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Abstract: With the development of the Internet and communication technologies, the types of services
provided by multitier Web systems are becoming more diverse and complex compared to those of
the past. Ensuring a continuous availability of business services is crucial for multitier Web system
providers, as service performance issues immediately affect customer experience and satisfaction.
Large companies attempt to monitor the system performance indicator (SPI) that summarizes the
status of multitier Web systems to detect performance anomalies at an early stage. However, the
current anomaly detection methods are designed to monitor a single specific SPI. Moreover, the
existing approaches consider performance anomaly detection and its root cause analysis separately,
thereby aggravating the burden of resolving the performance anomaly. To support the system
provider in diagnosing the performance anomaly, we propose an advanced causative metric analysis
(ACMA) framework. First, we draw out 191 performance metrics (PMs) closely related to the target
SPI. Among these PMs, the ACMA determines 62 vital PMs that have the most influence on the
variance of the target SPI using several statistical methods. Then, we implement a performance
anomaly detection model to identify the causative metrics (CMs) between the vital PMs using random
forest regression. Even if the target SPI changes, our detection model does not require any change in
its model structure and can derive closely related PMs of the target SPI. Based on our experiments,
wherein we applied the ACMA to the business services in an enterprise system, we observed that the
proposed ACMA could correctly detect various performance anomalies and their CMs.

Keywords: anomaly detection; causative metrics; regression model; distributed systems

1. Introduction

As IT companies provide more complex business services, meeting constant availabil-
ity and expected performance levels of the enterprise applications become increasingly
challenging. If the service is unavailable or unbearably slow, then users may stop using
the service, which leads to a significant financial loss. For example, Amazon discovers
that every 100 ms of latency costs a 1% decrease in sales, and Google reports that the
traffic drops by 20% due to a 500 ms delay in response time [1]. Thus, guaranteeing both
performance and availability of services is essential for a successful business.

A previous survey [1] describes the performance anomalies as an unexpected behavior
with associated system failures. Due to the unpredictable and destructive nature of the
performance anomalies, a system administrator must continuously inspect various system
performance indicators (SPIs) that summarize the overall status of the services, such as
latency or traffic. In practice, since enterprise services have hundreds of performance
metrics (PMs) that have an influence on the SPI, manually diagnosing the behavior of
services through SPI is time-consuming and labor-intensive. Accordingly, many large
companies have built their own anomaly detection frameworks, which automatically
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monitor the SPI and alert the administrator when detecting abnormal behaviors in the SPIs.
For instance, Microsoft [2] developed an anomaly detection algorithm to help customers
track their business metrics from Bing, Office, and Azure. Yahoo [3] uses a collection of
anomaly detectors to monitor and raise alerts on its various services.

Many existing anomaly detectors aim to monitor the time series of a single SPI. In
other words, when the targeted SPI changes, additional steps of either designing a new
anomaly detection algorithm or tuning the parameters are required. Additionally, the
existing anomaly detectors seldom analyze the root causes of the anomaly, thereby failing
to reduce the overhead of anomaly management and diagnosis. Although several methods
to identify the causes of performance anomalies have been reported to date, they suffer
from performance degradation due to the large search spaces of the PMs. For example,
Peiris et al. [4] adopted the Pearson and Spearman correlation analysis that evaluates linear
relationships between two variables. However, since a multitier Web system contains
hundreds of PMs that affect a target SPI, the administrator should investigate all the
possible pairwise combinations.

We believe that anomaly detection and root cause analysis must be performed to-
gether to provide valuable insights to help the administrators troubleshoot the performance
anomalies. In light of this, a top-down approach, which identifies the performance anoma-
lies first and then searches for the correlation between the PMs, faces several challenges.
First, to launch the root cause analysis, the failure cases should be identified, implying
that the performance anomalies and the corresponding PMs need to be known in advance.
Second, today’s business services are hosted on a complex multitier architecture, where
the tiers are physically separated and executed on separate machines. Because of such a
large-scale infrastructure, the problem is often unknown, and tracing the PMs in real time
is nearly impossible.

Evidently, determining the PMs relevant to the performance anomalies is a consider-
able challenge for the administrator. Therefore, the performance anomaly detectors should
offer a good starting point to analyze the performance anomalies of the target SPI. However,
efficiently selecting the most relevant PMs is challenging because of their huge search
spaces. In this paper, we propose advanced causative metric analysis (ACMA), which first
selects the causative metrics (CMs), among all the identified PMs, that strongly influence the
variance of the target SPI. Then, the ACMA automatically performs anomaly detection and
CM analysis in real time, providing helpful guidance to the administrators and minimizing
the time required to analyze the behavior of the business services running on a multitier
architecture. Specifically, the ACMA extracts the primary CM candidates from a set of PMs
and sorts them by their impact on the variance of the target SPI. The ACMA framework
offers these primary CM candidates within a few seconds when detecting the target SPI
anomalies and alerts the service administrator, allowing them to handle the problem in real
time. To further enhance the detection reliability in the case when the actual root causes are
not in the primary CM candidates, the ACMA draws alternative CM candidates within
minutes after reporting the primary CM candidates.

To demonstrate the capability of the ACMA, we evaluated its performance by applying
it to a real-world enterprise service used by about 160,000 employees worldwide hosted
by Samsung. The servers in the service are composed of application, operating system
(OS), database (DB), and network (NW) domains. It is a mission-critical web system
used by employees, so it is suitable for evaluating the performance of ACMA. It collects
approximately 62,000,000 observations of the target SPI and PMs per day (approximately
8800 MB). We set the response time of the authentication service as the target SPI in the
Samsung Virtual Private Network (SVPN), which consists of 28 servers (12 servers for web,
12 servers for application, and four servers for DB) and 24 network devices. The ACMA
monitored the response time of the authentication service over two months (1 June 2022
to 31 July 2022). During the experiment, the ACMA detected six performance anomaly
cases, where five cases were actual performance anomalies. The administrators could
determine that the root causes of four of these five cases were included in the primary CM
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candidates, and the remaining case was located in alternative CM candidates. Therefore, we
can conclude that the ACMA can maintain service availability by helping the administrator
to handle the problem immediately.

Specifically, we make the following contributions to achieve our goals:

1. We identified 62 vital PMs that contributed the most to the target SPI in a multitier enter-
prise infrastructure environment and provided their corresponding threshold values.

2. Here, we present methods to extract the primary and alternative CM candidates
from the vital PMs. Since navigating all the PMs is time-consuming, reducing the
search space is necessary to derive the CMs related to the target SPI performance
anomalies rapidly.

3. We used several statistical methodologies to determine whether a performance
anomaly is related to the primary or alternative CM candidates, thereby bridging
the gap between anomaly detection and root cause analysis. Notably, most of the
existing methods adopt a top-down approach to detect outliers in the target SPI first
and subsequently launch a root cause analysis, which involves multiple iterations of
validation against a large amount of PMs.

4. We evaluated the effectiveness of our approach by using enterprise services. The ex-
perimental results demonstrated that the ACMA can provide the CM candidates
immediately, thereby aiding the service administrator in identifying the potential
causes. Based on the results obtained by implementing the ACMA to enterprise ser-
vices, we conclude that the ACMA can provide deeper insights into the performance
anomalies and enhance service reliability.

The rest of this paper is organized as follows. We first present the preliminaries and
problem definition in Section 2. In Section 3, we describe the proposed approach and
provide an overview of the ACMA framework. Next, we describe the components of
the ACMA framework in Section 4 and present our evaluation results and in Section 5.
In Section 6, we discuss related works, and the major conclusions drawn from the study
results are presented in Section 7.

2. Preliminaries
2.1. PMs and Target SPI

In this paper, we define PM as a system feature that represents the partial state of
a multitier Web system. Typically, a multitier Web system consists of four domains—
application, operating system (OS), DB, and network. PMs represent the tracked detailed
status of resources in each domain. For example, the OS domain includes PMs such
as hostname consistency check or percentage of available free space on a logical disk.
Furthermore, CPU utilization or memory utilization of switches can be a PM in the network
domain. The SPI is a summarized metric that indicates the overall condition of a multitier
Web system and directly represents the service availability. As mentioned in Section 1, we
can set the response time as a target SPI for the search engines. Then, an anomaly detector
continuously monitors the response time (i.e., target SPI) to maintain the reliability and
availability of the search engine. In this section, we describe the PMs used in this study
(further details are provided in Section 3.2).

Among the widely used 191 PMs, we derive 62 vital PMs via exploratory data analysis
(EDA). Next, we select the top-k primary causative metric candidates (CMCs) closely related
to the target SPI using the random forest algorithm. When detecting the target SPI anomaly,
the primary CMs are derived using both the ACMA threshold and results of the ACMA
t-test performed on the primary CMCs. Random forest is one of the ensemble learning
methods which combines the output of multiple decision trees to reach the final result.
When training an ensemble model, injecting randomness for underlying classifiers is critical
for preventing the model from making biased results. The random forest algorithm achieves
the classifier diversity by using the bagging technique. In the bagging method, a random
sample of data in a training set is selected with a replacement to train each decision tree.
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Furthermore, the random forest algorithm utilizes feature bagging that chooses random
features among all features to ensure a low correlation among decision trees.

In addition, we search for alternative CMs against the case that the root causes of the
target SPI anomaly are not in the primary CMs. For the remaining vital PMs, excluding the
primary CMCs, we analyze the relationship between the remaining vital PMs and the target
SPI using rolling correlation and derive alternative CMCs. Then, we derive the alternative
CMs using the same approach (i.e., ACMA threshold and t-test) applied for deriving the
primary CMs. The details on determining the primary and alternative CMs are outlined in
Sections 3 and 4, and the relationship between the PMs is illustrated in Figure 1.

Figure 1. Relationship between the PMs.

