Lee, J.Y. A Deep Convolutional Neural Network-Based Multi-Class Image Classification for

Automatic Wafer Map Failure Recognition in Semiconductor Manufacturing. Appl. Sci. 2021, 11, 9769.
12. Tsai, T.H.; Wang, C.Y. Wafer Map Defect Classification using Deep Learning Framework with Data Augmentation on Imbalance

Datasets. 2022. Available online: https://assets.researchsquare.com/files/rs-2078809/v1/cddeadcd-fff2-4042-ac6f-f890350ea1
95.pdf?c=1664473218 (accessed on 28 January 2023).

13. Jaegyeong, C.; Jeong, J. Improved U-Net with residual attention block for mixed-defect wafer maps. Appl. Sci. 2022, 12, 2209.
14. Yu, N.; Chen, H.; Xu, Q.; Hasan, M.M.; Sie, O. Wafer map defect patterns classification based on a lightweight network and data

augmentation. CAAI Trans. Intell. Technol. 2022, 1–14. https://doi.org/10.1049/cit2.12126.
15. Doss, R.; Ramakrishnan, J.; Kavitha, S.; Ramkumar, S.; Charlyn, P.; Latha, G.; Ramaswamy, K. Classification of Silicon (Si) Wafer

Material Defects in Semiconductor Choosers using a Deep Learning ShuffleNet-v2-CNN Model. Adv. Mater. Sci. Eng. 2022, 2022,
1829792.

16. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

17. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Wey, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017. arXiv:1704.04861.

18. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

19. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019.

20. ler, M.S; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

21. Howard, A.; ler, M.S.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2
November 2019.

22. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

23. Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine
Learning, PMLR, Online, 18–24 July 2021.

24. Hu, J.; Li, S.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://assets.researchsquare.com/files/rs-2078809/v1/cddeadcd-fff2-4042-ac6f-f890350ea195.pdf?c=1664473218
https://assets.researchsquare.com/files/rs-2078809/v1/cddeadcd-fff2-4042-ac6f-f890350ea195.pdf?c=1664473218

	Introduction
	Background
	Contributions
	Structure of This Paper

	Related Works
	Wafer Map Classification
	Light-Weight Convolutional Neural Networks

	Method
	Data Augmentation
	Light-Weight Convolutional Neural Network Models

	Experiments
	Dataset
	Settings
	Evaluation Metric
	Experiment Results
	Ablation Study

	Conclusions
	Future Work
	References

