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Abstract: Agricultural droughts cause a great reduction in winter wheat productivity; therefore,
timely and precise irrigation recommendations are needed to alleviate the impact. This study aims
to assess drought stress in winter wheat with the use of an unmanned aerial system (UAS) with
multispectral and thermal sensors. High-resolution Water Deficit Index (WDI) maps were derived to
assess crop drought stress and evaluate winter wheat actual evapotranspiration rate (ETa). However,
the estimation of WDI needs to be improved by using more appropriate vegetation indices as a
proximate of the fraction of vegetation cover. The experiments involved six irrigation levels of winter
wheat in the harvest years 2019 and 2020 at Luancheng, North China Plain on seasonal and diurnal
timescales. Additionally, WDI derived from several vegetation indices (VIs) were compared: near-
infrared-, red edge-, and RGB-based. The WDIs derived from different VIs were highly correlated
with each other and had similar performances. The WDI had a consistently high correlation to
stomatal conductance during the whole season (R2 between 0.63–0.99) and the correlation was the
highest in the middle of the growing season. On the contrary, the correlation between WDI and leaf
water potential increased as the season progressed with R2 up to 0.99. Additionally, WDI and ETa

had a strong connection to soil water status with R2 up to 0.93 to the fraction of transpirable soil
water and 0.94 to the soil water change at 2 m depth at the hourly rate. The results indicated that
WDI derived from multispectral and thermal sensors was a reliable factor in assessing the water
status of the crop for irrigation scheduling.

Keywords: water deficit index; evapotranspiration; UAV; fraction of transpirable soil water; irriga-
tion requirements

1. Introduction

Agricultural drought—the lack of soil water for crop uptake—is the largest environ-
mental stress significantly impacting wheat yield in all climates [1]. Crops stressed from
high temperatures and a lack of water supply lose productivity and reduce growth du-
ration [2]. At a global scale, irrigation increases the attainable yield of winter wheat by
almost 35%, while in the North China Plain (NCP) yield benefits due to irrigation are even
higher due to greater evaporative demands [3]. The latest developed technologies, such
as unmanned aerial platforms equipped with multispectral and thermal sensors (UAS),
allow efficient field monitoring for the early detection of drought with faster response
and special attention to be paid to spatial heterogeneity and patterns within the field [4,5].
However, a deeper understanding of plant physiological responses to drought and their
interpretation by the sensors is needed in order to further improve UASs for advanced
precision agriculture use.
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Winter wheat yield is highly susceptible to drought stress, especially at the flowering
and grain-filling stage in particular if the drought events occur for prolonged periods [6].
Under such conditions, plants will decrease the number of grains per spike and reduce the
grain weight, so the timely application of irrigation is necessary to prevent yield loss [6].
One of the early signals of winter wheat drought stress is the reduction in transpiration
through reducing stomatal opening [7], which leads to an increase in the plant leaf temper-
ature. Canopy temperature variations can be detected by thermal infrared sensors and can
be used as evaluation criteria for plant water needs [8–10].

Thermal imagery is highly sensitive to environmental conditions and prone to dis-
tortions during acquisition and processing [11], and further interpretation may become
more challenging due to the inability to separate canopy and soil in a frame [12]. These
effects can be alleviated complementarily by visible/near-infrared images in order to eval-
uate crop canopy coverage since UAS multispectral imagery has a high correlation to leaf
area index [13].

It is possible to accurately calculate the theoretical difference between canopy and
air temperature for the canopy that fully transpires (no signals of drought stress) and the
canopy that in theory fully stops the transpiration process (or experiences the maximum
amount of drought stress). Moran et al. (1994) [14] combined this information by plotting
it into a two-dimensional space of the canopy–air temperature difference and the canopy
coverage into the Vegetation Index-Temperature (VIT) trapezoid and called it the Water
Deficit Index (WDI). WDI is a close approximation of evapotranspiration as it shows the
difference between fully transpiring and non-transpiring canopies; therefore, can be used
to derive high-resolution evapotranspiration (ET) maps.

With the increased use of UAS equipped with multispectral and thermal cameras,
it has become easier to spatially resolve the crop water status of an area by placing each
pixel location in the VIT space, thus obtaining precise information about current crop
conditions and water needs. WDI was successfully used to assess crop drought stress
on various scales [15–18], mostly as a series of snapshots across the season, although the
diurnal variation (during the day) may reveal more information about the crop stress
symptoms [19]. Most studies use NDVI (Normalized Difference Vegetation Index) and
SAVI (Soil-Adjusted Vegetation Index) as approximations of the fraction of vegetation cover
in the WDI [16–18,20], but it is worth assessing the use of other multispectral vegetation
indices (VIs) in WDI calculations, as other indices may provide more information on
canopy status [21] and therefore improve calculations of WDI. One way to obtain a better
approximation of the fraction of vegetation cover is to include red-edge-based vegetation
indices that have a bigger advantage in capturing canopy structure compared to NIR-
based indices [21]. Improved WDI calculations will provide a better baseline for the ET
calculations and improve crop water need approximation.

The main objectives of this study were as follows:

• Improve and evaluate WDI derivation for winter wheat crop grown under a large
variation of soil water conditions over the growing season using several multispectral
indices, with specific attention to the seasonal variation and the diurnal changes in
winter wheat growth.

• Establish and assess the relationship between WDI drought maps with field-measured
parameters, such as stomatal conductance, leaf water potential, and actual soil wa-
ter content.

• Design a framework for deriving high-resolution ETa maps using a dual crop coeffi-
cient ET calculation combined with the WDI approach and evaluate the performance
of ET calculations by validation against soil water balance.