2.2. CMCs and CMs of Performance Anomaly

When a performance anomaly of the target SPI appears, its prompt detection and
treatment are crucial to enhance the reliability and availability of the services. In this study,
we defined the suspected causes of an anomaly derived by the ACMA as the “CMs” of the
performance anomaly. The ACMA extracts the CMCs by first filtering out the PMs that are
most relevant to the target SPI, among all the PMs. Subsequently, the ACMA determines
the primary and alternative CMs via two approaches. The primary CMs are the PMs that the
ACMA assumes as the actual causes of the performance anomaly and are derived using
a bottom-up approach. Next, a top-down approach is applied to detect alternative CMs
among the PMs, excluding the primary CMCs.

Note that collecting the abnormal behavioral data of the target SPI is nontrivial,
because the anomaly cases are rare, and labeling such data one-by-one requires human
intervention. Since securing a sufficient number of labeled abnormal examples for detecting
CMs is challenging, we instead investigate the relationship between the target SPI and
the PMs in advance based on the behavioral data when the service is in a normal state.
Specifically, we rank the relevant PMs according to their significance to the target SPI;
here, significance indicates the impact on the variance of the target SPI. When a target SPI
anomaly occurs, the ACMA determines the primary CMs based on the relevance of the PMs
via performance metric monitoring (PMM) and performance metric analysis (PMA).

While reporting the primary CMs to the administrator, a sufficient amount of abnormal
behavioral data is accumulated to further analyze the vital PMs, excluding the primary
CMCs. Thus, the ACMA can now launch supplementary analysis using this abnormal
behavioral data to derive alternative CMs. Once the administrator receives both the primary
and alternative CMs, they can leverage them as a starting point to resolve the issue promptly.
The entire process is outlined in Figure 2 and elucidated in Section 4.
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Figure 2. Overview of the CMCs and CMs.

2.3. Problem Definition

Our goal is to design a framework that can correctly identify the CMs of the perfor-
mance anomalies in a multitier environment, as illustrated in Figure 3. We assume that
the measured values of both the target SPI and PMs are collected in a time-series form.
Based on the time-series data of both the target SPI (i.e., y range) and PMs (i.e., x domain),
a regression model that outputs the predicted value of the target SPI using the PMs as the
input is constructed. Specifically, the regression model uses a subset of the PMs as the input
of the regression model. We use the regression model to derive the CMCs relevant to the
target SPI, i.e., X = {xi}n; here, n represents the number of CMCs.

Figure 3. Problem definition.

3. Proposed Method: ACMA
3.1. Motivating Example

This section describes how the naive approach identifies the CMs of a performance
anomaly, and we compare it with our proposed method. The naive top-down approach has
to search all the (CMC, target SPI) pairs to identify the CMs when a performance anomaly
occurs. However, this approach of CM identification is time-consuming and thus inefficient,
as evidenced by the average time for finding the CMs as well as the size of the search space
listed in Table 1.

Here, enterprise network system (ENS) 1 is SVPN, and ENS2 is Samsung uReady.
Note that the naive approach does not know the relevance of each PM with the target
SPI in advance. Moreover, we assume that both primary CMCs and alternative CMCs
have a set size of 10, respectively. Accordingly, when a performance anomaly occurs, the
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naive approach requires to check all combinations of primary/alternative CMCs. The total
number of PMs for ENS1 is 191, and the search space for finding the CMs of a performance
anomaly is 191C20. ENS2 has a total of 186 PMs, and thus the search space is 186C20. Thus,
the naive approach needs a minimum of days to identify the CMs. This experimental study
motivates us to improve the search time for finding the CMs of a performance anomaly.
In addition, a general framework that can be applied in any multitier Web system with
different target SPIs or PMs should be designed.

Table 1. Search space and average time for finding the CMs of a performance anomaly by a naive approach.

Number of PMs
ENS

Applications DB OSs Network
Total PMs Search Space for Finding CMs Average Time for Finding CMs

ENS1 57 31 58 45 191 191C20 6.5 days
ENS2 41 29 57 59 186 186C20 5 days

Naive approaches are vulnerable to changes in the target SPI because their predic-
tion models should also be adjusted accordingly. To overcome this problem, we use the
following strategy. First, we model a linear regression function, y = f (x)+ ε, where x and
y represent the measured values of the PMs and target SPI, respectively. This function
describes the relationship between x and y without relying on specific target SPI and PMs.
To build the regression function, we extract the subset of the PMs that are closely relevant
to the target SPI from all the PMs in a multitier Web system. Only these PMs can be the
“possible CMCs of a performance anomaly.”

In this study, we used a random forest algorithm that uses an ensemble of decision
trees to derive the regression function. As mentioned before, acquiring a time-series dataset
when an actual anomaly occurs is challenging. However, since we can observe the variation
in y (i.e., the target SPI) due to x (i.e., PMs) in the normal state, we can use the time series in
the normal state to analyze y according to the changes in x. Thus, we can use this regression
relationship to assess the PMs that strongly influence the target SPI. Then, the ACMA can
determine the CMs from the possible x candidates by comparing their threshold with the
value obtained within a few seconds after the anomaly occurs; the resulting PMs are the
primary CMs.

The primary CMs may not be the root causes of the performance anomaly. Thus,
the ACMA follows a backup procedure, in which the alternative CMs are derived after
the primary CMs are reported. Notably, the primary and alternative CMs are disjoint
sets. Specifically, the ACMA analyzes the variations in the target SPI and the set of PMs,
excluding the primary CMCs, using the time-series dataset after the anomaly occurrence.
Similarly, any PM exceeding the threshold or deviating from the normal state is considered
as an alternative CM, which are provided by the ACMA within a few minutes after it
reports the primary CMs.

3.2. Health Check of the Target SPI

Business service in an enterprise environment that operates on various machines, such
as servers, switches, and routers. Because of this heterogeneity and complexity of the
multitier architecture, the detection and diagnosis of performance anomalies becomes a
nontrivial and highly challenging task, even though we track each machine thoroughly.
While outright system failures or crashes can be easily resolved by investigating the prob-
lematic server, the root causes of the performance anomalies are not revealed by assessing
the outside behavior. Instead, we can implicitly assume that the service suffers from perfor-
mance problems by closely analyzing the system logs, which contain the measurements of
the PMs that track different aspects of the performance of the system.

To diagnose the performance anomalies in a multitier architecture, the ACMA sets a
critical signal in the business service as a target SPI and performs health check (HC) to assess
its normality. HC represents the process of identifying any performance anomaly of the



Sensors 2023, 23, 1919 7 of 33

target SPI. This process also includes extraction of the CMs relevant to the performance
anomalies. In summary, HC consists of two procedures: monitoring the target SPI and
diagnosing the CMs of the performance anomaly.

In this study, we set the response time (latency) of the user’s request (e.g., Web page
or Web URL) as the target SPI. To narrow the search space of the PMs, we only deal with a
total of 191 PMs provided by the major vendors of each equipment: 41 from the OS domain,
63 from the DB domain, 17 from the storage domain, 45 from the network domain, and 25
from the application domain. Moreover, the initial threshold for each PM is determined
through the domain knowledge of the enterprise system. For example, we exclude the
Check_storage_path from PM owing to its low impact on the response time. In brief, we
extract 62 vital PMs among the 191 PMs and describe them in detail in the following section.

3.3. PMs of the ACMA

In this section, we list the vital PMs and their threshold values. We first conducted
EDA on the total of 191 PMs provided by well-known vendors, such as HP, Dell, Cisco,
F5 Networks, and Jennifer [5]. In detail, we used the PM measurement data of past two
months for SVNP [6] and Samsung uReady [7] services and derived a total of 62 vital PMs.
We also set the threshold value of each vital PM based on the initial recommended values
provided by the vendors or those based on the analysis of the monitoring data of past
two months.

Exploratory Data Analysis (EDA). Among the 191 PMs, some are relatively less
relevant or unrelated to the target SPI. We first screen out the PMs associated with the target
SPI using Caling’s method [8]. Specifically, we set the criteria for determining whether a
PM can be a vital PM based on the median (M), quartile (Q), and interquartile range (IQR).
These M, Q, and IQR values of the PMs are derived from the time series data during a
specific period. If the PM measurement at one point is outside the range [M-multiplier*IQR,
M+multiplier*IQR], then it is excluded from the set of vital PMs. Here, the value of IQR
is Q3 (median of upper half)-Q1 (median of lower half), and the default multiplier of
Carling is 2.3.

The monitoring frequency of individual PM is set as not to affect the overall detection
performance of the ACMA. PMs that can have a critical impact on the system need high-
frequency monitoring, for instance, every second. However, low-monitoring frequency
is acceptable for PMs with a low system impact. For example, higher CPU usage directly
affects the service delivery capability of the server. Accordingly, Process_CPU_Usage, which
measures the CPU utilization of the server, is monitored every second. On the other hand,
TableSpaceFreeSpace, which measures the remaining space of DB, does not immediately
affect the system reliability and is monitored every 60 min.

Furthermore, we examined the max/min, mean, variance, and quartile of each PM in
the normal/abnormal behavioral data to eliminate any PMs that do not follow the normal
distribution. For example, check_cpu_util, which measures the CPU usage, follows normal
distribution, and thus, we selected it as a vital PM, whereas cron, which measures the cron
log or database batch program, does not have a direct relationship with the target SPI, and
thus we excluded it. Subsequently, we consulted the expert group and excluded any PMs
that do not require monitoring. Consequently, a total of 62 vital PMs were selected, as
shown in Tables 2–5. Concretely, 15 PMs were derived from the application domain and
13 PMs from the OS domain as outlined in Tables 2 and 3, respectively. Box plots for 15 PMs
(Application) and 13 PMs (OS) are shown in Figures 4 and 5.
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Figure 4. Box plot of vital PMs in the application domain.

W i n d o w s C h e c k _ h o s t n a m e

W i n d o w s C h e c k _ i c m p _ p i n g

W i n d o w s C h e c k _ w c p u _ p r o c e s s o r T i m e

W i n d o w s C h e c k _ w e v e n t l o g _ u s a g e

W i n d o w s C h e c k _ w l d _ f r e e _ s p a c e _ p c t

W i n d o w s C h e c k _ w m e m _ u s a g e

L i n u x _ c h e c k _ s y s

L i n u x _ c h e c k _ c p u _ u s a g e

L i n u x _ c h e c k _ u s e r _ m e m o r y _ u s a g e

L i n u x _ c h e c k _ f i l e _ p c t

L i n u x _ c h e c k _ i n o d e _ p c t

L i n u x _ c h e c k _ u s a g e

L i n u x _ c h e c k _ i c m p _ p i n g

� �

� �

� �

0

1

2

3

No
rm

ali
ze

d v
alu

e

Figure 5. Box plot of vital PMs in the OS domain.

