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Abstract: Deep learning methods have achieved outstanding results in many image processing
and computer vision tasks, such as image segmentation. However, they usually do not consider
spatial dependencies among pixels/voxels in the image. To obtain better results, some methods
have been proposed to apply classic spatial regularization, such as total variation, into deep learning
models. However, for some challenging images, especially those with fine structures and low
contrast, classical regularizations are not suitable. We derived a new regularization to improve the
connectivity of segmentation results and make it applicable to deep learning. Our experimental
results show that for both deep learning methods and unsupervised methods, the proposed method
can improve performance by increasing connectivity and dealing with low contrast and, therefore,
enhance segmentation results.
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1. Introduction

Image segmentation is one of the most fundamental and important tasks in image
processing and computer vision. Image segmentation aims to divide a digital image domain
into several disjoint regions so that each region is homogeneous with respect to certain
characteristics. For binary case it also refers to outlining the boundaries of objects of interest
so that the target objects are easier to recognize. It has been applied and studied in many
areas, such as biomedical imaging and geosensing.

Different methods of image segmentation have been developed. Variational methods
are one of the popular ones that usually rely on optimizing some well-designed energy
functional. Many classic variational models have been proposed. For example, Mum-
ford–Shah model [1] does simultaneous image smoothing and segmentation and represents
the smoothed image as a piecewise-smooth function. Potts model [2] and Chan-Vese
model [3,4] adopt piecewise constant approximation. Level set and Heaviside functions are
used in Chan-Vese model to represent different regions. Heaviside function is however not
convex and causes optimization to become stuck in local minima. Some methods [5] apply
convexity relaxation to guarantee a global solution of the models. The models usually seek
optimal segmentation by minimizing some specific energy functional. The functionals
usually contain a data fitting term that penalizes the error between the approximation and
original image, and one or several regularization terms which represent the mathematical
assumption or expectation of the underlying solutions [6–8].

With the development of a fully convolutional network (FCN) and improvement of
computing power, deep learning-based methods have achieved remarkable performance
on image segmentation. With the images as input, the trained neural network can classify
each pixel of the input images by predicting the probabilities of each class. Recently, many
new deep learning models and structures have been proposed. Examples are GoogleNet [9],
UNet [10], Res-Net [11], Xception [12], and DeepLab models [13–16]. There are also some
combinations, such as Res-UNet [17]. Compared with variational methods, deep learning

Sensors 2023, 23, 1887. https://doi.org/10.3390/s23041887 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23041887
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23041887
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23041887?type=check_update&version=1


Sensors 2023, 23, 1887 2 of 14

methods can extract high-level features of images, as well as low-level features such as
edges by feeding a set of training images into the neural network. That allows it to extract
deeper meanings of pixels and deal with more complicated tasks, such as semantic image
segmentation.

On the other hand, variational methods are still popular in many areas, such as medical
image processing [6], due to some advantages. First, most variational methods [1,3–5,18]
are unsupervised or semi-supervised so that they are still available with little or without
labeled data. Second, it is flexible to add many kinds of spatial regularization into the
objective function [6,8], which helps variational methods obtain more reasonable results.
Therefore, it is a good idea to apply spatial regularization into neural networks to combine
the advantages of the two methods.

In fact, some methods adding regularizations into a neural network have been pro-
posed. Some of them modify the loss functions by using objective functions of variational
models [19] or directly adding spatial regularization [20,21] to the loss functions. Some
methods make use of feature extraction and attention mechanism [22] to fuse region fea-
tures and boundary features. In addition, some methods apply spatial regularization into
activation functions by representing activation functions as the solutions of some varia-
tional problems [23]. There, the authors have discussed the advantages of these methods
over other methods. First, by modifying the activation function, they can affect the process
of back-propagation and, therefore, the learnable parameters, while the loss functions
usually only affect the training stage. Second, they are flexible to be applied in any number
of activation functions in any layers. In this paper, we propose a new regularity that could
be used alone in non-supervised methods or adopted into activation functions. It is only
used in the last layer for a better efficiency without losing much performance.