2. Materials and Methods
2.1. Field Experimental Setup

Field experiment with winter wheat (Triticum aestivum L., variety Shixin633) was
conducted at Luancheng Agro-Ecological Experimental Station (37◦53′15′′ N, 114◦40′47′′ E,
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elevation 50 m), located in the northern part of NCP. The climate is temperate semi-humid
and monsoon-influenced. The main cropping system in the NCP is winter wheat and maize,
an annual double cropping system with the straws from both crops being incorporated back
into the soil system. The soil is silty loam, representative of the predominant soils located in
the region. Figure 1 shows the layout of the six irrigation treatments at Luancheng station.
The treatments included no irrigation during the growing season (rainfed) and incremen-
tally added one to five irrigations. Each treatment had four replicates, summing a total of
24 plots, each of 4 × 9 m2 size with a 2 m zone between to minimize the mutual effects.
Irrigation was performed by pumping water from a nearby well and the groundwater was
transported to each plot by a low-pressure pipe. The irrigation amount was recorded by a
flow meter, and for each irrigation, around 60–80 mm of water was applied. Table 1 lists
the irrigation timing for different treatments during the two seasons.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 20 
 

 

At maturity, around 9 m2 from the center of each plot was manually harvested and 

threshed to obtain the grains, followed by air-drying the grains to a constant weight (13% 

water contents) and weighing to obtain the grain dry matter yield. 

 

Figure 1. Outline of the experimental field setup at Luancheng Agro-Ecological Experimental Sta-

tion with the location of the weather station and layout of the experimental treatment plots (codes 

are shown in Table 1). 

2.2. Unmanned Aerial System Acquisition of Multispectral and Thermal Images 

An unmanned aerial vehicle (UAV) with mounted either multispectral Parrot Se-

quoia 1.2 MP, 1280 × 960 px (bands: green at 550 nm ± 40 nm; red at 660 nm ± 40 nm; red 

edge at 735 nm ± 10 nm; near-infrared at 790 nm ± 40 nm) or thermal sensor DJI Zenmuse 

XT uncooled Vox Microbolometer 640 × 512 px was operated at a flight altitude of about 

100 m over the experimental field, resulting in 10 cm spatial resolution images. The ortho-

mosaics of multispectral and thermal images were processed in Pix4Dmapper software 

(Pix4D SA, Prilly, Switzerland) with the use of “Ag Multispectral” and “Thermal camera” 

modes, respectively. The output was high-resolution GeoTIFF radiometrically calibrated 

images. The calibration of the multispectral images was performed with the MicaSense 

calibration panel images obtained prior to the flight and used during the processing in the 

Pix4Dmapper software. Thermal orthomosaics were calibrated according to the hottest 

Figure 1. Outline of the experimental field setup at Luancheng Agro-Ecological Experimental Station
with the location of the weather station and layout of the experimental treatment plots (codes are
shown in Table 1).



Sensors 2023, 23, 1903 4 of 20

Table 1. Timing of each irrigation to different treatments for the season of 2019 and 2020 (60–80 mm
per irrigation).

Treatment Abbreviations
(Irrigation Numbers)

2018 2019 2020

Season 2019 Season 2020

A (0) No irrigation No irrigation
B (1) 29.03 25.03
C (2) 29.03 05.05 25.03 01.05
D (3) 15.03 26.04 16.05 17.03 21.04 14.05
E (4) 30.11 29.03 26.04 16.05 28.11 25.03 29.04 19.05
F (5) 30.11 29.03 19.04 05.05 16.05 28.11 25.03 13.04 01.05 19.05

The winter wheat was sown on 8 October 2018 and 14 October 2019 with a seeding rate
of 187.49 kg/ha. Before sowing, 900 kg/ha compound fertilizer (N:P2O5:K2O = 19%:21%:5%)
was incorporated into the top soil with cultivation. At the jointing stage, urea of 225 kg/ha
(46% N) was applied with the irrigation in March or with a rainfall event for the rain-fed
treatment. Winter wheat was managed free of weeds and diseases.

A weather station located 50 m from the experimental field automatically collected
hourly measurements of solar radiation, air temperature, relative humidity, wind speed,
precipitation, and ground heat flux measured by sensor at 5 cm depth below the soil
surface above living grass. Volumetric soil water content was measured with neutron probe
(503 DR, CPN International Inc., Concord, CA, USA) for each 20 cm soil layer until 2 m
depth for 12 plots (2 per treatment). The fraction of transpirable soil water (FTSW) was
calculated from the measurements by dividing available soil water by total available water
(difference between field capacity and wilting point). Additionally, automatic soil water
sensors (Insentek, Eastern Ecology Company, Beijing, China) for collecting hourly soil
volumetric water content by 10 cm increment for the top 2 m soil profile were installed on 4
plots (treatments A, B, C, and F) in 2019 and one for each treatment in 2020. The average
field capacity for the soil at the experimental site was 36% (v/v) and the wilting point was
13% (v/v) for the 2 m soil profile.

Stomatal conductance (gs) was measured on three plants in one plot per treatment on
the youngest fully developed leaf with a leaf porometer (Model SC-1, Decagon, Pullman,
WA, USA) on the day of the drone flights. It was measured between 10:00 and 15:00 h in
full sunlight. Leaf water potential was measured shortly after using a pressure chamber on
the same leaves as stomatal conductance.

At maturity, around 9 m2 from the center of each plot was manually harvested and
threshed to obtain the grains, followed by air-drying the grains to a constant weight (13%
water contents) and weighing to obtain the grain dry matter yield.

