
Citation: Hadiyoso, S.; Zakaria, H.;

Anam Ong, P.; Erawati Rajab, T.L.

Multi Modal Feature Extraction for

Classification of Vascular Dementia

in Post-Stroke Patients Based on EEG

Signal. Sensors 2023, 23, 1900.

https://doi.org/10.3390/s23041900

Academic Editor: Adrian Barbu

Received: 2 January 2023

Revised: 26 January 2023

Accepted: 1 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Multi Modal Feature Extraction for Classification of Vascular
Dementia in Post-Stroke Patients Based on EEG Signal
Sugondo Hadiyoso 1,2,*, Hasballah Zakaria 1, Paulus Anam Ong 3 and Tati Latifah Erawati Rajab 1

1 School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung 40116, Indonesia
2 School of Applied Science, Telkom University, Bandung 40257, Indonesia
3 Department of Neurology, Dr. Hasan Sadikin General Hospital, Bandung 40161, Indonesia
* Correspondence: sugondo@telkomuniversity.ac.id

Abstract: Dementia is a term that represents a set of symptoms that affect the ability of the brain’s
cognitive functions related to memory, thinking, behavior, and language. At worst, dementia is often
called a major neurocognitive disorder or senile disease. One of the most common types of dementia
after Alzheimer’s is vascular dementia. Vascular dementia is closely related to cerebrovascular
disease, one of which is stroke. Post-stroke patients with recurrent onset have the potential to develop
dementia. An accurate diagnosis is needed for proper therapy management to ensure the patient’s
quality of life and prevent it from worsening. The gold standard diagnostic of vascular dementia is
complex, includes psychological tests, complete memory tests, and is evidenced by medical imaging of
brain lesions. However, brain imaging methods such as CT-Scan, PET-Scan, and MRI have high costs
and cannot be routinely used in a short period. For more than two decades, electroencephalogram
signal analysis has been an alternative in assisting the diagnosis of brain diseases associated with
cognitive decline. Traditional EEG analysis performs visual observations of signals, including rhythm,
power, and spikes. Of course, it requires a clinician expert, time consumption, and high costs.
Therefore, a quantitative EEG method for identifying vascular dementia in post-stroke patients is
discussed in this study. This study used 19 EEG channels recorded from normal elderly, post-stroke
with mild cognitive impairment, and post-stroke with dementia. The QEEG method used for feature
extraction includes relative power, coherence, and signal complexity; the evaluation performance
of normal-mild cognitive impairment-dementia classification was conducted using Support Vector
Machine and K-Nearest Neighbor. The results of the classification simulation showed the highest
accuracy of 96% by Gaussian SVM with a sensitivity and specificity of 95.6% and 97.9%, respectively.
This study is expected to be an additional criterion in the diagnosis of dementia, especially in
post-stroke patients.

Keywords: vascular dementia; post stroke; quantitative EEG; classification

1. Introduction

Dementia is a common symptom of neurological disorders that represents a decreased
cognitive function in the brain [1]. These symptoms include memory loss, thinking, judg-
ment, language, complex motor skills, and other intellectual functions. The most common
form of dementia after Alzheimer’s dementia (AD) is vascular dementia (VaD), contribut-
ing about 20% in North America and Europe, and about 30% in Asia and developing
countries [2]. Vascular dementia is closely related to cerebrovascular disease [3]. Stroke,
hypertension, diabetes mellitus, obesity, cholesterol, and heart fibrillation are closely related
to vascular dementia [4]. Among these vascular diseases, stroke is most often associated
with VaD [5].

Stroke is a significant cause of physical disability and cognitive impairment. However,
the decline in cognitive function is often negligible compared to physical disability. Though
cognition ability also significantly contributes to patients’ quality of life. Minor strokes
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can even affect executive and cognitive function, consequently affecting participation,
quality of life, and ability to work. Approximately 30% of stroke patients develop dementia
within six months of stroke [6]. It is also estimated that another 20–25% will have delayed
dementia [7]. Riskesdas data recorded the prevalence of stroke in Indonesia at 7% and
increased to 10.9% in 2018 [8]. The proportion of stroke increases at the age of more than
55 years by an amount >30%, and is directly proportional to age. Indonesia, with a very
large demographic of the elderly population, coupled with the risk factors of stroke, will
provide a new problem, namely dementia, and particularly vascular dementia. Accurate
diagnosis is needed to inhibit disease progression and determine appropriate therapeutic
management to maintain the quality of life of post-stroke patients.

The VaD diagnostic process is quite complex, starting with the patient’s or family’s
complaints, and then having to go through the stages of clinical diagnosis of cognitive
impairment that is severe enough to meet the criteria for dementia. It must be proven that
dementia results from cerebrovascular disease, including stroke, as evidenced by brain
imaging. According to the Vascular Impairment of Cognition Classification Consensus
Study (VICCCS) [9], mild vascular cognitive impairment is established when there is
a disturbance in at least one or more cognitive domains (executive function, attention,
and memory, in addition to language and visuospatial functions). However, they do not
interfere with basic daily activities or mild disturbances in complex/instrumental activities.
Meanwhile, VaD is enforced when a deficit in one or more cognitive domains is severe
enough to interfere with basic and instrumental daily activities [10].

Screening tests for neurocognitive disorders that can be used are the Mini-Mental State
Examination (MMSE) or the Montreal Cognitive Assessment (MoCA) [11]. Furthermore,
brain imaging techniques, including MRI, CT-Scan, and PET-Scan, are essential diagnostic
tools in post-stroke dementia [6]. However, brain imaging is expensive and is not recom-
mended for routine examinations in the short term [12]. An electroencephalogram (EEG)
can be a potential tool for observing decreased brain function. An EEG can be essential for
studying cortical brain abnormalities associated with cognitive decline and dementia [13].
An EEG is a low-cost, non-invasive method that has the sensitivity to detect early dementia
and even measure its severity [14]. Quantitative EEG (QEEG) in cases of Alzheimer’s
dementia has been reported in [15–17]. Characterization of EEG signals in cases of Lewy
Body dementia reported in [18,19].

To the best of our knowledge, EEG studies on cases of vascular dementia, especially
in post-stroke patients, are still few. The EEG characterization of VaD was reported by
Sheng et al. by measuring signal strength using the S-transformation. EEG theta waves
in VaD patients have high energy [20]. Another study carried out the characterization
and detection of VaD, in which VaD patients resulted in smaller signal complexity val-
ues and alpha/theta ratios than normal [21]. Recently, Musa et al. classified patients
with VaD and healthy subjects by extracting energy using the Hilbert Huang Transform
(HHT). This feature was then classified using an extreme learning machine and obtained
94.4% accuracy [22]. However, previous studies have not carried out the characterization
and classification of early-stage vascular dementia. In particular, the research subject
in Indonesia.