Table 2. Vital PMs of the application domain (15 vital PMs).

No. Performance Metric Descriptions Threshold Monitoring Cycle

1 Process_CPU_Usage (%) CPU utilization of the process being monitored value < 90 1 s

2 Process_Mem_Usage (MB) Memory utilization of the process being monitored (e.g., JVM process
memory usage for Java) value < 2048 1 s

3 Heap Memory Usage (%) Measuring the allocating size of the Java Virtual Machine(JVM) heap
memory area value < 95 1 s

4 Current_Thread The number of created threads value < 100 1 s
5 GC_Time (ms) Garbage collection (GC) time value < 1000 1 s
6 GC Activity (%) Percentage of garbage collection usage time value < 3 1 s
7 Active users The number of users actually executing the transaction value < 5000 1 min
8 TPS Transactions per second value < 3000 1 s
9 CPU_Time_per_Transaction CPU time used during a transaction value < 4000 1 min
10 Active_SQL Number of the SQL statement value < 100 1 s
11 SQL_per_Transaction Total number of SQL calls divided by the number of transactions value < 1000 1 min
12 External_Call_Time (ms) Average execution time of one external call value < 5000 1 min
13 Fetch_Number Sum of numbers measured by fetch value < 10,000 1 min
14 Fetch_Time (ms) Average execution time per fetch value < 10,000 1 min
15 Max_Active_DB_Connection Maximum number of active DB connections value < 30 1 s
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Table 3. Vital PMs of the OS domain (13 vital PMs).

No. Performance Metric Descriptions Threshold Monitoring
Cycle

1 WindowsCheck_hostname Hostname consistency check 1 or more
non-response 1 min

2 WindowsCheck_icmp_ping Internet Control Message Protocol (ICMP) ping status
to a Windows server

1 or more
non-response 1 min

3 WindowsCheck_wcpu_processorTime Percentage of time the processor runs
non-idle threads 90% 1 min

4 WindowsCheck_weventlog_usage The ratio of the used capacity to the total capacity of
the event log 96% 5 min

5 WindowsCheck_wld_free_space_pct Percentage of free space available on the logical disk
drive 15% or less 5 min

6 WindowsCheck_wmem_usage The ratio of the used capacity to the total memory
capacity (Windows) 90% 1 min

7 Linux_check_sys Percentage of CPU time spent in user mode(usr) +
Percentage of CPU time spent in system mode(sys) 90% 1 min

8 Linux_check_cpu_usage CPU time spent on system tasks 80% 1 min

9 Linux_check_user_memory_usage The ratio of the used capacity to the total memory
capacity (Linux) 90% 1 min

10 Linux_check_file_pct Percentage of the filesystem in use 90% 1 min
11 Linux_check_inode_pct Percentage of inodes allocated 90% 1 min
12 Linux_check_usage Percentage of capacity in use to total swap capacity 70% 1 min

13 Linux_check_icmp_ping Internet Control Message Protocol (ICMP) ping status
to a Linux server

1 or more
non-response 1 min

Moreover, 12 PMs originate from the network domain and 22 PMs from the DB domain
as listed in Tables 4 and 5, respectively. Box plots for 12 PMs (Network) and 22 PMs (DB) are
shown in Figures 6 and 7. To the best of our knowledge, no paper reports such organized
PM tables. Most studies attempt to find the root causes of the performance anomaly in
a top-down manner based on every combination of the possible causes. This approach
requires a significant amount of time and resources to figure out the root cause of the
performance anomalies. However, the ACMA can exploit these predefined PMs obtained
from the EDA, leading to a quicker and more accurate detection of the actual root causes.

n w _ c p u
n w _ m e m o r y

n w _ R T T
L i n k _ s t a t u s

T h r o u g h p u t  ( B P S )

T h r o u g h p u t  ( P P S )

C P S E r r o r
D i s c a r d

B r o a d c a s t
C R C C o l l i s i o n

� �

� �

� �

0

1

2

3

No
rm

ali
ze

d v
alu

e

Figure 6. Box plot of vital PMs in the network domain.
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Figure 7. Box plot of vital PMs in the DB domain.

Table 4. Vital PMs of the network domain (12 vital PMs).

No. Performance Metric Descriptions Threshold Monitoring Cycle

1 nw_cpu CPU utilization 80% 1 min
2 nw_memory Memory utilization 80% 1 min

3 nw_RTT Ping check whether the device is accessible 1 ms per
100 km 1 s

4 Link_status Check for port link status Up/Down 1 s
5 Throughput (BPS) Bandwidth—Min/Avg/Max (Bits per second, BPS) 80% 1 min
6 Throughput (PPS) Packet throughput—Min/Avg/Max (Packets per second, PPS) 80% 1 min
7 CPS Session throughput—Min/Avg/Max (Character per second, CPS) 90% 1 min
8 Error Packet(In/Out) error rate 1% 1 min
9 Discard Checking for discarded packets due to insufficient buffer 1% 1 min
10 Broadcast Received broadcast packet monitoring 0.50% 1 min

11 CRC The number of packets with abnormal CRC value through packet checksum (Cyclic
redundancy check, CRC) 1% 1 min

12 Collision Number of packets retransmitted due to Ethernet collision 1% 1 min

Table 5. Vital PMs of the DB domain (22 vital PMs).

No. Performance Metric Descriptions Threshold Monitoring
Cycle

1 RedologFileStatus Redo log file status (0: Normal, 100: Warning) value = 100 1440 min
2 CountOfDFPerDBfiles The number of current datafiles/DB_FILES * 100 80 ≤ value < 90 1440 min
3 TableSpaceFreeSpace Table space available space—DATAFILE ≤ Threshold value ≤ 1024 M 60 min
4 lib_pin_cnt The number of pin events 1 ≤ value < 5 1 min
5 local_dbconn_status Connection check in the DB server (1: Normal, 0: Failure) - 1 min
6 waitingLock Lock request time (max) 5 ≤ value < 20 1 min
7 SessionlnLongLock Lock holding time (max) 5 ≤ value < 20 1 min
8 TableSpaceFreeSpacePct The free percentage of tablespace 5 ≤ value < 10 60 min
9 fra_usage Flashback recovery area (FRA) usage rate 80 ≤ value < 90 1 min
10 check_cpu_idle CPU Idle time 5 s or less 1 min
11 check_cpu_runqueue Number of processes in run queue More than 10 1 min
12 check_cpu_util Usage active on CPU 90% 1 min
13 check_fs_used_pct Percentage of the filesystem in use 85% 5 min
14 check_inode_used_pct Percentage of inodes in use 90% 5 min
15 check_mem_usage The ratio of used capacity to total memory capacity 90% 1 min
16 check_CountOfDfPerDbfiles (The number of current datafiles/DB_FILES) * 100 90% 5 min
17 check_LockPerLockSetting (Current DML_LOCKS / DML_LOCKS) * 100 90% 5 min
18 check_ProcessPerProcessSetting (Current Processes / Processes) * 100 90% 5 min
19 check_SessionPerSessionSetting (Current Sessions / Sessions) * 100 90% 5 min
20 check_InvalidRollbackSegment The status of the rollback segment 80% 5 min
21 check_proc_count The average number of currently running processes When 0 1 min
22 check_proc_cpuutil CPU rate of the process at present 90% 1 min



Sensors 2023, 23, 1919 11 of 33

The average coverage of the vital 62 PMs in the ACMA is 82.9%. Specifically, according
to the web application market study conducted by Gartner [9], the usages of various ven-
dors used by global companies, such as Google or Samsung, are listed as follows: Apache
(41.7%), Nginx (26.4%), Microsoft Internet Information Services (IIS) (12.5%), LiteSpeed
(2.2%), and others (17.2%). Since ACMA supports Apache, Nginx, and IIS, it can cover
80.6% of the application domain. According to Gartner [10], the server market share is
56.8% for Windows server, 21.3% for Linux server, 5.7% for IBM AIX, 4.1% for HP-UX, and
12.1% for others. The ACMA supports the Windows and Linux servers, covering 78.1% of
the OS domain.

The ACMA uses a simple network management protocol (SNMP) to monitor the
vital PMs in the network domain. Since all the global vendors, such as Cisco, F5, and
Jennifer support the SNMP [11–15], the ACMA is capable of covering every vital PM in
the network domain. Last, according to the study on the DBMS domain by Gartner [16],
vendor products and their usages are as follows: Oracle (31.1%), Microsoft DB (24.8%),
Amazon Dynamo DB (13.5%), IBM DM2 (10.4%), SAP (6.9%), and others (13.3%). Since the
ACMA supports Oracle, Microsoft DB, IBM DB2, and SAP, it can cover 73.2% of the DBMS
domain. In summary, the average coverage of all the four domains (Applications, OS,
Network, and DB) is 82.9%. Notably, the PMs used in the ACMA do not cover any multitier
system, although they are effective in most enterprise systems. Further, the ACMA still
operates even if we manually add other PMs. Thus, we can conclude that the ACMA can
be adapted to any enterprise environment.

3.4. Overview of the ACMA

The architectural overview of the ACMA is illustrated in Figure 8. The ACMA consists
of four components: performance metric extraction (PME), performance metric analysis (PMA),
performance metric monitoring (PMM), and visualization. We will describe each component
of ACMA in detail in Section 4.

Recall that HC represents the process of detecting the performance anomalies and
deriving their CMs. Deriving the CM consists of two steps: (1) finding the primary CMCs
and CMs and (2) identifying alternative CMCs and CMs. Here, we clarify each step
as follows:

Figure 8. Overview of performance anomaly detection and identification of CMCs and CMs by the
ACMA framework.