2.2. Unmanned Aerial System Acquisition of Multispectral and Thermal Images

An unmanned aerial vehicle (UAV) with mounted either multispectral Parrot Sequoia
1.2 MP, 1280 × 960 px (bands: green at 550 nm ± 40 nm; red at 660 nm ± 40 nm; red edge
at 735 nm ± 10 nm; near-infrared at 790 nm ± 40 nm) or thermal sensor DJI Zenmuse
XT uncooled Vox Microbolometer 640 × 512 px was operated at a flight altitude of about
100 m over the experimental field, resulting in 10 cm spatial resolution images. The ortho-
mosaics of multispectral and thermal images were processed in Pix4Dmapper software
(Pix4D SA, Prilly, Switzerland) with the use of “Ag Multispectral” and “Thermal camera”
modes, respectively. The output was high-resolution GeoTIFF radiometrically calibrated
images. The calibration of the multispectral images was performed with the MicaSense
calibration panel images obtained prior to the flight and used during the processing in the
Pix4Dmapper software. Thermal orthomosaics were calibrated according to the hottest
(soil) and the coolest (wet canopy) pixels in the image. The flights were performed over
the spring season of 2019 with additional diurnal flights in spring 2020. The flight times
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and main atmospheric parameters, such as air temperature, solar radiation, wind speed,
relative humidity, and reference evapotranspiration, are presented in Table 2.

Table 2. Flight dates, time, and main environmental parameters at the time of the flight that were
used in the WDI calculations: air temperature Ta (◦C), solar radiation Rs (Wm−2), wind speed u
(m s−1), relative humidity RH (%), Penman–Monteith reference evapotranspiration ET0 (mm h−1).

Flight
Date

Flight
Time

Air
Temperature

Ta (◦C)

Solar
Radiation

Rs (Wm−2)

Wind
Speed u
(m s−1)

Relative
Humidity

RH (%)

ET0
(mm h−1)

2019.04.04 11:00 17.5 731.5 2.4 51 0.41
2019.04.15 11:00 17.2 832.7 3.6 56 0.45
2019.04.18 11:00 20.5 671.8 5.9 39 0.38
2019.04.29 12:00 18.1 800.1 4.9 85 0.53
2019.05.09 10:00 22.9 626.9 1.9 39 0.39
2019.05.17 10:00 25.4 644.9 4.1 88 0.58

2020.04.23

11:00 14.6 840 4.6 30 0.35
12:00 15.4 919.2 3.3 30 0.41
13:00 16.2 961 3.9 30 0.42
14:00 17.6 944.9 4.4 30 0.43
15:00 17.9 881.2 5.6 30 0.39

2.3. Calculation of Multispectral and Thermal Indices and Evapotranspiration Estimation
2.3.1. Vegetation Indices

In the Vegetation Index/Temperature (VIT) trapezoid (Figure 2) it is essential to accu-
rately estimate the fraction of vegetation cover in order to achieve high precision in the WDI
calculations. Most articles used near-infrared based indices, such as NDVI (Normalized
Difference Vegetation Index) and SAVI (Soil-Adjusted Vegetation Index) [5,14–16,20]. In
this study, we investigated the use of several near-infrared-, red-edge-, and RGB-based
indices in order to assess suitability for use in the WDI calculation. The selected vegetation
indices, formulas, and references are provided in Table 3.
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Figure 2. Illustration of the Vegetation Index/Temperature (VIT) trapezoid method. The x-axis shows
surface–air temperature difference (Ts − Ta; ◦C) and the y-axis is a fraction of vegetation cover. Points
1, 2, 3, and 4 are theoretical extremes of the VIT trapezoid.
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Table 3. The selection of vegetation indices used for the calculation of Water Deficit Index (WDI) *.

Index Description Formula References

NDVI Normalized Difference
Vegetation Index NDVI = NIR−R

NIR+R (1) Rouse J.W. et al. (1974) [22]

RVI Ratio Vegetation Index RVI = NIR
R (2) Pearson and Miller (1972) [23]

OSAVI
Optimized

Soil-Adjusted
Vegetation Index

OSAVI = (1 + 0.16) NIR−R
NIR+R+0.16 (3) Rondeaux et al. (1996) [24]

NDRE Normalized Difference
RedEdge NDRE = NIR−RE

NIR+RE (4) Gitelson and Merzlyak (1994) [25]

NDVIi Red and RedEdge
NDVI NDVIi = NIR−(0.4∗R+0.6∗RE)

NIR+(0.4∗R+0.6∗RE)
(5) Xie et al. (2018) [21]

GRVI Green and Red ratio
Vegetation Index GRVI = G−R

G+R (6) Tucker (1979) [26]

*: Where G is green, R is red, RE is red edge and NIR is near-infrared band.

2.3.2. Water Deficit Index (WDI) Calculations

Moran et al. (1994) [14] developed the WDI, based on the combination of thermal and
multispectral vegetation indices. Crop canopy fraction cover approximated by the use of
the vegetation index in conjunction with the surface–air temperature difference (Ts − Ta) is
shaped into the Vegetation Index/Temperature (VIT) trapezoid limited by “wet” and “dry”
baselines for both vegetated and bare soil surfaces (Figure 2).

In principle, the WDI is designed to represent the ability of the crop to transpire
depending on the current environment and weather conditions and independently of the
percentage of vegetation cover. WDI can be calculated as follows:

WDI = 1− ETa

ETp
=

(TS − Ta)min − (TS − Ta)mes
(TS − Ta)min − (TS − Ta)max

(7)

where ETa and ETP are actual and potential evapotranspiration rates [mm h−1], respec-
tively, TS and Ta are surface and air temperature [◦C], respectively, and subscript “min” is
minimum, “max” is maximum, and “mes” is measured surface–air temperature differences.