Total variation (TV), one of the most widely used spatial regularization during image
segmentation, can minimize the boundary length and has the effect of removing noise.
However, it is not suitable for images with low contrast, fine and multi-scale structures.
Examples are blood vessels in medical images, branches of trees and antennae of insects.
These images vary greatly in scale and shape. Low contrast makes it even worse as fine
structures are often mistakenly treated as background and cause missing edges of fine
structures. In these cases, a spatial regularization that could lengthen the boundary or
enhance connectivity would help to catch boundaries of fine structures. Although some
regularization methods have been proposed to improve connectivity by computing discrete
curvatures for each piece of edges [24,25], they are used in variational models and are very
difficult to be applied to deep learning. Moreover, it is inefficient to compute curvatures
for each image and each training step in deep learning. In this paper, based on a soft
thresholding dynamic (STD) regularization which can make boundary smooth if added to
activation function [23], we design a new connectivity boosting regularization that is very
easy to be adopted in deep learning framework.

2. Related Works
2.1. Deep Learning Based Image Segmentation

Neural networks for image segmentation consist of a series of linear and non-linear
operations. After being fed into a neural network, the image passes through the hidden
layers in sequence. In a simple FCN, the input or feature map of each layer is the output of
the previous layer. Suppose the output of the ith layer is oi (o1 is the input image), then the
output of the next layer would be:

oi+1 = Ai(Wioi + bi) i = 1, 2, 3 · · ·

Wi and bi represent linear operation and contain learnable parameters of the ith layer.
Ai, called activation function, is a non-linear function and usually remains unchanged.
Activation functions add non-linearity to the neural network and enable the neural network
to fit any non-linear functions. For image segmentation, the final output of the last layer has
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the same shape as the input image so that the neural network can predict the probability of
each pixel belonging to each class.

In the process of training, the discrepancy between the output of training images and
ground truth are computed according to a certain loss function. By applying backpropaga-
tion, the gradients of the loss function with respect to each parameter are obtained so that
the neural network can ’know’ how to update the parameters. Specifically, the parameters
are updated with gradient descent-based algorithms to reduce the loss.

2.2. Spatial Regularization in Variational Methods

As mentioned, variational methods involve minimizing some energy functions that
can be simply formulated as the sum of a fidelity term and a regularization term:

min
u

F(u, o) + R(u) (1)

The fidelity term F(u, o) measures the similarity between the original image o and
the segmentation result u. For example, the Euclidean distance ||u− o||22 is used in many
variational models. The regularization term R(u) is designed to have some certain in-
fluence on the result. Many kinds of regularity terms, such as total variation, Tikhonov,
total generalized variation [26] and total fractional variation [27] have been proposed. In
particular, TV regularization can be expressed as the sum of the norm of gradient: |∇u|.
In an image, non-zero gradient usually means appearance of boundary. Therefore, TV
regularization can approximate the boundary length and the segmentation result would be
more robust to noise and preserve edges better.

Although TV regularization performs well in segmentation tasks, its non-smoothness
property makes it not efficient in deep learning. Typically, the variational problems with
TV regularization can only be solved with some methods that are too complicated for deep
learning, such as alternating direction method of multipliers (ADMM) and primal dual
methods. Compared with gradient-based methods, such as gradient descent, these methods
usually converge much slower and each of their steps is computationally expensive. The
computation of total variation itself is time consuming too. Since the training process of
deep learning can take hundreds of epochs, the regularization used in deep learning should
be able to be solved efficiently.

2.3. Soft Threshold Dynamic (STD) Regularization

To combine deep learning framework and spatial regularizations, Liu et al. [23,28,29]
have given variational explanations for some widely used activation functions in deep
learning including softmax, ReLU, and sigmoid [23,28,29]. For example, softmax operator
can be written as softmax(o)i =

exp(oi)

∑I
i=1 exp(oi)

and it can be represented as the solution of the

following optimization problem [23] when the parameter ε is 1:

min
u∈U
〈−o, u〉+ ε〈u, ln u〉 U = {u ∈ [0, 1]C :

C

∑
i=1

ui(x) = 1, ∀x ∈ Ω} (2)

where Ω is the domain of the whole image, C is the number of classes, o is the feature
map input, and u is the output of the softmax operator. Although problem (2) has no
regularization about u, one can easily add regularization terms used in image processing
and computer vision. In [23], soft threshold dynamics (STD) [30] was adopted:

u∗ = arg min
u∈U

〈−o, u〉+ ε〈u, ln u〉+ λ〈u, k ∗ (1− u)〉 (3)

where ∗ means convolution, k represents a discrete Gaussian kernel and λ is a param-
eter. The STD regularization term 〈u, k ∗ (1 − u)〉 comes from convolution generated
motion [31,32] whose goal is to simulate the motion of interfaces of some dynamic systems,
such as chemical and biological systems. When simulating the dynamics of interface under
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surface tensions [30], it assumes that the interfacial energy is proportional to the length of
interface. Thus, STD term estimates the boundary length.