This study proposed an EEG wave characterization method to classify VaD in post-
stroke patients with mild cognitive impairment and dementia by calculating and analyzing
QEEG parameters. The proposed feature extraction method is spectral analysis, coherence,
and signal complexity. The result of this calculation becomes a feature vector to be validated
using machine learning. Simulations were conducted to classify normal elderly, post-
stroke patients with mild cognitive impairment, and post-stroke dementia. Support Vector
Machine (SVM) and k-Nearest Neighbor (k-NN) are used to evaluate the performance of
the proposed feature extraction method. Combining these characterization methods is
expected to provide a complete description of the analysis to increase detection accuracy
and, ultimately, become a reliable additional diagnostic instrument.
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2. Materials and Methods
2.1. Classification Design

The classification scheme of vascular dementia in post-stroke patients using EEG
signal analysis is presented in Figure 1. In the first stage, nineteen scalp EEG signals were
denoised using independent component analysis (ICA). Wavelet transform was then used
for the segmentation of EEG bands. The next stage was feature extraction by calculating
spectral power, coherence, and complexity. These features were further referred to as
predictors in the classification of normal, post-stroke mild cognitive impairment (MCI),
and post-stroke dementia using k-nearest neighbor (K-NN) and support vector machine
(SVM). Performance evaluation values included accuracy, sensitivity, specificity, precision,
and F1-score.
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Figure 1. Classification design.

2.2. Subject Criteria and EEG Recording (Primary Datasets)

This study ran from November 2019 to April 2022. The recruitment and data collection
of subjects were carried out at the neurological clinic and diagnostic center of Hasan
Sadikin General Hospital, Bandung. The subject criteria used in this study were based
on the recommendations of a neurologist (neurobehavior consultant) and the Indonesian
Neurologist Association (PERDOSSI) after clinical examination, neuropsychology, and
brain imaging were carried out. The inclusion criteria for patients included stroke after
three months, with a lacunar or subcortical infarct, age 50–64 years, and minimum education
in junior high school or equivalent. The MoCA-Indonesia (INA) score is less than 19, and
has impaired basic and instrumental activities of daily living for post-stroke patients with
dementia. Meanwhile, for patients with mild vascular cognition, if the MoCA-INA score is
between 19–25, there are no disturbances in basic daily activities or mild disturbances in
daily instrumental activities. Figure 2 presents a summary of the subject selection criteria.

The normal control inclusion criteria included an age between 50–64 years, a min-
imum junior high school education, an MoCA-INA score ≥ 26, and ability to read and
write. Neurological physical examination results did not find focal neurological deficits
on neurological clinical examination by a neurologist. Exclusion criteria for both sample
groups were subjects with aphasia and no sensory disturbances in hearing, vision, move-
ment disorders, and a history of cerebral diseases, such as epilepsy, severe head injury,
multiple sclerosis, brain tumor, history of brain surgery, and alcoholism, determined by
a neurologist. The total number of participants was 50 subjects, consisting of 18 subjects
with normal categories, 19 post-ischemic stroke patients with MCI, and 13 post-ischemic
stroke patients with dementia. All subjects involved in this study were asked to fill out an
informed consent form. Clinical data from each group are presented in Table 1.
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Table 1. Clinical data of research subjects.

Index Normal Post Stroke-MCI Post Stroke-Dementia

Number of samples 18 19 13
Gender (M/F) 10/8 9/10 8/5
Age (std. dev.) 57.18 ± 4.9 58.84 ± 5.62 59.7 ± 5.76
Education (years) 13.45 ± 3.9 11.68 ± 4.02 12.38 ± 4.4
MoCA-INA score 26.5 ± 1.33 22.16 ± 2.22 12.23 ± 3.77
Hypertension N Y Y
Diabetes N Y Y

The next step was recording the EEG signal using the Cadwell EasyIII clinical standard
EEG device. EEG was recorded on 19 channels, including Fp1, Fp2, F7, F3, Fz, F4, F8, T3,
C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2 with electrode placement following the
10–20 international system. The signal was recorded with a sampling frequency of 250 Hz,
a sensitivity of 0.5 µV, and an ADC resolution of 18 bits. Line noise with a frequency of
50–60 Hz was removed using an analog front end with a power of >110 dB. EEG recording
was carried out under several conditions, namely relaxed with eyes closed, relaxed with
eyes open, given a photic stimulus, and undertaking cognitive tests, including memory.
However, the focus of signal processing was on the memory state. In the memory recording,
subjects were given verbal instructions to memorize five words and were then asked to
recall the words they remembered. The design of the EEG recordings during the memory
work referred to previous studies [22,23]. Figure 3 shows the EEG recording design. Signal
processing was carried out in the phase when the stimulus was given, and the subject
mentioned the words.
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Figure 3. EEG recording of memory, starting with calibration to ensure the condition of the electrodes
and then continuing with the stimulus.

2.3. Alzheimer’s Dataset (Normal vs. MCI)

In this study, signal characterization was also carried out in the Alzheimer’s case
dataset, which consisted of EEG recordings from normal elderly subjects and elderly with
MCI. This dataset was sourced from research at the Sina and Nour Hospital, Isfahan, Iran.
The dataset was collected from 11 healthy elderly subjects and 16 elderly subjects with
MCI [17]. All subjects were over 60 years old and had at least a basic education. A psychi-
atrist examined all of the subjects, including the mini-mental state examination (MMSE),
for validation of MCI or normal. Subjects with an MMSE score of more than 26 were
normal controls, while subjects with a score of 21–26 were MCI. The Neuropsychiatric Unit
Cognitive Assessment Tool (NUCOG) was also used to confirm MCI.

The EEG signal was recorded using Galileo NT EEG, EBneuro. Resting EEG record-
ings with eyes closed were performed for 30 minutes. Nineteen channels were recorded,
including Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, T5, P3, Pz, P4, T6, O1, and O2,
with a sampling frequency of 256 Hz.

2.4. Pre-Processing the EEG Signal

Signal pre-processing was performed on the raw EEG signal to remove eye artifact
noise, baseline wandering, and line and muscle noise. Signal pre-processing is one of the
critical issues in preparing the EEG signal for the next processing stage, where the EEG
signal is free from noise. Low-frequency and high-frequency noise commonly contaminate
EEG signals, even with high power. Line and muscle noise comes with a high frequency,
while eye noise has a low frequency. At this stage, two approaches are used to eliminate the
noise: Independent Component Analysis (ICA) and a digital BPF filter at a cut-off frequency
of 1–30 Hz. The ICA process is carried out using the EEGLAB toolbox in MATLAB. The
topographic plot of the channel containing noise representing non-cortical activity (eyeball
and/or muscle movement potential) is shown in Figure 4.
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Meanwhile, Figure 5 shows the EEG signal mixed with eye artifacts and muscle noise.
The results of the ICA decomposition can then be visually observed for noise-containing
EEG channels. The noise source is then removed with the EEGLAB tool.
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In the coherence and signal complexity calculation phase, previously, the signal was
filtered with a range of 1–30 Hz. This step aims to obtain the fundamental frequency from
delta to beta of the EEG signal. A high pass filter with a cut-off frequency of 1 Hz and a low
pass filter with a cut-off of 30 Hz is applied at this stage. Both high and low pass filters are
designed using Butterworth, with a passband ripple of 1 dB and a stopband attenuation of
80 dB.