For all pixels not fully covered by the canopy, WDI equals the ratio of distances AC/AB
(Figure 2). In order to calculate the minimum and maximum theoretical values of (TS − Ta)
depending on the fraction of vegetation cover, the baseline 1–3 in Figure 2 can be described
by x = a + b*y and baseline 2–4 is x = c + d*y, where x is (TS − Ta), y is vegetation index VI,
so Equation (7) becomes the following:

WDI =
(a + bVI)− (TS − Ta)mes
(c + dVI)− (a + bVI)

(8)

Four theoretical cornets of the VIT trapezoid can be calculated by the following formula:

(Ts − Ta) =

[
ra(Rn −G)

ρCV

] γ
(

1 + rc
ra

)
{

∆ + γ
(

1 + rc
ra

)}
−

 VPD{
∆ + γ

(
1 + rc

ra

)}
 (9)

where ra is aerodynamic resistance [sm−1], Rn is net radiation [Wm−2], G is soil ground
heat flux [Wm−2], Cv is the volumetric heat capacity of air (1200 J ◦C−1), ρ is air density [kg
m−3], VPD is vapor pressure deficit [kPa], γ is the psychrometric constant [0.067 kPa ◦C−1],
∆ is the slope of saturation vapor pressure curve [kPa ◦C−1], and rc is canopy resistance to
vapor transport [s m−1]. Due to the differences in the conditions of each corner of the VIT
trapezoid, ra, Rn, G, and rc were calculated separately according to procedures described by
Antoniuk et al. (2021) [5]. The method accounts for the differences based on the vegetation
cover as well as the differences between dry and wet bare soil.
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2.3.3. Actual Evapotranspiration (ETa) Calculations

Since WDI basically represents the ability of the crop to transpire, it may be possible
to estimate crop evapotranspiration using WDI maps. As WDI is based on the dual
approach (crop–soil), it is appropriate to use the dual-approach ETa calculation proposed
by Allen et al. (1998) [27] (Equation (10)):

ETa = ET0(KcbKs + Ke) (10)

where Kcb is the basal crop coefficient, Ks is the drought stress coefficient, and Ke is the
evaporation coefficient of the bare soil. The units of ETa and ET0 are [mm h−1], and the
latter was calculated by the Penman–Monteith equation [27].

In order to implement WDI into the ET calculation, we used it as a replacement for the
drought stress coefficient (of the crop) and to correct the evaporation of soil depending on
the fraction of vegetation cover (Equation (11)).

ETa = ET0(Kcb(1−WDI) + 0.25(1− fc)(1−WDI)) (11)

More details about the calculation of all the specific parameters can be found in
Moran et al. (1994) [14] and Antoniuk et al. (2021) [5]. The reference evapotranspiration
rate was calculated using the Penman–Monteith equation [27]:

ET0 =
0.408∆(Rn −G) + γ

(
37

Ta(hr)+273

)
u2

(
e0

Ta(hr)
− ea

)
∆ + γ(1 + 0.34u2)

(12)

where Ta(hr) is mean hourly air temperature [◦C]; u2 is the wind speed at 2 m height
[m s−1]; e0

Ta(hr) is the saturation vapor pressure at the temperature Ta [kPa]; ea is ac-
tual vapor pressure [kPa]. Rn and G were calculated using the method described by
Antoniuk et al. (2021) [5].

2.3.4. WDI and ETa Validation

In order to evaluate the performance of WDI and ETa maps derived based on different
multispectral indices, resulting maps were correlated to the field crop and soil parameters:
stomatal conductance, leaf water potential, soil water contents, soil water change, and
fraction of transpirable soil water (FTSW).

Gs and LWP values were averaged from the three measurements per treatment plots
that were created as close to flight time as possible. For the correlations, the average WDI
and ETa values of all pixels in the plots per treatment were used (a total of 6 values).

For the correlation to the soil water contents and FTSW, average values per plot were
used (a total of 24 values). For the plots that did not have the neutron probes installed,
average values of measurements for each treatment were used. As for the soil water change,
the data from automatic sensors were aggregated to daily values, the combined difference
in the soil water level on the 2 m depth during the day was calculated for each hour
based on the incoming radiation intensity, and the values (in mm/h) were correlated to the
average WDI and ETa values per treatment (total of 4 values in 2019 and 6 values in 2020).

In order to test the similarity between different WDIs, a two-tailed homoscedastic
t-test was performed to determine whether there is a statistically significant difference
between every two groups of WDI.

3. Results
3.1. Meteorological Conditions, Soil Water and Winter Wheat Physiological Variations for the
Two Seasons

The spring 2019 was characterized by much warmer and more stable weather, while
in 2020 the temperature fluctuated more. There was a limited amount of rain in 2019
compared to 2020 and notably no rain during March 2019 (Figure 3). Due to this, the
amount of water available for the winter wheat in 2019 was limited and the crop was
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mostly supplied by irrigation and as the season progressed, the physiological differences
between treatments became more and more prominent (Figure 4). During the season,
stomatal conductance was gradually decreasing, and in particular treatments with low
irrigation reduced transpiration faster than the treatments with high irrigation (Figure 4a).
On the 18th of April, stomatal conductance of all treatments was notably lower compared
to other dates due to high wind conditions. Leaf water potential was gradually decreasing
during the season until treatments A, B, and C reached LWP of −3.5 MPa because the
leaves were drying out due to the maturity of the plant (Figure 4b).
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May 2019, and (c) grain yield in 2019 and 2020. The treatment names A–F refer to treatments from
the lowest to the highest irrigation amounts, respectively.

In 2019, the amount of irrigation had a direct impact on the winter wheat grain yield
(Figure 4c). Treatments with low irrigation (A, B, C) had significantly lower yield compared
to treatments with higher amounts of irrigation (E, F). The yield of the non-irrigated
treatment (A) was less than half of the treatments receiving sufficient irrigation in 2019. No
significant difference was found between the two treatments with the highest irrigation
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amounts (E and F). In 2020, due to the higher amount of rainfall that was more evenly
distributed through the season and slightly lower temperature, the yield was overall higher
than in 2019 for the lower irrigation treatments, but treatments with higher irrigation
amounts had similar yields as in 2019. In 2020, only treatments A and B had noticeably
lower yields than the other treatments (Figure 4c). The yield difference in treatment A
between 2019 and 2020 is attributed to the differences in the weather conditions.