Compared with TV regularization, STD regularization has similar effect. However,
it is smooth and, thus, problem (3) can be solved with much more efficient algorithms.
Furthermore, STD regularization involves convolution and inner product operation, which
are cheaper to calculate than norm.

Theoretically, STD regularization can be added to arbitrary numbers of activation
functions in any layers in a neural network, but in this paper, the proposed regularization
to the softmax function is just applied in the last layer for some reasons. First, solving the
optimization problems for many layers is time consuming because most of them can only
be solved with iterative methods. Second, the numerous feature maps in the hidden layers
represent certain features of the image. Applying regularization in these layers may have
unknown influence on the extraction of the features. In practice, the parameters ε, λ, and σ
can be set as learnable so that they can be tuned automatically by neural network.

3. Proposed Method
3.1. Explanation of STD Regularization

The STD regularization term 〈u, k ∗ (1− u)〉 is an approximation of boundary length
while used in image segmentation model. By computing the convolution of the image
with a Gaussian kernel, a series of weights related to curvature can be generated along the
boundaries of different regions. The sum of these weights along the boundary can be a
good approximation of the boundary length. To help understand STD regularization and
illustrate the effect of Gaussian kernel, an example of binary u with values 0 and 1 is shown
in Figure 1. Only pixels along the boundary of u have non-zero values in u� k ∗ (1− u).
Additionally, the inner product 〈u, k ∗ (1− u)〉 is the summation of u� k ∗ (1− u). The
pixels along the corners have higher values, which means 〈u, k ∗ (1− u)〉 has larger weight
when the curvature is higher. Therefore, the regularization is an approximation of boundary
length weighted by curvature.

Figure 1. The effect of a 3× 3 Gaussian kernel with σ = 1 for an image. The gray value shades
correspond to the values of each pixel.

Note that the Gaussian kernel in STD makes the regularization penalize arc length in
all directions. In certain instances, however, we need to enhance connectivity which leads
to longer arc length along certain directions. For instance, when the dominant edges of an
image are horizontal, we should allow long arc length along the horizontal direction (see
Section 4.2 for one example). Therefore, it is necessary to design a new regularization that
can enhance the connectivity in a selective way.
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3.2. New Regularization Term

To enhance connectivity, a new regularization term is designed to expand the fore-
ground. Naturally, suppose the values of u on the foreground are close to one, the regular-
ization term can be formulated as

〈u, k ∗ (−u)〉 (4)

Figure 2 shows the effect of the regularization term (4) with Gaussian kernel. The
foreground value becomes −1 and the boundary values are also negative. So the inner
product should be the minus sum of weighted boundary length and foreground area. The
regularization (4) tends to expand the area of the foreground in a rate weighted by the
boundary curvature. The foreground will not expand without limit due to the existence of
loss function and tuned parameters.

Figure 2. The effect of a 3× 3 Gaussian kernel with σ = 1 for an image.

In practice, it would be better to enhance connectivity and elongate boundary length
in a certain direction, and it is not difficult to design such kernels. For example, a new 3× 3
kernel can be defined as shown in (5). In Figure 3, u� k1 ∗ (−u) has larger weights on
horizontal boundary, therefore when expanding the foreground it has higher priority to
elongate vertical boundary.

k1 =

 0 0.5 0
0 0 0
0 0.5 0

 (5)

Figure 3. The effect of a 3× 3 vertical kernel k1 for an image.
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Similarly, we can design such kernels in three other directions: horizontal, 45 degree,
and 135 degree diagonals.

k2 =

 0 0 0
0.5 0 0.5
0 0 0

 k3 =

 0.5 0 0
0 0 0
0 0 0.5

 k4 =

 0 0 0.5
0 0 0

0.5 0 0


3.3. Proposed Model

To better handle images with low contrast multi-scale features that could be discon-
nected by existing segmentation method, the new regularity is added to the model (3) to
obtain the model (6). The parameters λi and λ are balancing weights. In deep learning
framework, they can be set as learnable parameters so that the weights can be adjusted
continuously. Notice that we remain the STD regularization term (4th term) to address
noise. One can choose to remove or retain STD for different problems. Generally, it should
be retained if the noise in background is strong.