2.5. Feature Extraction

In this study, feature extraction computes essential information to differentiate normal
EEG, MCI, and dementia. The proposed feature extraction methods include spectral
analysis, coherence, and complexity. The results at this stage are used as a predictor in the
classification scheme.

2.5.1. Spectral Analysis

Spectral analysis is one of the most common methods used in EEG signal quantification.
This analysis measures the power spectral density (power spectrum), which reflects the
power distribution of a signal over frequency. Furthermore, in this study, the power spectral
density was estimated using the Welch method with a window of 2 s and an overlap of
75%. Power spectral estimation using Welch, calculated in each EEG band, is expressed by
Equation (1) below.

P̌w
xx =

1
U

U−1

∑
i=0

P̌i
xx( f ) (1)

where P̌i
xx( f ) = spectral estimation Xi(n)

P̌w
xx = spectral Welch

U = window function
The delta, theta, alpha, beta, and gamma bands were segmented using wavelet de-

composition with Daubechies-2 (DB2) as the basis or mother wavelet. The Daubechies
family was chosen for its good performance, as reported in [24,25]. In more detail, DB2 in
EEG cases has been commonly used and shows good performance, as reported in [26,27].
The signal is decomposed into five levels for segmenting these bands with a resampling
frequency of 240 Hz. The wavelet decomposition and corresponding EEG frequency bands
are presented in Table 2. The segmented signal according to the frequency band is presented
in Figure 6.

Welch estimates the absolute power that depends on the amplitude value of each
individual. So, it gives very varied results. Therefore, it is necessary to normalize the
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absolute value, called relative power. The relative power is the ratio between the absolute
power of the frequency bands to each other, written in Equation (2) below.

Prelative =
Pabs(i)

∑
f H
f L Pabs

(2)

where Pabs(i) is determined by the selected frequency band and [fL, fH] are the delta, theta,
alpha, beta, and gamma bands.

Table 2. Wavelet sub-band and corresponding EEG frequency.

Level Sub-Band Frequency Band (Hz) EEG Frequency Amplitude [28]

2 D2 30–60 Hz Gamma (γ) <50 µV

3 D3 15–30 Hz Beta (β) <30 µV

4 D4 7.5–15 Hz Alpha (α) <50 µV

5 D5 3.75–7.5 Hz Theta (θ) 0–20 µV

5 A5 0–3.75 Hz Delta (δ) 0–100 µV
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2.5.2. EEG Signal Coherence

EEG signal coherence analysis was performed to observe the functional connectivity
of the brain [29]. In quantitative EEG, coherence is commonly used to measure functional
connectivity in the human cortex [30]. Coherence is a measure of synchronization between
two signals mainly based on phase consistency. In this study, coherence was calculated
for intrahemisphere and interhemisphere pairs with a frequency range of 1–30 Hz. Intra-
hemispheric coherence was calculated at the electrodes in one hemisphere area. It consists
of the right intrahemisphere and the left intrahemisphere. Meanwhile, interhemispheric
coherence was calculated at electrodes in different hemisphere areas, as shown in Figure 7.
Both intrahemispheric and interhemisphere electrode pairs are presented in Table 3.

Coherence is a measure of synchronization between two signals mainly based on
phase consistency. A high coherence value occurs when the phase difference between
channels tends to be constant. Coherence can be expressed by dividing the square of the
cross-spectral density of the two channels by the product of the power spectral density
of the two channels. Coherence (Cab) from signals a and b calculated using the power
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spectral density (Paa dan Pbb) and cross-power spectral density (Pab); Equation (3) shows
the calculation of coherence [31].

Cab( f ) =
|Pab( f )|2

Paa( f ) ∗ Pbb( f )
(3)

where f is frequency.
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Table 3. Interhemispheric and intrahemispheric coherence electrode pairs.

Interhemispheric Left-Intrahemispheric Right-Intrahemispheric

Fp1-Fp2 Fp1-F3 F7-T3 Fp2-F4 F8-T4

F3-F4 Fp1-F7 F7-P3 Fp2-F8 F8-P4
F7-F8 Fp1-C3 F7-T5 Fp2-C4 F8-T6
C3-C4 Fp1-T3 F7-O1 Fp2-T4 F8-O2
T3-T4 Fp1-P3 C3-T3 Fp2-P4 C4-T4
P3-P4 Fp1-T5 C3-P3 Fp2-T6 C4-P4
T5-T6 Fp1-O1 C3-T5 Fp2-O2 C4-T6
O1-O2 F3-F7 C3-O1 F4-F8 C4-O2

F3-C3 T3-P3 F4-C4 T4-P4
F3-T3 T3-T5 F4-T4 T4-T6
F3-P3 T3-O1 F4-P4 T4-O2
F3-T5 P3-T5 F4-T6 P4-T6
F3-O1 P3-O1 F4-O2 P4-O2
F7-C3 T5-O1 F8-C4 T6-O2

2.5.3. Signal Complexity Measurement

The feature extraction of the EEG signal at this stage is carried out with a complex-
ity approach to calculate the degree of signal irregularity/randomness. The complexity
approach in this research is based on entropy theory. The complexity of the EEG signal
is estimated using spectral entropy and a new method called spectral dispersion entropy.
These methods are described in the following sub-section.

Spectral Entropy

Spectral entropy estimates the randomness of the signal based on the spectral ampli-
tude over a specified frequency range [32]. Spectral entropy is calculated using the Shannon
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entropy formula, which is applied to the power spectral density of the EEG signal using
Equation (7) [33]. A high spectral entropy value represents a high level of signal complexity.

SpecEn = −
f h

∑
f i=0

P f log2(P f ) (4)

with Pf is power spectral density of the specified frequency band, while fi and fh is the limit
frequency of the signal.

Dispersion Entropy

Recently, dispersion entropy (DisEn) has received significant attention, where DisEn
has been shown to outperform sample entropy and permutation entropy. DisEn was first
proposed by Azami in 2016 [34,35]. Dispersion entropy converts the data into a new signal
with several predetermined patterns, and then the probability of the occurrence of the
pattern is calculated. The DisEn calculation method is based on a new signal pattern
mapping function with the following parameters: length m template; the number of classes
c represents the number of patterns, and the time delay d.