3.2. WDI Maps Derived from the Different Multispectral Indices for the Entire Growing Season
in 2019

High spatial resolution WDI maps were derived for the growing season, with a
fraction of vegetation cover derived by different multispectral indices—NDVI, RVI, OSAVI,
NDRE, NDVIi, and GRVI—referred to hereafter as WDINDVI, WDIRVI, WDIOSAVI, WDINDRE,
WDINDVIi, and WDIGRVI, respectively (Figure 5a and Appendix A Figure A1). Figure 5b
shows the absolute difference maps between WDINDVI and the other WDIs on 15 April
2019. WDIRVI had consistently higher values compared to the others. All WDI indices were
highly correlated with each other (Table 4). By performing a two-tailed homoscedastic t-test,
it was found that WDINDVI, WDIRVI, and WDIOSAVI did not differ statistically from each
other. Similarly, WDINDRE, WDINDVIi, and WDIGRVI did not have differences statistically
between each other. However, WDIs from the two groups were statistically different from
each other. On the thermal image from 4 April 2019 there was thermal drift observed, so
these data were removed from further analysis.
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Figure 5. (a) Water Deficit Index (WDI) maps calculated from different multispectral indices for the
winter wheat based on the flight carried out on 15 April 2019 and (b) absolute difference map between
WDINDVI and other WDIs. NDVI is the Normalized Difference Vegetation Index; RVI—Ratio Vegeta-
tion Index; OSAVI—Optimized Soil-Adjusted Vegetation Index; NDRE—Normalized Difference Red
Edge; NDVIi—Red and Red Edge NDVI; GRVI—Green and Red ratio Vegetation Index.
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Table 4. Correlations between WDIs calculated from different multispectral indices calculated based
on the whole season of 2019.

WDINDVI WDIRVI WDIOSAVI WDINDRI WDINDVIi WDIGRVI

WDINDVI 1
WDIRVI 0.98 1

WDIOSAVI 0.96 0.95 1
WDINDRI 0.96 0.95 0.94 1
WDINDVIi 0.92 0.87 0.92 0.92 1
WDIGRVI 0.95 0.92 0.94 0.95 0.97 1

3.3. Correlations of WDI to Winter Wheat Physiological Parameters (Stomatal Conductance, Leaf
Water Potential) and Yield in 2019

Table 5 shows correlations of WDI based on different VI to the gs, LWP, and winter
wheat yield for the season of 2019.

Table 5. WDI correlation to stomatal conductance, leaf water potential, and yield based on WDIs
derived from different multispectral indices for the April–May 2019.

Date WDINDVI WDIRVI WDIOSAVI WDINDRE WDINDVIi WDIGRVI

Stomatal conductance (gs)
15.04 −0.63 −0.63 −0.61 −0.65 −0.65 −0.64
18.04 −0.79 −0.79 −0.79 −0.78 −0.78 −0.78
29.04 −0.98 −0.98 −0.99 −0.99 −0.99 −0.99
09.05 −0.89 −0.90 −0.86 −0.81 −0.84 −0.90
17.05 −0.87 −0.90 −0.84 −0.83 −0.79 −0.82

Leaf water potential (LWP)
15.04 −0.06 −0.05 0.02 −0.14 −0.12 −0.12
18.04 0.55 0.54 0.47 0.63 0.61 0.60
29.04 0.92 0.90 0.91 0.94 0.94 0.91
09.05 0.94 0.91 0.96 0.99 0.98 0.85
17.05 0.96 0.93 0.96 0.96 0.95 0.96

Yield
15.04 −0.87 −0.87 −0.86 −0.87 −0.87 −0.86
18.04 −0.64 −0.64 −0.56 −0.70 −0.69 −0.67
29.04 −0.52 −0.50 −0.53 −0.69 −0.65 −0.61
09.05 −0.85 −0.83 −0.88 −0.89 −0.88 −0.70
17.05 −0.89 −0.84 −0.89 −0.90 −0.91 −0.91

WDI was consistently highly correlated to stomatal conductance. The exception was
the 18 April, likely due to effects of higher wind and, the 15 April due to the earlier
stage of winter wheat development. At the end of the season, WDIRVI had a higher
correlation to stomatal conductance compared to other vegetation indices, but there was no
apparent difference earlier in the season. With respect to leaf water potential, correlation
to WDI for all VI was getting higher with the growth of the crop and the difference in soil
water conditions becoming larger. This can be explained by the fact that at the beginning
of the season, there was a very small variation in stomatal conductance and leaf water
potential among the six treatments (Figure 4a). As for the correlation to the yield, all indices
performed similarly having higher correlation by the end of the season (R2 up to 0.91)
compared to the middle of the season (R2 = 0.5; Table 5), although red-edge-based indices
had slightly better correlation.

3.4. Diurnal Variation of WDI and Its Correlation to Winter Wheat Physiological Parameters and
Soil Water Status in 2020

WDI maps of the diurnal flights on 23 April 2020 are presented in Figure 6 and
Appendix A Figure A2. Correlations to SWC (mm), gs (mmol m−2 s−2), and LWP (mPa)
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are represented in Table 6. During the day, WDI increased from 11:00 to 12:00, remained
high for the treatments with low irrigation, and decreased for all treatments after 14:00. The
WDI correlations to the soil water content, stomatal conductance and leaf water potential
were high throughout the whole day and are presented in Table 6. Correlations to the SWC
were consistently high and negative during the whole day (R2 between −0.96 and −0.99)
and with all the VIs except for the flight at 16:00 when R2 was between −0.88 and −0.89,
possibly due to lower variation between the treatments. In general, WDIs at 14:00 had the
same or higher correlations to winter wheat gs and LWP compared to other hours, although
those measurements were performed around 10–11.
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Figure 6. WDI maps calculated based on NDVI for the diurnal winter wheat flights on 23 April 2020.

Table 6. Correlation of average WDI for each irrigation treatment to soil water content (SWC,
mm), stomatal conductance gs (mmol m−2 s−2), and leaf water potential (LWP, mPa) (see Table 1 for
treatment details). WDI is based on diurnal flights on 23 April 2020 and different multispectral indices.