Finding primary CMCs and CMs: When the target SPI shows a normal behavior
(i.e., the services operate as usual), the PMM transmits the measurements of the vital
62 PMs to the PME. Then, the PME builds the regression model using a random forest
algorithm based on the vital 62 PMs and determines the primary CMCs. Next, the vital
62 PMs, including the primary CMCs, are tracked through PMM. If the target SPI shows an
anomalous behavior (i.e., deviating from the ACMA threshold), then the PMM concludes
that the performance anomaly has occurred and delivers the measurements of the target
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SPI and primary CMCs to the PMA. The PMA runs the primary CM analysis to derive
the primary CMs from among the primary CMCs. Then, the PMA transmits the primary
CMs back to the PMM, which sends the measurements of the primary CMs to visualization.
Finally, visualization displays the values of the primary CMs to the users.

Finding alternative CMCs and CMs: After detecting the performance anomaly and
primary CMs, the PMM transmits the measurements of the remaining vital PMs to the
PMA (for example, if we choose ten primary CMCs out of 62 vital PMs, then there are
52 remaining vital PMs). Then, the alternative CMCs are extracted through an alternative
CM analysis. The ACMA compares the measurement of the alternative CMCs with their
threshold and determines them as alternative CMs if the alternative CMCs exceed their
threshold. These alternative CMs are also sent to the PMM, which then passes the mea-
surement values to visualization. Finally, visualization displays the received alternative CMs
to the administrators.

The procedure for reporting the primary CMs is depicted in Figure 9. Three compo-
nents are involved in finding the primary CMs: PMM, PMA, and visualization. (1) Event
logs that hold the measurement values of the PMs are collected every minute from a cloud
or on-premise infrastructure, which consists of monitoring agents and communication
protocols, such as Filebeat [17], Jennifer [5], Zabbix [18], and SNMP. (2) PMM checks the
current status of the primary CMCs derived from the PME (see Section 4.1). (3) PMM
runs false alarm reduction to find continuous performance anomalies. Since the value of
target SPI fluctuates owing to various reasons, there can be numerous points that exceed
the threshold. Thus, the ACMA only handles performance anomalies that the observed
value of the target SPI consistently exceeds its threshold. (4) If an anomaly is determined as
a continuous one, ACMA sends alarms to the administrator. (5) While forwarding alarm
signals, PMA receives the continuous anomaly and starts to analyze its primary CMs. (6) If
any of the primary CMCs exceed their threshold values, the corresponding primary CMCs
are determined as the primary CMs. Even though the measured values of the primary
CMCs do not exceed their threshold, the PMA further analyzes the t-distribution of the
primary CMCs to examine whether they exhibit unusual trends. (7) PMA sends the pri-
mary CMs to the PMM. (8) PMM sends the measurement values of the primary CMs to
visualization. (9) Visualization demonstrates which primary CMs strongly influence the
performance anomaly through the dashboard.

Figure 9. Procedure for detecting performance anomaly and finding primary CMs.

Next, we illustrate the procedure for reporting the alternative CMs in Figure 10.
The ACMA begins these steps after completing step 9 in Figure 9. (10) PMM checks the
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current status of the remaining vital PMs (excluding primary CMCs from all the vital PMs).
(11) PMM delivers the current measurements of the remaining vital PMs to the PMA.
(12) Alternative CMCs are derived through an alternative CMs analysis. Then, the PMA
considers any alternative CMC greater than its threshold or that showing outlier behavior
based on t-distribution as an alternative CM. (13) The alternative CMs are sent to the
PMM. (14) The measurements of alternative CMs and their t-distribution are delivered to
visualization. (15) Visualization highlights the alternative CMs that exceed their threshold
value through the dashboard.

Figure 10. Procedure for finding alternative CMs.

4. Description of Acma Components

In this section, we outline each component of the ACMA in detail as illustrated in
Figure 11.

Figure 11. ACMA model for detecting the performance anomaly.
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4.1. Performance Metric Extraction (PME)

The main objective of the PME is to compute the primary CMCs out of the vital 62 PMs
closely related to the target SPI, as shown in Figure 12. Specifically, the PME performs the
following steps: (1) PME builds a random forest model with the collected time-series data
of the vital 62 PMs. (2) PME evaluates the impact of PMs on the variance of the target SPI
via the trained random forest model and chooses the top-k PMs among them.

Figure 12. Procedure for creating the ACMA model.

Specifically, we implement a general regression model to adapt any target SPI and PMs.
Recall that this model computes a prediction value of the target SPI (i.e., y = f (x) + ε).
The random forest builds this regression function that represents the relationship between
x (i.e., PMs) and y (i.e., target SPI). Through this regression model, we can rank the PMs
according to their influence on the variance of the target SPI. Then, the ACMA tracks
the behavior of the top-k PMs to detect the performance anomalies through a bottom-up
strategy. We set the value of k as 10 in our case. Note that the value of k can be varied
depending on the administrator’s settings. Next, we describe the process of building the
random forest model.

Performance metric correlation analysis. The PME uses an ensemble of decision
trees [19–21], known as a random forest [22–26]. Specifically, the random forest leverages
the power of multiple decision trees generated from different subsets of the original data.
When determining the final prediction value of the target SPI, random forest follows the
majority rules (classification) or computes the average value (regression). In our setting, y
represents the measured value of the target SPI, (x1, x2, . . . , xm) represents the measured
values of the PMs, and B represents the number of decision trees. Finally, T(x) represents
the prediction value calculated from a single tree T.

After all the decision trees are trained, the final prediction value of the target SPI
is estimated by averaging the prediction value T(x) from each decision tree, where the
prediction value is f̂ (x) = 1

B ∑
B
i=1 Ti(x). From this value, we can model the regression

function f̂ (x)+ ε, which calculates the most similar prediction value of the target SPI by
minimizing the error ε. By comparing f̂ (x) + ε with the current measured value of the
target SPI y, we can determine whether the system suffers from performance anomalies.
Once the performance anomaly occurs, the ACMA examines the abnormality of the most
relevant PMs and provides them within several seconds. In Figure 13, we describe the three
steps used to train the ACMA random forest model in detail.
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Figure 13. Concept of the ACMA regression model.

Step 1. Generate B bootstrap samples, L1, . . . ,LB, from the training dataset consisting
of the observed value of PMs, where Lb represents the extracted samples with repeats
allowed. By using different bootstrap samples, we can build multiple decision trees from
a single training dataset. Recall that the bootstrap sample is used for bagging (bootstrap
aggregating) technique, where each decision tree in the random forest is trained by random
training set with replacement.

Step 2. In regression function modeling, our aim is to determine the most influential
predictors (i.e., the subset of vital PMs) that should be included in the primary CMCs.
We can identify the best vital PMs based on statistical characteristics, such as importance
or accuracy. Specifically, we grow a single random forest tree Tb using a random set of
vital PMs. For each bootstrapped data Lb, we randomly select m vital PMs; a general rule
of thumb is m = n/3, where n is the total number of the vital PMs [27]. Note that the criteria
for choosing the best vital PM to split the tree node depend on the data type of the target
SPI. When the target SPI has categorical values, we use Gini Impurity and mean decrease
accuracy. Conversely, we use mean squared error (MSE) for the numerical target SPI. Since
the target SPI in our case is latency (i.e., numerical value), we select the MSE for evaluating
the importance of the vital PMs.

Step 3. Finally, we combine the ensemble of trees {Tb}B
1 , where we estimate the final

prediction value of the target SPI by averaging the individual bootstrap predictions, as
shown in Equation (1).

f̂ B
r f (x) = 1

B

B
∑
b=1

Tb(x) (1)

Equation (2) shows the MSE between the observed value (y) and the predicted value
( f̂ ) of the target SPI. By closely looking at the variation of MSE according to the different
sets of PMs, we can determine the relevance between the vital PMs and the target SPI.
Specifically, the greater the rate of changes in MSE increases, the more influential a vital
PM is to the target SPI. MSE between the observed value (y) and the predicted value ( f̂ )
can be calculated as in Equation (2).

MSEPME = ∑
B
i=1(y − f̂i(x))2

B
(2)

Generally, we can obtain a better prediction model if we increase the number of boot-
straps. However, determining the optimal number of bootstraps is challenging, because at
some point, more bootstraps will merely increase the computation time without improving
the prediction accuracy. Thus, we should consider the trade-off between computation
time and model accuracy. Since we sample the bootstrapped data with repetition, some
measurements of the vital PMs are not included in any bootstrap sample, and these mea-
surements are called out-of-bag (OOB). We can calculate the OOB error by using OOB as the
validation sample for evaluating the regression accuracy. The OOB error stops decreasing
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when approximately 1073 trees are generated in our experiments. Accordingly, we set the
number of bootstrap samples as 1073.

4.2. Performance Metric Analysis (PMA)

PMA mainly performs the hybrid process depicted in Figure 14, which involves the
following two steps: (1) PMA conducts a primary CM analysis to determine the primary
CMs among the primary CMCs derived by the PME (bottom-up). (2) After reporting the
primary CMs, the PMA runs an alternative CM analysis that derives both the alternative
CMCs and alternative CMs among the remaining vital PMs (top-down).

Figure 14. Process of finding CMs in PMA.

We define a rule to determine whether a particular primary CMC can be the primary
CM in Figure 15. Specifically, the PMA first checks the differences between the measured
values of the primary CMCs and their thresholds. Although the measured values of the
primary CMC do not exceed the threshold, the PMA further checks the t-distribution of
each primary CMC if it deviates significantly from that of the normal status.

First, we briefly describe the techniques of applying t-distribution to extract the
primary CMs. It is challenging to obtain sufficient time-series measurements at actual
anomaly occurrences. Thus, our objective is to learn the patterns of the target SPI when
the service is in a normal state instead. The values of the target SPI and its relevant PMs
fluctuate even if they are in the normal state. Hence, the target SPI and PMs have variations
in the “safe region” where they do not exceed the ACMA threshold when the system shows
normal behavior. PMA attempts to learn the relationship between the target SPI and its
relevant PMs under the safe region. Then, PMA derives the primary CMs by measuring
how far an observation is from this safe regions even though the primary CM does not
exceed the threshold.