The DispEn algorithm includes four main steps for univariate signal
N : x = {x1, x2, . . . , xN}:
1. Take a number of linear and nonlinear approaches to mapping xj(j = 1, 2, . . . , N) to

class c from 1 to c. The normal cumulative distribution function (NCDF) is used
to map x to y(y = y1, y2, . . . , yN) from 0 to 1. The signal has m members, and each
member is an integer from 1 to c.

2. The number of possible dispersion patterns for each time series is defined as
zm,c

i = cm. Each embedding vector zm,c
i has dimensions with length m template,

time delay d, and number of class c, which represents the number of patterns.
zm,c

i =
{

zc
i , zc

i+d, . . . zc
i+(m−1)d

}
, i = 1, 2, . . . , N − (m − 1)d create embedding vec-

tor zm,c
i mapped to a dispersion pattern πv0v1 ...vm−1 , where zc

i = v0, zc
i+d = v1, . . . ,

zc
i+(m−1)d = vm−1.

3. The number of dispersion pattern πv0v1 ...vm−1 represented as p
(
πv0v1 ...vm−1

)
for zm,c

i .
For the calculation of the frequency of occurrence of cm, Equation (5) is used.

p
(
πv0v1 ...vm−1

)
=

Number
{

i
∣∣i ≤ N − (m− 1)d, zm,c

i has type πv0v1 ...vm−1

}
N − (m− 1)d

(5)

4. Based on the probability of occurrence of the dispersion pattern, DispEn is calculated
using the following mathematical expression.

DispEn(signal, m, c, d) = −∑cm

π=1 p
(
πv0v1 ...vm−1

)
· ln
(

p
(
πv0v1 ...vm−1

))
(6)

Spectral Dispersion Entropy

Spectral dispersion entropy is an extension of spectral entropy where the spectral
amplitude of the signal is calculated using dispersion entropy. Previously, the probability
of the appearance of the amplitude in the direct power spectral was calculated using
Shannon’s theory. In spectral dispersion entropy, the power spectral randomness level is
calculated by estimating the similarity of the dispersion pattern from a number of spectral
series. Dispersion entropy is calculated with length m template = 2; the number of classes
c = 6, which represents the number of patterns, and the time delay d = 1.

2.6. Significant Test and Performa Evaluation

In testing the significance of the difference between normal, post-stroke MCI, and
post-stroke dementia, post hoc multiple comparison with analysis of variance (ANOVA)



Sensors 2023, 23, 1900 10 of 26

was used. In this study, the pair test of the two groups had a significant difference if the
p-value < 0.05.

The feature extraction method proposed in this study was also evaluated by classifica-
tion simulation using the SVM and k-NN algorithms. The goal is to obtain the accuracy
value as an additional analysis of the significance test. The calculated EEG features, in-
cluding spectral power, coherence, and complexity, are then referred to as predictors in the
stage classification. The cross-validation method divides the training and test features with
k = 5 iterations, as illustrated in Figure 8. The final accuracy value is the average result
of each classification iteration. The performance parameters of the proposed method are
accuracy, sensitivity, and specificity, which are calculated using Equations (7)–(9) [36]. Other
performance parameters that are measured to confirm accuracy are precision and F1-score.
Mathematically, precision and F1-score are expressed in Equations (10) and (11) [36].

Accuracy =
True positive + True negative

True positive + False positive + True negative + False negative
(7)

Sensitivity =
True positive

True positive + False negative
(8)

Speci f icity =
True negative

True negative + False positive
(9)

Precision =
True positive

True positive + False positive
(10)

F1− score = 2× Precision × Sensitivity
Precision + Sensitivity

(11)
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3. Results

This section describes the study results related to the feature extraction results from
each method. The results are presented in graphs and tables, followed by relevant clinical
explanations. This chapter also presents the results of the validation of the proposed
method in the form of classification accuracy.
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3.1. Power Spectral Characteristics on the Primary Dataset

The results of relative power measurements on 19 EEG channels for each group are
shown in Figures 9–12.
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Figure 9. Relative power delta band.
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Figure 10. Relative power theta band.

The average relative power of each group showed significance in the delta rhythm,
where post-stroke dementia and MCI groups tended to be higher than the normal group.
While it was significantly higher in the beta rhythm, the normal group was higher than the



Sensors 2023, 23, 1900 12 of 26

post-stroke MCI and dementia. Decreased strength of beta rhythms in MCI and dementia is
associated with reduced focus or concentration on working memory tasks. The power of the
delta and beta rhythms showed a correlation with the severity of dementia, where patients
with dementia had the highest delta power and the lowest beta power. The significance of
the difference with p < 0.05 is shown in Table 4 below.
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Table 4. Relative power significance test results.

Channel RPdelta RPtheta RPalpha RPbeta

FP1 0.1936 0.9075 0.3107 0.018 *

F7 0.3455 0.5639 0.4416 0.0188 *

T3 0.0036 * 0.1673 0.3103 p < 0.001 *

T5 0.0593 0.5221 0.3696 0.003 *

FP2 0.1294 0.8983 0.3414 0.0077 *

F8 0.2869 0.4174 0.843 0.0451 *

T4 0.0026 * 0.0593 0.9132 0.0109 *

T6 0.1192 0.487 0.7131 0.0023 *

F3 0.242 0.2704 0.6224 0.0875

C3 0.2364 0.3268 0.9923 0.0945

P3 0.2609 0.2752 0.8701 0.0218 *

O1 0.6664 0.595 0.9407 0.013 *

F4 0.0449 * 0.6309 0.7393 0.0109 *

C4 0.1035 0.283 0.7979 0.1104

P4 0.0255 * 0.3434 0.4106 0.0017 *

O2 0.0222 * 0.5785 0.7762 0.006 *

FZ 0.429 0.6029 0.398 0.0161 *

CZ 0.8874 0.6813 0.5812 0.0047 *

PZ 0.3649 0.1791 0.4334 p < 0.001 *
* p-value < 0.05.

3.2. Power Spectral Characteristics of the Alzheimer’s Dataset

Power spectral characterization of the Alzheimer’s dataset has been reported in a
previous study [37], represented by a comparison of the relative power of high and low
frequencies. Relative power alpha-beta (RAP + RBP) is a high-frequency representation,
and relative power delta-theta (RDP + RTP) is a low-frequency representation. Figure 13
presents a comparison of the low relative power of the MCI and normal groups.
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Figure 13 shows the difference between the two brain conditions; the relative power
at high frequencies of normal subjects is higher than that of MCI subjects. Significant
differences were found at Fp2, F8, T6, C3, P3, P4, Pz, and O2. The increase in delta
power and decrease in alpha power were spread over all observed brain cortical areas.
In general, these results are similar to cases of post-stroke cognitive impairment. There
was a characteristic change in EEG activity marked by shifting the power signal to a lower
frequency.