WDI Parameter
Hour

11:00 12:00 13:00 14:00 15:00 16:00

WDINDVI

SWC −0.98 −0.98 −0.98 −0.97 −0.98 −0.88
gs −0.87 −0.82 −0.85 −0.87 −0.82 −0.82

LWP 0.96 0.93 0.93 0.97 0.95 0.96

WDIRVI

SWC −0.98 −0.98 −0.98 −0.97 −0.98 −0.87
gs −0.85 −0.81 −0.84 −0.86 −0.81 −0.80

LWP 0.95 0.92 0.91 0.96 0.94 0.95

WDIOSAVI

SWC −0.98 −0.98 −0.98 −0.97 −0.98 −0.88
gs −0.87 −0.83 −0.85 −0.87 −0.82 −0.82

LWP 0.96 0.94 0.93 0.97 0.94 0.96

WDINDRE

SWC −0.98 −0.98 −0.98 −0.97 −0.98 −0.89
gs −0.86 −0.82 −0.85 −0.86 −0.82 −0.82

LWP 0.96 0.93 0.93 0.97 0.94 0.96

WDINDVIi

SWC −0.98 −0.98 −0.98 −0.97 −0.98 −0.89
gs −0.87 −0.83 −0.85 −0.87 −0.83 −0.83

LWP 0.96 0.94 0.93 0.97 0.95 0.96

WDIGRVI

SWC −0.98 −0.99 −0.97 −0.96 −0.98 −0.88
Gs −0.87 −0.85 −0.86 −0.89 −0.83 −0.83

LWP 0.96 0.94 0.93 0.98 0.95 0.97
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3.5. Seasonal and Diurnal ETa Derived from Different WDIs and Their Connection to Soil
Water Status

ETa maps calculated based on WDINDVI of the diurnal flights on 23 April 2020 are
presented in Figure 7. The seasonal change of FTSW in 2019 is provided in Figure 8. The
WDI correlation to FTSW was consistently high during the season of 2019 (Figure 9). The
exception was 29 of April because two days prior there was rain, so the soil had enough
water but the crop treatments with lower irrigation still showed signs of stress by having
lower gs and higher LWP (Figure 4a,b). This points to difficulties for the prediction of soil
water using remote sensing if the crop shows signs of stress even after the topsoil water
has been replenished. Similarly to WDI, actual evapotranspiration ETa maps that were
calculated based on WDIs had very similar correlations to FTSW. ETGRVI had the worst
performance overall.
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Figure 8. Seasonal change of fraction of transpirable soil water (FTSW) in March–May 2019 calculated
from the volumetric soil water content measured with the neutron probe. The treatment names A–F
refer to treatments from the lowest to the highest irrigation amounts, respectively, with the numbers
next to the letter corresponding to the replicate number.
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Figure 9. WDI and ET correlations to fraction of transpirable soil water (FTSW) at various root depths
for the April–May of 2019. Grey color in the cells visually represents the correlation value.

On the diurnal scale, ETa varied during the day (Figure 10). The lowest ET was
observed at 10:00 and the highest was at 15:00 after the noon maximum air temperature
passed. ETa was highly correlated to the change in the soil water to 2 m depth (Figure 11).
The change in the soil water from 11:00 to 15:00 was generally higher than winter wheat
potential evapotranspiration; therefore, it may be assumed that part of the soil water was
lost due to the water movement to the deeper soil layers.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 8. Seasonal change of fraction of transpirable soil water (FTSW) in March–May 2019 calcu-

lated from the volumetric soil water content measured with the neutron probe. The treatment names 

A–F refer to treatments from the lowest to the highest irrigation amounts, respectively, with the 

numbers next to the letter corresponding to the replicate number. 

 

Figure 9. WDI and ET correlations to fraction of transpirable soil water (FTSW) at various root 

depths for the April–May of 2019. Grey color in the cells visually represents the correlation value. 

 