Figure 15. Flowchart for determining primary CMs.

Primary CM analysis. PMA uses a t-test to compare the t-distribution of each primary
CMC. The t-test is a method of comparing two sample groups that contain observations
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drawn from the population [28–30]. Note that we assume the measurements of the target
SPI and PMs follow the normal distribution. We aim to test whether the means of observa-
tion when the service in normal state and anomaly cases are significantly different. One
problem with this approach is that we do not know the population variances in advance.
To overcome this problem, we use t-distribution instead of normal distribution.

The t-distribution differs from the normal distribution, because it allows comparison
between sample groups when the variance of the population is unknown. In general,
the t-distribution becomes similar to the normal distribution for 30 or more degrees of
freedom [31].

Then, let us assume a null hypothesis H0 indicating that the observed values µ in the nor-
mal state and the incoming observations x are drawn from the same distribution. To falsify
the null hypothesis (i.e., x comes from an abnormal state), we first choose the significance
level. The significance level refers to the probability of rejecting the null hypothesis, and
the commonly used significance levels α are 0.01 or 0.05. With this predetermined signifi-
cance level and the degrees of freedom, we can compute the t-critical value that gauges the
confidence interval.

Second, we outline the process to determine alternative CMs. Note that we cannot
leverage labeled data to identify primary CMs. As a result, actual causes of the performance
anomaly might not exist in the primary CMs. However, while reporting the primary CMs,
sufficient accumulated observations at the time of anomaly occurrence are now available,
and we can take advantage of it. In other words, we can double-check the relationship
between the target SPI and the remaining vital PMs.

The PMA continuously monitors the variation of the remaining vital PMs and the
target SPI at the time of anomaly occurrence. Then, PMA derives the alternative CMCs
from the remaining vital PMs through the alternative CM analysis. Similar to the process
of deriving the primary CMs, if an alternative CMC shows an abnormal behavior, such as
exceeding the ACMA threshold or exhibiting a different pattern from the normal state, then
we consider it as an alternative CM; the corresponding process is illustrated in Figure 16.

Figure 16. Flowchart diagram for finding alternative CMs by ACMA.

Alternative CM analysis. In this process, the PMA calculates the rolling correla-
tion (correlation between two time series data on a rolling window) to derive alternative
CMCs. Specifically, the PMA calculates the Pearson correlation [32,33], which measures
the strength of association between the remaining vital PMs and the target SPI, using the
latest 100 min of observations.

4.3. Performance Metric Monitoring (PMM)

PMM determines whether the system suffers from performance anomaly or not.
PMM searches for anomalous symptoms by comparing the incoming target SPI observa-
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tions with the expected values learned from the normal pattern. This approach can identify
novel and unseen anomalies, but it can suffer from a high rate of false alarms. Note that
the PMM focuses on finding sustained anomalies that continuously violate the threshold,
rather than point anomalies (i.e., short-duration or one-time). Since frequently reporting
such point or short-duration anomalies increases the service administrator’s operational
burden, the PMM conducts a false alarm reduction procedure as shown in Figure 17.

False alarm reduction. Once the measurements of all the vital PMs are collected, the
ACMA checks whether the average value of the vital PMs during a predefined time interval
exceeds the threshold. Following this procedure, the ACMA reduces the events that can be
automatically resolved without requiring any additional action by the administrator, even
if the observations momentarily exceed the threshold. In our implementation, we set the
default time interval to three minutes.

Figure 17. Procedure for PMM.

Next, we explain the monitoring procedures. (1) The measurements of the target
SPI and vital PMs are collected by default every minute. (2) When the target SPI exceeds
the ACMA threshold, the PMM checks whether the measurements of the primary CMCs
exceed the ACMA threshold. (3-1) The PMM performs a false alarm reduction, and (3-2)
the ACMA reports the current measurements of the primary CMCs and remaining PMs to
the PMA. The subsequent process is identical to that of the PMA described in Section 4.2.

4.4. Implementation of the ACMA Framework

In Figure 18, we briefly describe the overall system architecture of the ACMA frame-
work, which consists of four different areas: UI, Data analytics, Elastic Search [34], and Data
collection and preprocessing. When the data type of the PMs is text, the Filebeat [35] agent
transfers the measurements through the Logstash API to Logstash in the Data collection
and preprocessing area. When the PMs have numerical type values, the application uses
the Jenni f er [36] agent to forward the measurements to Logstash in the Data collection
and preprocessing area. Zabbix [37] collects the PM values of the OS and DB domains and
transmits them to Zabbix in the Data collection and preprocessing area. In order to manage
the entire log, any information collected by the Zabbix agents is transmitted to Logstash.
Last, the PM values in the network domain are transmitted to Logstash through an SNMP
and SNMP Trap [38].

Real-time log and measurements collected by Logstash are further transmitted to
Elastic Search using an HTTP-based API. Based on the saved measurements in Elastic
Search, the PMM, PME, and PMA perform the analyses described in Section 4. The ACMA
results are displayed to a service administrator through Kibana [39] in the UI area, which is
a Web interface for Elastic Search.
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Figure 18. Overall system architecture of the ACMA.

The ACMA consists of five servers to manage and operate the monitoring and an-
alytics functions; the ACMA web server, ACMA analytics server, ACMA search server,
ACMA collection server, and ACMA DB server. The ACMA Web server is a UI server that
hosts Kibana. The ACMA analytics server conducts data analysis using R and Python.
The ACMA search server stores the measurement data of the target SPI and PMs and uses
Elastic Search as a search engine. The ACMA collection server performs measurement
collection and preprocesses the measurements collected from the Filebeat, Jennifer, Zabbix
agents and SNMP. Subsequently, the ACMA collection server organizes the collected mea-
surements in a consistent format and stores them into Logstash. Last, the ACMA DB server
is an Oracle-based RDBMS server. Hardware information of all the five servers is outlined
in Table 6.

Table 6. Hardware information of the ACMA servers.

ACMA Servers Descriptions

OS Windows server 2012 R2 standard edition
CPU 4Core

Memory 16 GB
Disk 200 GB

ACMA
web server

Model Lenovo X3650 M5

OS CentOS 7.4.1708
CPU 8Core

Memory 16 GB
Disk 400 GB

ACMA
analytics server

Model Lenovo X3650 M5

OS CentOS 7.4.1708
CPU 8Core

Memory 16 GB
Disk 500 GB

ACMA
search server

Model Lenovo X3650 M5

OS CentOS 7.4.1708
CPU 4Core

Memory 16 GB
Disk 500 GB

ACMA
collection server

Model Lenovo X3650 M5

OS Oracle Linux 7.2
CPU 16Core

Memory 64 GB
Disk 500 GB

Model DELL PowerEdge R930

ACMA
DB server

Oracle Ver. ORACLE 11g (11.2.0.4)
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5. Evaluation

This section presents case studies for performance verification of the ACMA through
the SVPN, which is a Web application that allows access to the company’s intranet from
public Internet. It is a mission-critical web application used by more than 160,000 employees
worldwide. The SVPN consists of a multitier infrastructure, including 12 Web servers (in
New Jersey, London, India, Beijing, South Korea, and Singapore), 4 DB servers, 24 network
equipment, and 12 Web application servers. Approximately 62,000,000 observations of the
target SPI and PMs are collected per day, with a file size of around 8800 MB. Accordingly,
we believe that this setting is suitable for verifying the performance of the ACMA.

5.1. CMCs in Experimental Settings

The two most important services of the SVPN are two-factor user login and accessing
the network. The SVPN services do not allow a slow response time or timeout in the login
and network access page. Thus, we set the response time of the SVPN login webpage as
the target SPI. Using the latest measurement data of one month, the PME selects the top 10
primary CMCs of the target SPI according to the correlation with the target SPI using the
random forest model as shown in Figure 19. Recall that the ACMA evaluates the correlation
using the MSE defined in Equation (2).

Figure 19. %incMSE values of Primary CMCs of the target SPI.

We select the top 10 primary CMCs that show the highest increase rate of MSE
(%incMSE) from the vital 62 PMs. The detailed %incMSE values of each primary CM are as
follows: (Application) Transaction Per Second (TPS) = 0.27, (DB) Check_SessionPerSession
Setting = 0.21, (Application) Max_Active_DB_Connection = 0.16, (OS) Windows_check_host
name = 0.14, (Network) Throughput (BPS) = 0.11, (Application) Process_CPU_Usage = 0.09,
(OS) Windows_check_icmp_ping = 0.08, (Network) error = 0.07, (DB) Check_CPU_Util =
0.05, and (DB) Check_InvaildRollbackSegment = 0.04. Based on these primary CMCs, we
summarize the experimental setting in Table 7.
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Table 7. Experimental settings.

Conditions Descriptions

Study subject Samsung Virtual Private Network
(SVPN)

Key function SVPN Authentication
(www.samsungvpn.com)

Target SPI Response time

Threshold of target SPI 4 s

Transaction Per Second (TPS)
Max_Active_DB_ConnectionApplication domain

Process_CPU_Usage

Windows_check_hostnameOS domain Windows_check_icmp_ping

Throughput(BPS)Network domain error

Check_SessionPerSessionSetting
Check_CPU_Util

Primary causative metric
candidates

DB domain
Check_InvaildRollbackSegment

5.2. Case Studies

We monitored the SVPN for two months (1 June 2022 to 31 July 2022). A total of six
target SPI performance anomalies were detected during the monitoring period, and five
of them were actual performance anomalies, while the remaining one was an unknown
error. Table 8 shows the detailed summary of the target SPI anomalies detected during the
experiment periods. Each row of Table 8 displays the description of anomaly, root cause
location, and provided CMs ranked by ACMA for each case. We further demonstrate below
the primary and alternative CMs of the five actual anomaly cases and present the heatmaps
that visualize the degree of correlation between the CMs and the performance anomaly.

Table 8. Summary of the anomaly cases in Section 5.2.