3.3. Coherence Characteristics on the Primary Dataset

The signal coherence of the eight and twenty-eight electrode pairs, as shown in
Table 3, is calculated using Equation (3). Interhemispheric coherence calculates the EEG
coherence of the right and left hemispheres for inline electrodes. The results of the average
interhemispheric coherence for each electrode pair are presented in Figure 14. The results
of interhemispheric coherence show that, in general, the mean coherence in post-stroke
patients with cognitive impairment tends to be lower than the normal group for all electrode
pairs. Significant differences (p < 0.05) were found in the frontal, central, and temporal
regions, pairs F7-F8, T3-T4, T5-T6, and P3-P4, as shown in Table 5. While in the results
of the post hoc multiple comparison tests, the T5-T6 pairs showed differences between
the three groups. Decreased coherence could be expected due to decreased connectivity
electricity connecting brain areas.
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Figure 14. Interhemispheric coherence value of each electrode pair.

Table 5. The value of interhemispheric coherence with p < 0.05.

Electrode Pairs p-Value

F7-F8 p < 0.001

T3-T4 p < 0.001

T5-T6 p < 0.001

P3-P4 0.0011

O1-O2 p < 0.001

The mean right intrahemispheric coherence for each pair of electrodes is presented in
Figure 15. The results showed a decrease in right intrahemispheric coherence in patients
with cognitive impairment. The pair of electrodes resulted in a p-value < 0.05, as shown in
Table 6. Meanwhile, the left intrahemispheric mean showed similar characteristics, where
people with dementia experienced a decrease in coherence values. Figure 16 depicts the
mean left intrahemispheric coherence for each electrode pair. Significant differences with
p < 0.05 are shown in Table 7.
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Table 6. The right intrahemispheric coherence value resulted in p < 0.05.

Pair p-Value Pair p-Value

Fp2-C4 0.074466 F8-P4 0.008868

Fp2-T4 0.001599 F8-T6 0.004805

Fp2-P4 0.000061 F8-O2 0.000113

Fp2-T6 0.011516 C4-T6 0.009819

Fp2-O2 0.003125 C4-O2 0.001699

F4-T4 0.004631 T4-P4 0.008749

F4-T6 0.006452 T4-T6 0.013341

F4-O2 0.002523 T4-O2 0.000052

F8-C4 0.028184 P4-T6 0.000409

F8-T4 0.027075 T6-O2 0.005392

Table 7. The left intrahemispheric coherence value resulted in p < 0.05.

Pair p-Value Pair p-Value

Fp1-F3 0.000877 F7-P3 0.00169

Fp1-F7 0.000349 F7-T5 0.015812

Fp1-C3 0.003417 F7-O1 0.021341

Fp1-T3 0.000000 C3-O1 0.000104

Fp1-P3 0.013351 T3-P3 0.01515

Fp1-T5 0.000568 T3-O1 0.00085

Fp1-O1 0.038215 P3-T5 0.004883

F3-F7 0.033907 P3-O1 0.003348

F3-T3 0.011276 T5-O1 0.038446

F3-P3 0.000494

F3-T5 0.007562

F3-O1 0.000019
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Figure 15. Right intrahemispheric coherence value of each electrode pair.

The average measurement results show that the coherence of the post-stroke patient
group with cognitive impairment is generally lower than the normal group. This condition
occurs in almost all interhemispheric and intrahemispheric electrode pairs.
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Figure 16. Left intrahemispheric coherence value of each electrode pair.

3.4. Coherence Characteristics on the Alzheimer’s Dataset

Coherence measurements in the Alzheimer’s dataset have been reported in a previous
study [38]. The coherence calculations results show that the MCI group’s coherence is lower
than the normal elderly subjects. In interhemispheric coherence, significant differences
were found in FP1-FP2. Meanwhile, significant differences in intrahemispheric pairs were
found in FP2-T4, FP2-F4, FP1-F7, FP1-F3, FP1-P3, FP1-C3, FP1-T3, FP1-T5, F3-O1, FP1-O1,
and T3-T5. Coherence measurements in the Alzheimer’s dataset also show differences
between normal and pathology. The coherence method can be an attractive feature for
normal and pathological classification.

3.5. Complexity Characteristics on the Primary Dataset

The signal complexity analysis method is expected to provide differentiating charac-
teristics between the observed groups so that quantitative EEG analysis can be used as
a supporting criterion for early diagnosis of post-stroke vascular dementia. The signal
complexity calculation method in this study is entropy-based. This calculation is performed
on a time series function signal using spectral entropy (SpecEn) and a new method called
spectral dispersion entropy (SpecDE).

The average results of SpecEn and SpecDE measurements on 19 electrodes for each
group are presented in Figures 17 and 18. The measurement results show that the group
with cognitive impairment tends to have a lower signal complexity than the normal group.
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Figure 17. Mean of the SpecEn values of the normal, post-stroke MCI, and dementia.
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3.6. Complexity Characteristics on the Alzheimer’s Dataset

The results of the SpecEn calculations in the Alzheimer’s dataset are presented in
Figure 19. Figure 19 shows that the SpecEn values in the MCI group generally tend to
be lower than the normal group. Significant differences were found in Fp1, Fp2, T6, and
O1. These results indicate a decrease in EEG signal complexity in MCI patients. These
characteristics are similar to post-stroke patients with cognitive impairment. From these
results, it is hoped that the degree of complexity can be a reliable feature for discrimination
between normal subjects and patients with cognitive impairment.
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3.7. Performance Comparison of SpecEn and SpecDE

The results of the different tests on SpecEn and SpecDE are presented in Table 8. The
difference test with p-value < 0.05 showed a significant difference between groups.

Based on the significance test, the degree of signal complexity based on SpecEn and
SpecDE showed a significant difference between the normal and post-stroke cognitive
impairment groups. Significant differences with p-value < 0.05 were found across channels
for SpecEn and SpecDE. The average complexity value also indicates a relationship be-
tween the decrease in signal complexity and the severity of dementia. Therefore, multiple
comparison post hoc testing is needed to test the significance between groups, specifically
the normal vs. post-stroke MCI and post-stroke MCI vs. post-stroke dementia groups.

Tukey’s post hoc t-test was used for the multiple comparison tests in this study. The
test results are presented in Tables 9 and 10. From this test, it was known that SpecDE
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analysis provides discriminatory significance for the case of three groups superior to SpecEn.
Significant differences for the three groups, with p < 0.05, were more in SpecDE than in
SpecEn. The post hoc multiple comparison test results for SpecDE showed significant
differences between groups at the Fp1, P3, O1, C4, and P4 electrodes. These results will
significantly affect the accuracy at the classification stage.

Table 8. SpecEn and SpecDE significance test results for each EEG channel.