WDINDVI WDIRVI WDIOSAVI WDINDRE WDINDVIi WDIGRVI ETNDVI ETRVI ETOSAVI ETNDRE ETNDVIi ETGRVI

0-60 -0,85 -0,85 -0,85 -0,84 -0,84 -0,85 0,85 0,83 0,85 0,86 0,85 0,84

20-100 -0,9 -0,91 -0,89 -0,9 -0,91 -0,91 0,91 0,88 0,89 0,91 0,91 0,91

20-160 -0,91 -0,91 -0,88 -0,91 -0,91 -0,91 0,91 0,87 0,9 0,92 0,92 0,91

20-200 -0,92 -0,92 -0,89 -0,93 -0,93 -0,93 0,92 0,88 0,9 0,93 0,93 0,93

0-60 -0,78 -0,79 -0,74 -0,8 -0,8 -0,79 0,8 0,73 0,76 0,83 0,81 0,81

20-100 -0,81 -0,81 -0,76 -0,85 -0,84 -0,83 0,83 0,76 0,78 0,87 0,86 0,85

20-160 -0,79 -0,79 -0,74 -0,84 -0,83 -0,82 0,81 0,74 0,75 0,86 0,84 0,84

20-200 -0,78 -0,78 -0,71 -0,83 -0,82 -0,81 0,8 0,72 0,73 0,86 0,84 0,83

0-60 -0,37 -0,35 -0,39 -0,57 -0,52 -0,49 0,37 0,29 0,39 0,58 0,53 0,51

20-100 -0,34 -0,32 -0,36 -0,56 -0,5 -0,47 0,34 0,26 0,36 0,57 0,51 0,49

20-160 -0,35 -0,33 -0,37 -0,58 -0,52 -0,49 0,35 0,27 0,38 0,59 0,52 0,51

20-200 -0,38 -0,36 -0,41 -0,62 -0,56 -0,53 0,38 0,31 0,41 0,63 0,56 0,55

0-60 -0,7 -0,68 -0,73 -0,73 -0,73 -0,55 0,71 0,7 0,74 0,74 0,74 0,23

20-100 -0,69 -0,67 -0,72 -0,74 -0,73 -0,54 0,7 0,69 0,74 0,75 0,74 0,2

20-160 -0,7 -0,69 -0,74 -0,76 -0,75 -0,55 0,72 0,7 0,75 0,77 0,75 0,21

20-200 -0,73 -0,71 -0,77 -0,79 -0,78 -0,56 0,74 0,72 0,79 0,8 0,79 0,21

0-60 -0,81 -0,79 -0,8 -0,8 -0,8 -0,81 0,82 0,73 0,81 0,81 0,82 0,81

20-100 -0,83 -0,8 -0,82 -0,82 -0,81 -0,82 0,83 0,74 0,83 0,83 0,83 0,83

20-160 -0,83 -0,8 -0,83 -0,83 -0,82 -0,83 0,84 0,74 0,83 0,83 0,84 0,84

20-200 -0,84 -0,81 -0,84 -0,84 -0,85 -0,85 0,85 0,74 0,85 0,85 0,87 0,86
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Figure 10. ETaNDVI (mm h−1) derived from WDINDVI diurnal variation on 23 April 2020. The
treatment names A–F refer to treatments from the lowest to the highest irrigation amounts, respec-
tively. Reference evapotranspiration ET0 (mm h−1) was calculated using the Penman–Monteith
equation [27].
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Figure 11. Correlation between ETa (mm h−1) calculated from WDINDVI and ETa (mm h−1) calculated
from soil water balance during the day of 23 April 2020. The treatment names A–F refer to treatments
from the lowest to the highest irrigation amounts, respectively.

4. Discussion
4.1. Difference between Vegetation Indices in the Calculation of WDI

WDI combines thermal and multispectral remotely sensed data, and the method relies
on good delineation of crop coverage (x-axis in Figure 2). LAI approximation using various
VIs based on combinations of RGB and near-infrared spectral bands has shown good
results [13,21]. However, it is known that near-infrared (e.g., NDVI) tends to saturate at
high canopy densities [21], so it may be beneficial to make use of red-edge spectral bands
(e.g., NDRE and NDVIi, Table 3, Equations (4) and (5)). On the other hand, multispectral
sensors tend to be more expensive, so substituting near-infrared- and red-edge-based VIs
with RGB-based VIs may be more beneficial for the user [28].

In this study, we investigate which VI performs better in WDI calculations by compar-
ing WDIs to winter wheat drought stress indicators—gs and LWP—as well as soil water
status. The results show little difference between the performances of different indices
(Table 4). Near-infrared-based indices were very closely related to each other, and red-edge-
based indices performed similarly to near-infrared-based indices. As expected, WDI based
on RGB (WDIGRVI) performed slightly worse compared to near-infrared-based, which can
easily be explained by the absence of information about the canopy structure that is mostly
present in the near-infrared region [13]. However, in the absence of multispectral sensors,
it is feasible to derive high-resolution WDI maps using GRVI as a fraction of vegetation
cover approximation and still have a reliable relation to winter wheat water status.

4.2. WDI Connection to Winter Wheat Physiological Parameters

On the seasonal scale in 2019, we achieved good relations to both gs and LWP due to
the high variability between the treatments that were especially prominent by the end of the
season. The stomatal behavior of winter wheat is very susceptible to environmental fluctu-
ation [29]. The lowest correlation was observed on 15 April (R2 = −0.61–−0.65, Table 5)
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and 18 April (R2 = −0.78–−0.79, Table 5) and the highest on 29 April (R2 = −0.98–−0.99,
Table 5) in the 2019 season. The high correlation on 29 April may be explained by the flight
time (12:00) when there was the most prominent drought on the WDI map.

WDI was not able to accurately outline the differences in LWP between the treatments
at the beginning of the season (Table 5) due to the low variation in LWP in the crop’s early
development, e.g., the difference between high and low irrigation experimental fields on
15 April was much less than on 17 May. Additionally, the irrigation amounts on 15 April
were similar among treatments C, D, E, and F. Differences in LWP by the end of the season
were caused by drought-stressed plants that started to mature earlier compared to the
treatments that had enough water supply. Drought stress shortens winter wheat growing
seasons and results in lower yields [2], and flowering and grain-filling stages are the most
susceptible, especially when extreme drought events occur [6].

The yield difference between treatments A and B in 2019 and 2020 (Figure 4) is
attributed to the weather conditions in March (Figure 3). In 2019, there was no rain and
the air temperature increased more rapidly than in 2020. As treatment A is completely
rainfed, the impact of prolonged drought was severe. These differences are reflected in WDI
maps as WDI in 2020 for treatment A shows lower values than that in 2019 for a similar
period (Figures 5 and 6, Appendix A Figures A1 and A2). The high difference in yield in
low irrigation treatments between the years 2019 and 2020 highlights the importance of
sufficient irrigation during the early development stages of winter wheat. This may be
supported by the relatively high correlation of WDI to yield in 2019 even from the early
flights in the season (R2 up to −0.86 on 15.04, Table 5). As expected, the highest correlation
to the yield was observed on the last flight on 17 May which was closer to harvesting time
(Table 5). For most of the measurement days, WDI based on RE indices (NDRE and NDVIi)
had stronger correlations compared to others.

Winter wheat yield did not exceed 10 t/ha (treatments E and F in 2019 and C, D,
E, and F in 2020, Figure 4) even with an increased amount of irrigation, which points to
the necessity to create new drought-resilient breeds in order to increase yields even more
under the same amounts of water use. As the screening for new varieties and appropriate
phenotyping require a significant amount of time and resources, it is worth investigating the
use of WDI for the variety screening for the new drought-resistant breeds in future research.