No. Occurrence Date Descriptions Root Cause
Location Provided CMs (Rank)

1 7 June 2022
13:38∼13:48

- SVPN webpage could not be accessed
- ID/PW authentication failure Primary CMs

(Network) Throughput(BPS) (1st)
(Application) TPS (2nd)
(Application) Max_Active_DB_Connection (3rd)
(OS) WindowsCheck_icmp_ping (3rd)

2 13 June 2022
09:04∼09:12

- Slow connection in SVPN webpage
- Certification authentication failure Primary CMs

(Application) TPS (1st)
(Network) Throughput(BPS) (1st)
(OS) WindowsCheck_icmp_ping (1st)
(Network) Error (1st)

3 6 July 2022
10:09∼10:19

- SVPN webpage could not be accessed
- ID/PW authentication failure Primary CMs

(Network) Throughput(BPS) (1st)
(Application) Max_Active_DB_Connection (1st)
(OS) WindowsCheck_icmp_ping (2nd)

4 17 July 2022
00:02∼00:15

- SVPN webpage could not be accessed Alternative CMs

(Network) CPS (1st)
(Network) Discard (1st)
(Network) Throughput(PPS) (1st)
(Application) Process_Mem_Usage(MB) (2nd)
(OS) WindowsCheck_wcpu_processorTime (2nd)
(Application) Current_Thread (2nd)
(Network) Collision (2nd)
(Application) GC_Time(ms) (2nd)
(Network) Error (3rd)

5 29 July 2022
09:08∼09:22

- SVPN webpage could not be accessed
- ID/PW authentication failure Primary CMs

(Application) TPS (1st)
(Network) Throughput(BPS) (1st)
(DB) check_SessionPerSessionSetting (2nd)
(Application) Max_Active_DB_Connection (2nd)
(OS) WindowsCheck_icmp_ping (3rd)

6 14 July 2022
13:02∼13:16

- Unknown None None

Target SPI Anomaly #1. Figure 20 shows the visualization result of the ACMA pro-
vided to the service administrator at the time of anomaly #1 occurrence. The color of the
heatmap becomes darker as the distances between the values of the primary CMCs and

www.samsungvpn.com
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their thresholds increase. We arrange the distances along the scale of 50 to 100. In short, for
a greater distance, the ACMA considers the primary CMC as the root cause. The index on
the left side of Figure 20 describes the (Domain, Primary CMC) pairs. The primary CM,
whose t-statistic value exceeds the t-critical value and ACMA threshold, is displayed with the
symbol [☆]. The symbol [◯] represents the primary CM that exceeds the ACMA threshold
but does not exceed the t-critical value. Last, the symbol [△] indicates the primary CM that
exceeds the t-critical value value but does not exceed the ACMA threshold.

Figure 20. Primary CMCs/CMs of target SPI anomaly #1 via ACMA visualization.

The primary CMs likely to be the root causes are as follows: [☆] (Network) Throughput
(BPS), [◯] (Application) TPS, [△] (Application) Max_Active_DB_Connection, and [△]
(OS) WindowsCheck_icmp_ping. (Application) TPS and (Application) Max_Active_DB_
Connection caused an overload on the IIS of the SVPN web server. As a result, the number
of users who could not complete the login process increased, resulting in an increased
(Network) throughput (BPS) and (OS) WindowsCheck.icmp_ping. These problems affected
the SVPN response time and led to a target SPI anomaly.

The summary of the alternative CMCs was also provided to the service administrator
as depicted in Table 9. In the case of anomaly #1, the root causes existed in the primary
CMs. Consequently, the administrator solved this problem by rebooting the web server IIS
and taking steps to make the response time normal. As a result, the measurements of all
the primary CMs returned to the normal range.

Table 9. Alternative CMCs of target SPI anomaly #1.

No. Performance Metric
Measured Value

(Avg.) Threshold
Monitoring

Cycle

1 (OS) WindowsCheck_wmem_usage 67% 90% 1 min
2 (Application) Active_SQL 59 100 1 s
3 (OS) WindowsCheck_weventlog_usage 61% 96% 5 min
4 (Network) Throughput(PPS) 34% 80% 1 min
5 (Network) Collision 0.29% 1% 1 min
6 (DB) WaitingLock 11 20 1 s
7 (DB) SessionInLongLock 7 20 1 s
8 (DB) Lib_pin_cnt 2 5 1 s
9 (Application) Process_Mem_Usage 1178 MB 2048 MB 1 s
10 (Application) Current_Thread 47 100 1 s

Target SPI Anomaly #2. This anomaly occurred because wrong configuration PM
values were inserted in the network domain. The heatmap visualization of the ACMA
is illustrated in Figure 21. The primary CMs that are highly suspected to be the actual
root causes are [☆] (Application) TPS, [☆] (Network) Throughput(BPS), [☆] (OS) Win-
dowsCheck_icmp_ping, and [☆] (Network) Error. Alternative CMCs are depicted in
Table 10. Similar to the case of anomaly #1, the root causes of anomaly #2 were all included
in the primary CMs. After restoring the configuration value in the network equipment, the
measurements of the four primary CMs returned to a normal range.
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Figure 21. Primary CMCs/CMs of target SPI anomaly #2 via ACMA visualization.

Table 10. Alternative CMCs of target SPI anomaly #2.

No. Performance Metric
Measured Value

(Avg.) Threshold
Monitoring

Cycle

1 (Network) Throughput(PPS) 82% 80% 1 min
2 (Network) CPS 92% 90% 1 min
3 (Application) Current_Thread 107 100 1 s
4 (Network) Discard 0.9% 1% 1 min
5 (Network) Broadcast 0.37% 0.5% 1 min
6 (Network) Collision 0.86% 1% 1 min
7 (Application) Process_Mem_Usage (MB) 1241 MB 2048 MB 1 s
8 (OS) WindowsCheck_wcpu_processorTime 76% 90% 1 min
9 (Application) CPU_Time_per_Transaction 2174 4000 1 min
10 (Application) Active_SQL 59 100 1 s

Target SPI Anomaly #3. Anomaly #3 resulted from an error in the network time
protocol included in the network domain PMs. The corresponding visualization result of
the ACMA is shown in Figure 22. After the detection of anomaly #3, the primary CMs
suspected to be the root causes are as follows: [☆] (Application) TPS, [☆] (Application)
Max_Active_DB_Connection, and [△] (OS) WindowsCheck_icmp_ping.

Figure 22. Primary CMCs/CMs of target SPI anomaly #3 via ACMA visualization.

Similarly, the ACMA prepared alternative CMCs to ensure a smooth execution in the
case the root causes are not present in the primary CMs. The selected alternative CMCs
are depicted in Table 11. According to the SVPN operational manual, the primary CMs
(TPS, Max_Active_DB_Connection, WindowsCheck_icmp_ping) are closely related to the
Internet Information Service (IIS) hang of the Web server and well-known root causes that
delay the connection to the SVPN Web page. The administrator resolved this anomaly by
resetting the web server IIS, and the primary CMs returned to their normal values.
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Table 11. Alternative CMCs of target SPI anomaly #3.

No. Performance Metric
Measured Value

(Avg.) Threshold
Monitoring

Cycle

1 (OS) WindowsCheck_wmem_usage 71% 90% 1 min
2 (Network) Throughput(PPS) 52% 80% 1 min
3 (Application) Active_SQL 49 100 1 s
4 (OS) WindowsCheck_weventlog_usage 57% 96% 5 min
5 (Application) Process_Mem_Usage 1096 MB 2048 MB 1 s
6 (Network) Collision 0.21% 1% 1 min
7 (DB) WaitingLock 9 20 1 s
8 (Application) Current_Thread 53 100 1 s
9 (DB) SessionInLongLock 7 20 1 s
10 (DB) Lib_pin_cnt 1 5 1 s

Target SPI Anomaly #4. While the ACMA rapidly provided the primary CMCs/CMs
of anomaly #4 to the administrator, they could not find the root causes of this anomaly
among the primary CMCs/CMs. Soon after receiving the alternative CMCs/CMs, the
administrator could identify the root causes that existed in the alternative CMs. The ad-
ministrator could resolve target SPI anomaly #4 by carefully controlling the PMs in the
alternative CMs. We first demonstrate the visualization result of the primary CMCs in
Figure 23.

Figure 23. Primary CMCs of target SPI anomaly #4 via ACMA visualization.

Anomaly #4 occurred because of an expired secure sockets layer (SSL) certificate in the
SVPN Web server, which resulted in the HTTPS connection error. Accordingly, the response
time of the webpage exceeded the threshold. Although we confirmed this anomaly and
received the primary CMCs, we could not locate the root cause. We highly suspected [△]
(Network) Error based on the primary CMs, but it was not the root cause. After receiving
the alternative CMCs a few minutes later, we could determine the root causes of anomaly
#4 as outlined in Table 12. The alternative CMCs, whose t-statistic values exceed the t-critical
values, are highlighted in bold.

Table 12. Alternative CMCs of target SPI anomaly #4.

No. Performance Metric
Measured Value

(Avg.) Threshold
Monitoring

Cycle

1 [☆] (Network) CPS 93% 90% 1 min

2 [◯] (Application) Process_Mem_Usage
(MB) 2072 2048 1 min

3 [◯] (OS)
WindowsCheck_wcpu_processorTime 112 100 1 s

4 [☆] (Network) Discard 1.23% 1% 1 min
5 [◯](Application) Current_Thread 107 100 1 min
6 [☆] (Network) Throughput(PPS) 87% 80% 1 min
7 [◯] (Network) Collision 1.17% 1% 1 s
8 (Application) External_Call_Time(ms) 4078 5000 1 min
9 [◯] (Application) GC_Time (ms) 1974 1000 1 min
10 (Application) GC Activity (%) 2 3 1 s
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The highly suspected alternative CMs that exceeded the threshold are [☆](Network)
CPS, [◯](Application) Process_Mem_Usage(MB), [◯](OS) WindowsCheck_wcpu_processor
Time, [☆](Network) Discard, [◯](Application) Current_Thread, [☆](Network) Through-
put (PPS), [◯](Network) Collision, and [◯](Application) GC_Time(ms). According to
the SVPN service troubleshooting guide, when [☆](Network) Discard, [◯](Application)
Current_Thread, and [◯](Application) GC_Time(ms) show exceptional patterns, they are
deeply correlated with problems in communication with the HTTPS protocol. The HTTPS
protocol provides security to the HTTP protocol by allowing encrypted communication
using an SSL certificate. Note that the SSL certificate has information about the issuer,
identity of the owner, public key, and validity period. The SSL certificate guarantees a
secure communication during the validity period and is not automatically renewed when
its validity period expires. When the validity period of an SSL certificate expires, connection
via the HTTPS protocol is not established, resulting in an anomalous behavior in these CMs.
By examining these alternative CMs, the administrator concluded that the problem was
due to the SSL certificate since the Web server and NW equipment were all faultless, even
though the Web page could not be accessed. The service administrator issued a temporary
SSL certificate to resolve this anomaly.