Electrode
p-Value

SpecEn SpecDE

Fp1 0.0032 0.0001
F7 0.0000 0.0015
T3 0.0004 0.0004
T5 0.0039 0.0000

Fp2 0.0033 0.0006
F8 0.0003 0.0001
T4 0.0002 0.0019
T6 0.0002 0.0000
F3 0.0001 0.0093
C3 0.0007 0.0000
P3 0.0084 0.0000
O1 0.0298 0.0000
F4 0.0001 0.0227
C4 0.0001 0.0000
P4 0.0012 0.0000
O2 0.0024 0.0006
Fz 0.0003 0.0004
Cz 0.0035 0.0034
Pz 0.0226 0.0029

Table 9. The results of post hoc multiple comparison (SpecEn).

(95% Confidence Level)

Comparison Fp1 F7 T3 T5 Fp2 F8 T4 T6 F3 C3

Normal vs. Stroke-MCI 0.141 0.047 * 0.207 0.108 0.247 0.071 0.144 0.030 * 0.079 0.173
Normal vs. Stroke-Dementia 0.002 * 0.000 * 0.000 * 0.003 * 0.002 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *
Stroke-MCI vs.
Stroke-Dementia 0.174 0.020 * 0.026 * 0.251 0.097 0.062 0.019 * 0.11 0.020 * 0.044 *

P3 O1 F4 C4 P4 O2 Fz Cz Pz
Normal vs. Stroke-MCI 0.207 0.262 0.042 * 0.19 0.148 0.213 0.011 * 0.020 * 0.17
Normal vs. Stroke-Dementia 0.006 * 0.024 * 0.000 * 0.000 * 0.001 * 0.002 * 0.000 * 0.004 * 0.020 *
Stroke-MCI vs.
Stroke-Dementia 0.232 0.395 0.054 0.011 * 0.071 0.09 0.315 0.154 0.513

* p-value < 0.05.

Table 10. The results of post hoc multiple comparison (SpecDE).

Significant (95% Confidence Level)

Comparison Fp1 F7 T3 T5 Fp2 F8 T4 T6 F3 C3

Normal vs. Stroke-MCI 0.017 * 0.058 * 0.020 * 0.084 0.334 0.152 0.784 0.102 0.368 0.000 *
Normal vs. Stroke-Dementia 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.003 * 0.000 *
Stroke-MCI vs.
Stroke-Dementia 0.023 * 0.118 0.079 0.000 * 0.006 * 0.008 * 0.000 * 0.011 * 0.080 0.148

P3 O1 F4 C4 P4 O2 Fz Cz Pz
Normal vs. Stroke-MCI 0.014 * 0.004 * 0.337 0.017 * 0.028 * 0.148 0.083 0.045 * 0.112
Normal vs. Stroke-Dementia 0.000 * 0.000 * 0.007 * 0.000 * 0.000 * 0.000 * 0.000 * 0.003 * 0.000 *
Stroke-MCI vs.
Stroke-Dementia 0.000 * 0.002 * 0.159 0.019 * 0.011 * 0.031 * 0.021 * 0.436 0.071

* p-value < 0.05.



Sensors 2023, 23, 1900 19 of 26

3.8. Classification of Normal, Post-Stroke MCI, and Post-Stroke Dementia

In the previous section, the characterization of the EEG signal was discussed in both the
primary dataset and the Alzheimer’s dataset. Power spectral, coherence, and complexity
analysis methods can produce discriminatory features between classes based on the tests
carried out. The main objective of this study is to detect early-stage cognitive impairment
in post-stroke patients using the proposed method. The feature extraction result from each
method presented in the previous sub-section becomes a feature vector or predictor in the
classification stage. The proposed methods are evaluated using automatic classification
algorithms, including k-NN and SVM. This test was carried out with several scenarios, as
presented in Table 11. Scenarios A, B, C, and D were used to evaluate the performance of
each feature extraction method. Meanwhile, the combination of predictors in scenario E
was chosen by considering the significance test results.

Table 11. Classification test scenario.

Scenario Classification Feature (Predictor) Attributes

A Power spectral Relative power all bands (19 each)
B Coherence Inter- and intrahemispheric (right, left)
C Complexity SpecEn Spectral entropy all channels
D Complexity SpecDE Spectral dispersion entropy all channels
E Coherence, complexity SpecDE Feature Scenario B + D

Several SVM kernels and k-NN types are also used to obtain the highest accuracy.
SVM kernels include linear, quadratic, cubic, and gaussian. The penalty parameter used
is equal to 1 for all kernels. Specifically, for the gaussian kernel, the parameter scale is
set to sqrt (number of predictors). Meanwhile, k-NN includes fine, medium, and cubic
k-NN with Euclidean and cubic distance metrics. The number of neighbors for the fine,
medium, and cubic k-NN are 1, 10, and 10, respectively. The results of the evaluation of
system performance in the EEG classification of normal, post-stroke MCI, and post-stroke
dementia for all test scenarios are presented in Table 12.

Table 12 shows that the highest accuracy was 96%, with a specificity and a sensitivity
of 95.6% and 97.9%, respectively. The highest accuracy is achieved by scenario E using
Gaussian SVM, where coherence features and SpecDE are used as predictors. Combining
these features results in higher accuracy than using a single-feature extraction method.
Compared to other characterization methods, the most dominant coherence feature con-
tributes to high accuracy. It can be seen in the scenario B simulation that the coherence
feature provides an accuracy of up to 94%. Another concerning finding is that the proposed
spectral dispersion entropy method produces a higher classification accuracy than the
spectral entropy for all classification methods. SpecDE can produce up to 80% accuracy.
From this simulation, it can be concluded that SpecDE provides better discrimination
features than spectral entropy, as seen in the significance test results presented in the
previous subsection.

The proposed method was also tested using the ten-cross validation technique. The
aim is to test the robustness of the method compared to five-cross validation. Table 13
presents the test results for each scenarios A, B, C, D, and E. From Table 13, it can be seen
that scenario B produces 94% accuracy by Gaussian SVM. The highest accuracy is also
achieved by scenario E, with 96% accuracy, while scenario D produces higher accuracy than
scenario C. Scenario A still produces the lowest accuracy. These results show similarity
with the use of the five-cross validation technique. This test shows that the proposed
method is robust against variations in the amount of training and test data.
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Table 12. Classification results for each scenario.