Most of the thermal studies focus on single snapshots as an observation of drought
stress [30–32], and there is a possibility for incorrect representation of the actual water status
of the crop. The environmental conditions greatly fluctuate during the day, and this impacts
the canopy temperature and the baseline calculations, e.g., high/low wind conditions may
lead to under—or overestimating aerodynamic resistance [33]. Additionally, crops have
different potential evapotranspiration during the day depending on the light intensity. In
this research, we conducted several flights during the day on 23 April 2020 with the interval
of 1 h from 11:00 to 16:00 in order to study the diurnal fluctuations of canopy temperature
and consequently winter wheat drought stress. The WDI was not stable during the day
(Figure 6). The WDI increased until 12:00 and then gradually declined until 15:00 with a
slight increase at 16:00. Although gs and LWP were measured between 10:00 and 12:00,
there was a consistently high correlation to those variables from all the flights (Table 6)
with R2 between 0.93 and 0.96 for LWP and R2 between −0.82 and −0.89 for gs.

4.3. WDIs Use in ET Calculation and Its Connection to the Soil Water Variation

WDI has the potential to predict soil water content based on the crop water status. It
should be noted that even after rain or irrigation the crop shows signs of drought stress
(e.g., 29 April 2019, Appendix A Figure A1). This will lead to higher WDI values and
will be interpreted as depletion in soil water. Therefore, WDI prediction of the soil water
content should be used with caution and evaluations should consider the prior weather
conditions and irrigation events. Accordingly, this applies to the evapotranspiration that
was calculated based on WDI.
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In this study, we chose the FAO dual approach in order to account for the soil back-
ground during the calculation [27] (Equation (11)). Both during the season as well as
diurnally, ETa maps were closely following WDI patterns—lower WDI values represented
areas with higher transpiration rate and ETa was close to the potential level and high WDI
areas translated to the areas with low ETa (Figure 7).

In this study, we tested the correlation of WDI and ETa to the fraction of soil tran-
spirable soil water on different soil depths. The results show that a higher correlation was
achieved when we considered soil depth from 10 to 200 cm (Figure 9). This showed the
water in the subsoil still had high impact on crop water status, which was also observed
in the study of Wang et al. (2018) [34]. Additionally, this demonstrated that roots were
likely present up to 200 cm depth, in accordance with Zhang et al. (2004) [35], and that
these could efficiently extract the water to supply plant demands. The approach opens a
possibility to use WDI to find the rooting depth of winter wheat so that WDI may be used
in high-throughput phenotyping as a screening tool and for the selection and delineation
of varieties with superior rooting depth and root distribution [36,37], and its application in
the selection of drought-resistant varieties. The current study showed that subsoil moisture
is important to plant water supply and that it is essential to consider soil water content for
the entire root zone and not only the topsoil.

On the diurnal scale on 23 April 2020, the variation in ETa may be attributed to
the amount of incoming radiation and change in air temperature and other atmospheric
parameters (Figure 10). High ETa correlation to the ETa calculated using a change in the
soil water to 2 m depth (Figure 11) implies the relation of thermal imagery to the in-field
water balance. However, the change in the soil water from 11:00 to 15:00 was higher than
winter wheat potential ET; therefore, it was assumed that part of the soil water was lost due
to water movement to the deeper soil levels, i.e., concurrent percolation. The correlation in
the afternoon hours was higher than the noon with R2 = 0.94 at 15:00 and 16:00 (Figure 11).
This implies that the assessment of ETa may be more reliable after the noon heat wave has
passed and the crop canopy has cooled down (Figure 7), due to an increase in wind speed
and a decrease in solar radiation (Table 2).

4.4. Quality Control of Thermal Data and Atmospheric Conditions Impact the WDI Derivation

In the case of WDI, the surface temperature plays a much more important role than
the accuracy of the fraction of vegetation cover estimation. Thermal images on 4 April
2019 and 10 am 23 April 2020 had thermal drift, so the part of the field appeared to be
hotter than the other part due to the heating of the camera during the flight. It is difficult to
correct this type of temperature drift in the calibration process, and as a result the maps
were discarded from the analyses.

There is a big impact of wind on WDI performance. As can be seen from the results
on the 18 April, the presence of high wind greatly decreased the performance of WDI to
represent gs and LWP compared to the 29 April (Table 5). At a higher wind speed, there
is a tendency to underestimate aerodynamic resistance [38], which will lead to a wrong
interpretation of the drought response in the crop. High wind speed conditions could have
been a cause of thermal drift at 10 am on 23 April 2020, as the average wind speed at that
hour was higher than the wind speed later in the day. Similarly, very low wind may lead to
an overestimation of the aerodynamic resistance [38], which will lead to an overestimation
of the WDI values. As an alternative, it is possible to investigate wind-speed-independent
models for determining crop evapotranspiration on a higher scale [33].

Other considerations for the quality of thermal image output and the resulting WDI
include viewing geometry, as the signals from nearby areas may influence the studied
area [39], and flight height [40], which was around 100 m in this study.
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5. Conclusions

In this study, we derived high-resolution winter wheat WDI and ET maps by the
means of multispectral and thermal imagery acquired with UAS in combination with the
energy balance model. The resulting maps were compared to the field measurements of
soil water and crop stomatal conductance and leaf water potential. Following the aims of
the study, the results can be summarized as follows:

• High-resolution WDI maps were derived over the winter wheat growing season in
north China using several multispectral indices, and we determined that different
VIs—near-infrared, red-edge and RGB methods—were closely related to each other
and had only a small influence on the WDI results.

• The study established and evaluated the relationship between WDI drought maps
with field-measured parameters, such as gs, LWP, and soil water status. WDI based on
the red edge had better relation to LWP, WDI based on near-infrared had a stronger
correlation to gs, and WDI based on RGB had an overall worse performance.

• High-resolution ETa maps could be derived using a dual crop coefficient ET calculation
combined with the WDI approach. ETa was highly correlated to both crop and soil
water status variables, such as gs, LWP, soil water content, FTSW, and soil water
change to 2 m depth.
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