Target SPI Anomaly #5. The heatmap visualization of the primary CMs of this
anomaly is shown in Figure 24. After detecting anomaly #5, the primary CMs suspected to
the root causes are as follows: [☆] (Application) TPS, [◯] (DB) Check_SessionPerSessionSetting,
[◯] (Application) Max_Active_DB_Connection, [☆] (Network) Throughput(BPS), and [△]
(OS) WindowsCheck_icmp_ping; they were immediately reported to the service adminis-
trator for further troubleshooting.

Figure 24. Primary CMCs/CMs of target SPI anomaly #5 via ACMA visualization.

The administrator noticed the abnormal behavior of the three PMs (TPS, Max_Active_
DB_Connection, WindowsCheck_icmp_ping), which are well-known root causes of IIS
hanging on the web server. Similar to Anomaly #3, the administrator turned off and
restarted the IIS of the webserver to resolve this anomaly. In the case of anomaly #5, the
other two PMs (Check_SessionPerSessionSetting and Throughput(BPS)) showed anoma-
lous behavior as there were more users than usual. Table 13 shows the alternative CMCs of
the anomaly #5 case.

Table 13. Alternative CMCs of target SPI anomaly #5.

No. Performance Metric
Measured Value

(Avg.) Threshold
Monitoring

Cycle

1 (OS) WindowsCheck_wmem_usage 67% 90% 1 min
2 (Application) Active_SQL 59 100 1 s
3 (OS) WindowsCheck_weventlog_usage 61% 96% 5 min
4 (Network) Throughput(PPS) 34% 80% 1 min
5 (Network) Collision 0.29% 1% 1 min
6 (DB) WaitingLock 11 20 1 s
7 (DB) SessionInLongLock 7 20 1 s
8 (DB) Lib_pin_cnt 2 5 1 s
9 (Application) Process_Mem_Usage 1178 MB 2048 MB 1 s
10 (Application) Current_Thread 47 100 1 s
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Target SPI Anomaly #6. Anomaly #6 occurred on 14 July 2022 from 13:02 to 13:16.
Anomaly #6 was detected after the response time exceeded the threshold. However, the
visualization result did not display any unusual flaw. Furthermore, testing of the SVPN
authentication by the service administrator did not yield any unusual result, and no error
was detected in the connection to the SVPN webpage. Even though no further actions
were taken, all the PMs and the response time returned to their normal ranges. Thus, we
categorized them as unknown events.

Reducing search space and search time for finding CMs. The ACMA remarkably
reduces the search time for finding the root causes of performance anomalies by focusing on
the PMs that have a greater influence on the target SPI. As shown in Table 14, we measured
the search space and average search time of the ACMA in the ENS (SVPN and Samsung
uReady) mentioned in Section 3.1. Recall that ACMA only considers 62 vital PMs out of all
the 191 PMs. Table 14 demonstrates that ACMA achieves a noticeable reduction in search
space size and time through an efficient root cause analysis using the hybrid approach.

Specifically, there are total 2191 − 1 combinations of PMs in the naive top-down search-
ing approach. However, the ACMA reduces the search space by selecting ten primary
CMCs from among all the vital PMs by using a bottom-up approach and selects alternative
CMs from among the remaining vital PMs by applying a top-down approach. Conse-
quently, the average search time for finding the root causes of performance anomalies
decrease significantly compared to that of the naive approach (6.5 days). More specifically,
when the root causes exist in the primary CMCs, we can resolve the performance anomaly
within one minute. Moreover, the ACMA is expected to derive the alternative CMCs
within seven minutes, when the root causes are not in the primary CMs. Such a prompt
detection and analysis of performance anomalies at an early stage allows the administrator
to improve the reliability and continuity of the Web service hosted on a multitier system.

Table 14. Search space and average time required by the ACMA for finding CMs.

PMs of a Multitier Web System
ENS

App. PMs DB PMs OS PMs NW PMs

Approach for
Finding CMs

Search Space for
Finding CMs

Avg. Time for
Finding CMs

ENS 57 31 58 45 Top-down 191C20 6.5 days

ENS
via

ACMA

15 22 13 12

Primary
CMCs→ CMs:

Bottom-up
/

Alternative
CMCs→ CMs :

Top-down

Bottom-up: 10
from PME

/
Top-down: 52

from PMA

If primary
CMCs→ CMs,

then one minute
/

If alternative
CMCs→ CMs,

then seven
minutes

5.3. Evaluation of the Accuracy of Anomaly Detection

While the main objective of the ACMA is to bridge the gap between anomaly detection
and root cause analysis, analyzing the root causes of an anomaly should be preceded by
the detection of the target SPI anomalies. To evaluate the anomaly detection accuracy of
the proposed framework, we performed experiments with the following settings.

5.3.1. Experimental Settings

Evaluation metrics Precision and recall are widely used to measure the accuracy of
a classification problem. Note that the ACMA compares the estimated target SPI value
with the incoming target SPI value to determine whether a performance anomaly exists in
the system. Obtaining a positive anomaly detection result whenever an incoming target
SPI value exceeds the threshold could result in numerous false alarms. To prevent such
a situation, we set the detection interval to three minutes. Thus, the detector determines
whether a performance anomaly occurs given the average of the target SPI values collected
over three minutes. Precision is defined as a measure of relevant predictions by the
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classifier ( True positive
True positive + False positive ), whereas recall provides us a how many genuinely

relevant results are returned ( True positive
True positive+ False negative ). While high values of both precision

and recall are desirable, recall is more important than precision in our study, as missing
one performance anomaly might result in a catastrophic loss in enterprise business.

Comparison method. Opprentice [40] extracts results of underlying statistical detec-
tors (e.g., moving average, Holt-Winters, and SVD) as features and trains a random forest
classifier with these features to detect anomalies ultimately. The random forest classifier
in Opprentice needs user feedback (i.e., supervised learning), which requires the operator
to manually label whether the past value of the target SPI is anomalous or not. Note that
the ACMA’s random forest classifier estimates the future value of the target SPI based on
the values of the vital PMs as features (i.e., unsupervised learning), which implies that
the labeling process is unnecessary. Accordingly, we had to label the collected values of
the target SPI one by one to compare the performance of ACMA with that of Opprentice.
Specifically, we have collected 87,840 data points of the response time of SVPN over the
past two months. It took an average of five seconds to label individual data points, and
a total of 122 h were required to process all data points. For the underlying detectors of
Opprentice, we leveraged ACMA’s detector (Section 4.4).

5.3.2. Experimental Results

Figure 25 shows the anomaly detection accuracy of ACMA and Opprentice. Evidently,
both ACMA and Opprentice have the same recall performance. Specifically, Opprentice
also detected all the anomaly cases in Section 5.2, which implies that both ACMA and
Oppretice could notify the administrator about the anomalous activities that could result in
catastrophic loss in the business service. However, ACMA showed better performance in
precision than Oppentice. As described in Section 5.2, while ACMA misjudged only one
case (occurred at 14 July 2022 13:04), Opprentice yielded three more false positive cases
(occurred at 20 June 2022 09:06, 19 July 2022 09:36, and 28 July 2022 17:24). Due to the
bottom-up approach, ACMA is more efficient than Opprentice in terms of precision. To be
specific, Opprentice only examines the variation of the target SPI without considering the
influence of various PMs. Classifying only individual data points of target SPI thereby
yields a higher number of falsely detected anomalies.

Figure 25. Accuracy of anomaly detection of Opprentice and ACMA.

Although these false positive cases do not incur direct problems in business service,
generating numerous false alarms places a large burden on the administrator because then
they have to check the operational service status whenever the alarm occurs. Moreover,
Opprentice requires a data labeling process to train the underlying pattern of the target
SPI. When the target SPI is changed, additional labeling work is expected, which increases
the burden on the system administrator. In summary, we demonstrate that the ACMA
can provide a better business system reliability by detecting anomalous patterns in the
target SPI in advance. Furthermore, we consider that the deployment of ACMA is a
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reasonable choice as it produces fewer false alarms and lightens the labeling burden on the
administrator.

5.4. Evaluation of the Quality of Root Cause Analysis
5.4.1. Experimental Settings

Since recommending the relevant items to the users is essential for the recommendation
system, we can consider the ACMA as a root cause recommendation system. In this section,
we have tested the ranking quality of root cause analysis with the following settings.

Evaluation metrics. To evaluate the quality of the CMs provided by our model, we
used normalized discounted cumulative gain (NDCG@k), which is a widely used metric
for comparing the performance of recommendation systems. Because recommending the
relevant items to the users is crucial for a recommendation system, the ACMA can be
considered as a root cause recommendation system. Formally, NDCG@k is defined as
follows:

NDCG@k = DCG@k
IDCG@k

First, DCG@k accounts for the positions of the top-k recommended items by assigning
the higher relevance score at the top position ranks as follows:

DCG@k =
k
∑
i=1

reli
log2(i + 1)

Here, reli refers to the granted relevance score of the item at position i. IDCG@k is the
value of DCG@k, when the items are ideally recommended to the users. In our study, we
requested the administrator to provide ranks of the primary and alternative CMCs (a total
of 20 PMs) for each anomaly case and assumed these provided ranks as the ideal results.
The relevance score for each PM is defined as:

reli = {
1

ranki
i f ranki ≤ 20

0 otherwise

where ranki is the graded rank of the item at position i by model. Briefly, NDCG@k is in
the range [0, 1] and a higher value means the model gives results to the ideal case. In our
experiments, we evaluate the NDCG@k by varying the value of the k (k ∈ {5, 10, 15, 20}).