Scenario Classifier Accuracy Specificity Sensitivity Precision F1-Score

A

Linear SVM 50 73.7 48 56 48.9
Quadratic SVM 52 75.3 52.3 53 52.6

Cubic SVM 50 74.9 51.1 50.1 50.2
Gaussian SVM 42 69.3 39.3 49.9 38.7

fine k-NN 30 65.1 31 30.4 30.2
medium k-NN 46 73.9 49.9 49.7 45.4

cubic k-NN 48 74.7 51.7 53.4 47.9

B

Linear SVM 78 88.2 73.9 87.8 74.7
Quadratic SVM 80 89.3 75.8 87.3 76

Cubic SVM 80 89.3 75.1 87.4 74.1
Gaussian SVM 94 96.8 93.7 95.5 94.3

fine k-NN 70 83.1 63.7 77.2 61.6
medium k-NN 70 83.9 63.7 82.3 58.4

cubic k-NN 68 82.9 61.2 NAN NAN

C

Linear SVM 46 72.2 44.8 45.3 44.4
Quadratic SVM 44 71.4 43.6 44.6 44.1

Cubic SVM 36 67.1 34.2 35.4 34.3
Gaussian SVM 48 73.3 46.5 47.7 46.8

fine k-NN 36 67.8 35.7 35.8 35.7
medium k-NN 54 75.9 51.1 56.3 50.6

cubic k-NN 50 74.4 49.2 49.1 49

D

Linear SVM 78 88.4 75.7 81 76.6
Quadratic SVM 76 87.4 74.6 79.2 75.8

Cubic SVM 66 82.4 65 66.7 65.4
Gaussian SVM 76 87.3 73.1 79.5 73.9

fine k-NN 60 79.9 58.1 57.4 57.7
medium k-NN 80 89.3 77.3 86.8 78.8

cubic k-NN 74 86.4 71.2 76.7 72.2

E

Linear SVM 80 89.3 75.8 88.5 76.3
Quadratic SVM 84 91.4 80.9 90.1 82.2

Cubic SVM 84 91.4 80.9 90.1 82.2
Gaussian SVM 96 97.9 95.6 96.8 96.1

fine k-NN 74 85 67.7 79.2 66.7
medium k-NN 74 86 68.1 86.5 65.1

cubic k-NN 72 85.2 68.1 79.7 67.1

Table 13. Accuracy for each scenario using ten-cross validation.

Classifier
Accuracy (%) Each Scenario

A B C D E

Linear SVM 50 82 48 76 84
Quadratic SVM 54 78 48 70 80
Cubic SVM 52 78 32 66 80
Gaussian SVM 42 94 52 76 96
fine k-NN 38 70 44 56 72
medium k-NN 48 66 42 76 70
cubic k-NN 38 66 48 72 76

The confusion matrix for the highest accuracy is presented in Table 14. Post-stroke MCI
was successfully classified, with 100% accuracy, while post-stroke dementia and normal
were classified with an accuracy of 92.3% and 94.4%, respectively. Errors occurred in the
normal class detected as MCI, and the dementia class detected as MCI, but did not occur
in the normal class detected as dementia. The classification simulation corroborates the
significance test results that the proposed EEG characterization methods can be used to
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support the clinical diagnosis of early detection of post-stroke dementia and evaluation of
the severity of dementia.

Table 14. The confusion matrix of the highest accuracy.

Predicted

Normal Stroke-MCI Stroke-Dementia

Actual

Normal 17 1 0

Stroke-MCI 0 19 0

Stroke-Dementia 0 1 12

Performance evaluation of the proposed method on the Alzheimer’s dataset was not
limited to a significance test. Evaluation using classifier techniques was also applied to
determine the performance of the proposed method. Coherence and spectral entropy
features were used as predictors in classification. The results were compared with similar
studies using the same dataset. Details of the test results and comparison with previous
studies are presented in Table 15. Table 15 shows that the proposed method produces
the highest accuracy of 85.2% using cubic SVM. The comparative study shows that the
proposed method outperforms the previous study by Hadiyoso et al. [37]. Meanwhile, the
accuracy is slightly lower compared to the study by Kashefpoor et al. [17]. However, their
study only used eighteen samples (nine normal and nine MCI). For the same sample, their
study used half the length for training and the other half for testing. Meanwhile, in this
proposed study, tests and training data were used from different subjects.

Table 15. Accuracy for AD dataset and comparison with previous studies.

Study Feature Extraction
Method Classifier Number of

Sample Test
Accuracy

(%)

Kashefpoor et al. [17] Spectral Analysis Neurofuzzy(NF)-
k-NN 18 (9 normal, 9 MCI) 88.8

Hadiyoso et al. [37] Spectral Analysis k-NN 27 (16 normal, 11 MCI) 81.5

Proposed Coherence +
Complexity

Linear SVM

27 (16 normal, 11 MCI)

77.8
Quadratic SVM 77.8

Cubic SVM 85.2
Gaussian SVM 81.5

Fine k-NN 77.8
Medium k-NN 66.7

Cubic k-NN 81.5

4. Discussion

In this study, EEG signal processing was carried out in post-stroke patients to char-
acterize patients with cognitive impairment. The feature extraction method can describe
brain activity changes so that EEG signals can be estimated that describe normal conditions,
mild cognitive disorders, and dementia.

The power spectral characterization showed the differences in the power of the delta,
alpha, and beta waves. The group with cognitive impairment showed a higher delta wave
power pattern than the normal group, followed by a decrease in the power of alpha and
beta waves. The average relative power of each group showed that the highest significance
was found in the delta and beta rhythms. The delta power in dementia and mild vascular
cognitive groups tended to be higher than in the normal group. These results confirmed
the study by Meghdadi et al., that there is an increase in the delta and theta power in the
elderly with dementia [39].

Meanwhile, the beta wave power of the normal group was higher than mild vascular
cognitive impairment and dementia. In the studies by Seokbeen Lim et al. and Hen-
drayana et al., beta waves increased during concentration [40,41]. Significant differences
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with p < 0.05 were found in the fronto-temporo-parietal region [40]. Decreased power
of beta rhythms in MCI and dementia is associated with reduced focus or concentration
on working memory tasks. These findings suggest that decreased beta-band activity in
low-performing patients reflects the difficulty in activation and deficits in maintaining
concentration processes [42]. Jang et al.’s study showed that increasing beta power was as-
sociated with increased cognitive function [43]. The strength of the delta and beta rhythms
showed a linear relationship with the severity of dementia. These results demonstrate
similar characteristics to the resting EEG recordings presented in the previous section. The
characteristic differences between normal subjects and patients with cognitive impairments
can be caused by the degradation of neurons that affect local oscillatory activity and con-
nectivity [44]. EEG patterns with dominant delta rhythms are found in individuals during
deep sleep or in those with brain disorders [45,46].

Interhemispheric observations showed that the mean coherence values in patients
with cognitive impairment tended to be lower than in normal subjects (CohDem < CohMCI
< CohNormal) for all electrode pairs; significantly in pairs F7-F8, T3-T4, T5-T6, and P3-P4
(p < 0.05). These represent the temporo-parietal lobe region. Our findings confirm that the
study by Al-Qazzaz et al. [23,47], which investigated signal complexity in stroke patients
related to cognitive impairment, showed a significant decrease in the temporal region. We
assume that stroke-associated dementia patients have a number of damaged neurons and
synapses in this region. In the investigation of intrahemispheric coherence, we also found
decreased coherence in patients compared to the normal control. The decrease in coherence
values between brain regions is strongly correlated with cognitive impairment, as reported
in previous studies [48–50].

The analysis of brain connectivity using coherence describes the synchronization or co-
ordination between brain areas. Coherence analysis was performed on the interhemisphere
and intrahemisphere, describing the relationship between the right and left hemispheres of
the brain and the same area of the brain. Coherence in the post-stroke group with cognitive
impairment tends to be lower than coherence in normal elderly patients. The most likely
reason for the lower coherence is the death of many neurons and the degeneration of
synapses, leading to a decrease in cortical connectivity function [51,52]. The results of the
multiple comparison test for the three groups showed significant interhemispheric and
intrahemispheric coherence, especially in the frontal and temporal areas. These results
make coherence analysis a reliable predictor in the classification test stage.

The complexity calculation results show that post-stroke patients with cognitive im-
pairment tend to have lower signal complexity than the normal group (SpecEnDem. <
SpecEnMCI < SpecEnNormal) and (SpecDEDem. < SpecDEMCI < SpecDENormal). Another
issue of observing SpecEn and SpecDE values is that there is an association between de-
creased signal complexity and dementia severity, as reported in the study of Al-Qazzaz et al.
This finding confirms the results of previous studies, that a worsening of dementia will be
followed by a decrease in signal complexity. The results of the analysis of memory-related
brain activity recordings showed similar network dynamics [53], as evidenced by the con-
sistency of SpecEn and SpecDE values. SpecEn and SpecDE results show a change in the
power spectral frequency distribution. This is associated with a slowing of the EEG of MCI
and dementia patients [54,55]. The most likely physiological interpretation to explain this is
the occurrence of significant brain cholinergic deficits as the basis for symptoms of cognitive
decline. Cholinergics regulate spontaneous activity at low frequencies followed by loss
of neurotransmitters, leading to a slowing of nerve oscillations. The results of the signifi-
cance test also showed significant differences between groups, especially SpecDE, which
resulted in better discrimination features than the other two methods. Signal complexity
characterization can be a supporting criterion in the classification test stage.

Quantitative EEG (QEEG) can be an essential tool to simplify the analysis of digital
EEG tools. QEEG, in this study, uses power spectral, coherence, and complexity analysis.
The quantification results show the characteristics of discrimination between normal, post-
stroke mild cognitive impairment, and post-stroke dementia. Spectral analysis, coherence,
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and complexity can describe the condition of the brain with decreased cognitive function.
From the proposed characterization method, it can be estimated whether there are brain
abnormalities related to cognitive function. Furthermore, with a combination of EEG
characterization methods, the severity of dementia can be classified as a diagnostic support
tool in the early detection of post-stroke vascular dementia. Future research can perform
feature selection of coherence and spectral dispersion entropy to obtain essential features
to reduce the number of features, while still producing optimum classification accuracy.

5. Conclusions

This study developed a quantitative EEG (QEEG) method to characterize EEG waves
in post-stroke patients at risk of developing vascular dementia. QEEG methods used for
analysis included spectral power, coherence, and signal complexity. These methods were
used to improve the function of a digital EEG device that described the brain’s functionality
for early identification of cognitive impairment due to vascular disease that leads to cerebral
blood vessels.

In developing the method, this study involved three test groups: normal subjects, post-
stroke patients with mild cognitive impairment (MCI), and post-stroke dementia patients.
The subject criteria used in this study were based on recommendations. They were selected
by a neurobehavior consultant neurologist after clinical, neuropsychological, and brain
imaging examinations were carried out. The recommendations for normal and impaired
cognition were based on neuropsychological examination by a neurologist using the MoCA
assessment. Clinical examination, psychology, and EEG recordings were conducted at
Hasan Sadikin Hospital, Bandung. This research received ethical approval from the hospital
ethics committee; number LB.02.01/X.6.5/272/2019.

Power spectral characterization showed that patients with cognitive impairment had
higher delta relative power and decreased alpha and beta relative power than the normal
group. The most significant differences in delta and beta waves were found at the frontal,
temporal, and parietal electrodes (p-value < 0.05). This characterization also demonstrated
an association between EEG signal strength and dementia severity.

Another analysis was the interhemispheric and intrahemispheric coherences, which
describe the connectivity of brain tissue. Observations of interhemispheric coherence
showed that the mean coherence value in patients with cognitive impairment was lower
than in normal subjects (CohDem < CohMCI < CohNormal). Significance (p < 0.05) was
found in the frontal-temporo-parietal lobe electrode pair. In the investigation of intrahemi-
spheric coherence, a decrease in coherence was found in patients compared to normal
subjects. Significant differences existed in the local and distal intrahemispheric coherence
electrode pairs, including frontal, central, and temporal. These results represent the con-
sistency of interhemispheric coherence measurements, where the central and temporal
regions experience decreased coherence due to the failure of functional connectivity. Thus,
the decrease in coherence values between brain regions strongly correlates with disorders
related to cognitive function.

Meanwhile, the SpecEn and SpecDE analyses showed that the post-stroke patient
group with impaired cognition tended to produce a lower signal entropy than the normal
group. Physically, the patient group had more regular EEG signals than the normal group.
The multiple comparison tests showed that the SpecDE analysis provides discriminatory
significance for the case of three groups that are superior to SpecEn. It was indicated by
a p-value <0.05 in normal cases vs. post-stroke MCI, and post-stroke MCI vs. post-stroke
dementia was more commonly observed.

Characteristic differences between normal conditions and patients with impaired
cognition may be due to different brain conditions due to neuronal degradation. Delta
waves with dominant strength occur when the state of deep sleep or the conscious state of
someone with a brain disorder. The explanation for the lower coherence in this group of
patients is the death of large numbers of neurons and the degeneration of synapses, leading
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to a decrease in cortical connectivity function. It can underlie disturbances in functional
interaction or coordination between brain regions.

At the classification stage to test the proposed method, prediction simulations were
carried out using SVM and k-NN. This study succeeded in classifying normal EEG, mild
cognitive impairment, and dementia, with the highest accuracy of 96%. The highest
accuracy was achieved using Gaussian SVM by combining coherence and SpecDE features.
Cases classified as normal and dementia could be perfectly classified. Meanwhile, for the
classification of normal vs. post-stroke MCI and post-stroke MCI vs. post-stroke dementia,
the accuracy of each was 94.4%. From the QEEG method developed, the EEG tool could
be used to evaluate vascular dementia in post-stroke patients. This study could support
clinical diagnosis in the early detection and evaluation of the severity of vascular dementia
in post-stroke patients. In future research, it is recommended to collect data on a larger
population so that the reliability of the proposed method can be analyzed.
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