Comparison method Peiris et al. [4] proposed PAD, a tool to analyze and track the PMs
in multiserver distributed systems. PAD assists system administrators’ ability to analyze
performance anomalies through various components including data visualization and
automated correlation analysis. Specifically, the correlation analysis component in PAD
provides the PMs that have a Pearson or Spearman coefficient value greater than the
threshold as the metrics responsible for the performance anomalies. Since calculating the
Pearson and Spearman coefficients for all the PMs is a time-consuming process, we assume
that PAD also knows the vital PMs drawn by the ACMA. Thus, PAD gives rank on the 62
vital PMs based on the Pearson and Spearman coefficients in each anomaly case.

5.4.2. Experimental Results

Table 15 shows the quality of the PMs derived using the root cause analysis feature
of the ACMA and PAD for the five anomaly cases. For each anomaly case, we observed
that NDCG@k increases as k increases for all the methods. Note that in the case of PAD,
the correlation analysis is conducted on 62 vital PMs instead of all the PMs. Even though
PAD has a reduced search space for analyzing the root causes, the maximum NDCG@k of
the PAD is 0.5. The ACMA significantly outperforms PAD in terms of NDCG@k for all the
anomaly cases. This result indicates that it is beneficial to select the primary and alternative
CMCs by sorting the vital PMs according to their impact on the variation of the target SPI.
Furthermore, the NDCG@k of the ACMA is consistently close to 1 (i.e., the ideal case),
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which implies that the ACMA always provides a good starting point to the administrator
to troubleshoot the performance anomaly. In summary, our ACMA model is more suitable
for the task of root cause analysis because of its ability to sort the PMs according to their
relevance to the target SPI.

Table 15. Quality of the root cause analysis performed by the ACMA and PAD.

Anomaly Case Anomaly #1 Anomaly #2 Anomaly #3 Anomaly #4 Anomaly #5

Method ACMA PAD ACMA PAD ACMA PAD ACMA PAD ACMA PAD

NDCG@5 0.88 0.15 0.97 0.15 0.97 0.38 0.83 0.17 1 0.14
NDCG@10 0.9 0.34 0.94 0.14 0.98 0.47 0.85 0.31 0.98 0.38
NDCG@15 0.9 0.43 0.98 0.3 0.99 0.5 0.86 0.45 0.99 0.38
NDCG@20 0.91 0.48 0.98 0.43 0.99 0.49 0.87 0.5 1 0.46

6. Related Work

Based on study reported in [1], the ACMA falls into performance anomaly detection
and bottleneck identification (PADBI) systems, where the bottleneck indicates the potential
root causes of the performance anomalies. The two challenges that PADBI systems faces
are: (1) how to detect performance anomalies and (2) how to identify the root causes of the
detected anomalies. Generally, a method that mainly focuses on the first challenge can be
classified as a performance anomaly detection (PAD) system, whereas the work that deals
with the second challenge is a performance bottleneck identification (PBI) system.

Performance anomaly detection (PAD). In various domains, anomaly detection is
employed as the process of identifying outliers or deviations compared to the normal range,
such as fraud detection for credit cards and bank transactions. In this study, we focused on
the problem of finding performance issues in large-scale systems. Many studies attempt to
detect performance anomalies by using various statistical and machine learning algorithms
on time series PMs. Ren et al. [2] leveraged the spectral residual model from the computer
vision domain. Their main idea was that saliency detection in images can be translated into
a problem of detecting anomalies in time-series business metrics. They further combined
their spectral residual model with a convolutional neural network (CNN) to improve the
accuracy of the time-series anomaly detection. Xu et al. [41] proposed DONUT, which
uses a variational auto-encoder (VAE) to model the normal pattern of a time series SPI.
DONUT considers the SPI measurements that do not follow the normal pattern learned
by VAE as performance anomalies. Shipmon et al. [42] proposed various neural network
models and anomaly detection rules to find the sustained anomalies in time series SPI. They
discovered that anomaly detection rules are more important than the anomaly detection
model, when the time series has no periodicity. Vallis et al. [43] focused on the detection
of long-term anomalies. Because of the predominant trend and seasonal components in
the time series, they applied the time series decomposition method to extract trend and
seasonal components. Then, they detected the performance anomalies in the time series
where the trend and seasonal components are removed. Laptev et al. [3] proposed EGADS,
which is a generic and scalable framework that can combine the collection of existing
anomaly detection models. Similar to EGADS, Liu et al. [40] proposed Opprentice that
uses a set of the existing anomaly detectors as anomaly feature extractors. Kim et al. [44]
proposed a simulation-based automatic monitoring system (SAM) that could monitor the
enterprise system from the users’ viewpoint. The SAM could locate anomalies that could
not be detected by the existing monitoring systems. However, the SAM had limits in
searching for the root causes in real time.

In summary, researchers have focused on the performance anomaly detection problem
from various perspectives and constructed many algorithms. While these methods can
extract the outliers from time-series SPI data, their ability to explain the performance
anomaly causes is severely limited. As a result, top-down approaches that first identify
the anomaly points using performance anomaly detection techniques and subsequently
explore the PMs often fail in facilitating a prompt problem diagnosis.
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Root cause analysis. Root cause analysis is a process of finding the reasons for an
observed performance anomaly (i.e., software bugs, system components). To date, several
techniques have been demonstrated to assess the potential root cause using machine learn-
ing techniques by identifying the relationship between the system metrics. DRACO [45]
and DISTALYZER [46] use a supervised learning approach for the analysis of performance
logs. In these approaches, data labeling with system logs is required, when the system
shows an abnormal behavior, to evaluate the relationship between the PMs and the target
SPI. However, since system failure cases are rare, obtaining such labeled data is not always
possible. Roy et al. [47] proposed PerfAugur for explaining the potential root cause of cloud
services. PerfAugur first organizes a relation table that contains a set of system metrics and
a target SPI as attributes and then examines the relationship between them using robust
statistics. However, such an approach is more likely to provide a minor root cause if the
primary root cause is outside the relation table. Similarly, Peiris et al. [4] proposed a PAD
system that detects the potential root causes of a performance anomaly in a distributed
system based on a correlation analysis performed using the Pearson and Spearman correla-
tion coefficient. Due to the exponential number of combinations between the PMs, PAD is
computationally infeasible, because the Pearson/Spearman correlation coefficient evaluates
a pairwise linear relationship. Some systems that detect the root causes of a performance
anomaly in the applications hosted in Infrastructure-as-as service [48] or Platform-as-a-
Service [49] cloud. These works track events within platform-level instrumentation and
thus can provide only limited insights into the system components.

To summarize, researchers have studied the root cause analysis problem from various
environments and proposed many statistical methods. Most of them focused on identifying
the root causes after a problem occurs. However, this strategy often fails to provide the
primary factors that affect the target SPI the most. Table 16 classifies the recent reported
methods similar to ACMA. In addition, we compared the program execution time for
finding CMs. The program execution time is averaged over five runs. We observed that
ACMA took less time to find the CMs than PAD. Specifically, ACMA took an average of
152 s to find the CMs, and PAD took an average of 1287 s. Thus, ACMA is more suitable for
analyzing and identifying the root causes of performance anomalies in enterprise services.

Table 16. Comparison between recent literature on anomaly detection and root cause analysis.

Methodology Performance

Technique Anomaly
Detection

Extracting
Vital
PMs

Finding
CMs

Model
Flexibility

Providing
CMs in

Real Time

Search
Space for
Finding

CMs

Avg. Time for
Finding CMs

Program
Execution
Time for
Finding

CMs

Opprentice [40] Supported Unknown Not
supported

Not
supported

Not
supported Unknown Unknown Unknown

PAD [4] Supported Unknown Supported Partially
supported

Not
supported

Large (The
framework
requires a

1:1
comparison

for all
metrics in a
top-down
method)

Long (The
framework

requires a 1:1
comparison for
all metrics in a

top-down
method)

1287 s

ACMA Supported Yes Supported Supported Supported
Bottom-up: 10,

Top-down: 52

Primary CM :
one min,

Alternative
CM: seven

min

152 s
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7. Conclusions

Here, we proposed a system—ACMA—that automatically detects the performance
anomalies and analyzes their CMs in real time. The main objective of the ACMA is to
provide helpful guidance on performance anomalies to the administrators and minimize
the time required to analyze the root causes of a performance anomaly running on a
multitier architecture. Despite being important, integration of both anomaly detection and
root cause analysis is a considerable challenge because of the search space among all the
combinations of possible causes. To solve this problem, we identified a total of 191 PMs that
are widely used in a multitier Web system environment. Then, we extracted 62 vital PMs
using the statistical methodology to narrow the search space. Based on the 62 vital PMs,
we proposed a random-forest-based regression model to extract the primary CMCs that
strongly influence the target SPI of the service.

When a target SPI anomaly occurs, primary CMs are selected from among the top-k
primary CMCs and reported to the administrator within a second. Furthermore, the ACMA
prepares alternative CMCs from the remaining vital PMs, except from the primary CMCs,
in case that the root cause may not exist in the primary CMs. These alternative CMs are
selected from the among alternative CMCs and reported to the manager within minutes.
By incorporating various statistical methods, the ACMA can adapt to any multitier Web
system and enable it to perform real-time anomaly detection with root cause analysis on
any target SPI and PM.

Our experimental results obtained from a real-world business service demonstrated
that the ACMA could detect any performance anomaly (irrespective of intended or unin-
tended anomalies) and immediately provide their CMs. Moreover, the actual root causes of
all the unintended anomalies existed in the primary and alternative CMs. The experimental
results showed that the ACMA facilitated a more extensive and comprehensive analysis of
the abnormal behavior of multitier systems, and this feature is anticipated to enhance the
reliability of enterprise services.
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