We also note that all the four kernels in the model are used. Our deep learning
framework can, however, automatically update weights λi and they will be positive and
different, with the largest one corresponding to the the dominant direction of connectivity
to enhance (see one example and the explanation in Section 4.2).

u∗ = arg min
u∈U

〈−o, u〉+ ε〈u, ln u〉+
4

∑
i=1

λi〈u, ki ∗ (−u)〉+ λ〈u, k ∗ (1− u)〉 (6)

The objective function is the sum of a series of smooth functions. The kernels k1,
k2, and k3 are semi-positive definite while k4 is indefinite. In most cases, the weighted
sum of kernels is semi-positive definite, and the regularization term is concave. Then the
problem (6) can be solved with the iterative method proposed by [23]:

ut+1 = arg min
u∈U

〈−o, u〉+ ε〈u, ln u〉+ 〈pt, u− ut〉 (7)

where pt = ∑4
i=1 λiki ∗ (−2ut) + λk ∗ (1− 2ut) ∈ ∂R(ut) and ∂R(ut) is the subgradient of

the sum of the 3rd and 4th term in the model (6). The solution of each step is:

ut+1 = softmax((o− pt)/ε) (8)

When λ4 is too large the weighted sum of kernels may not be strictly semi-positive
definite. The general model can be solved with Proximal Forward–Backward Scheme
(PFB) [33,34] efficiently. It converges quickly for a wide range of non-convex problems
whose objective function is the sum of smooth and non-smooth functions without assuming
convexity. The iterative algorithm with PFB in the t-th step is:

ut+1 = arg min
u
〈−o, u〉+ ε〈u, ln u〉+ 〈pt, u− ut〉+ τ

2
||u− ut||2 (9)

where τ is a constant to be tuned. The closed form solution can be represented with Lambert
W function W:

ut+1 =
ε

τ
W(

τ

ε
exp(

o− εI +−pt + τut

ε
)) (10)

where I is a tensor of the same size as u with all the entries equal to one. In practice, the
value of Lambert W function can be well approximated by Winitzki’s approximation [35].
In the final step, to make sure the constraint is satisfied, one more softmax operation on u
is performed. Both of the methods will converge within about 10 steps.
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4. Results

For the purpose of testing whether the proposed model could enhance connectivity
in image segmentation with low contrast, we focus on crack images and retinal vessel
images for their difficulty in obtaining connected fine structures under the condition of
low contrast. First we use the Crack Forest Dataset [36] including 118 forest images of size
448× 448. In total, 18 images are randomly selected as the test set. The tested dataset of
retina vessel segmentation is DRIVE [37], which is one of the most frequently used retina
vessel datasets. It consists of 40 color images of size 565× 584, 20 of which are used as
the training set. Both two datasets vary greatly in scale and shape with low contrast. In
addition, two images are used to test unsupervised image segmentation, respectively. STD
regularization is used for the Crack Forest Dataset.

The deep learning model is based on U-Net whose convolution layers are replaced by
depthwise separable convolution layers with residual connections used in Xception [12]
architectures. Such a structure can largely improve the performance of the original U-
Net. Preprocessing includes random flip, randomcrop, and contrast limited adaptive
histogram equalization (CLAHE) [38]. Both random flip and randomcrop are popular
data augmentation techniques by artificially expanding the size of dataset. They can
artificially expand the size of dataset and avoid overfitting [39], which is especially helpful
for training dataset of small size. CLAHE is a powerful method of image enhancement and
has been proved to be able to improve the quality of retina vessel and crack images [40,41].
Since the preprocessing, initial parameters and shuffle of mini batch in deep learning can
produce some randomness, for each dataset, we calculate the average values and standard
deviations of five computations.

4.1. Evaluation Metrics

The results are compared and evaluated with some commonly used metrics including
accuracy (Acc), precision (Pre), sensitivity (Sen), specificity (Spe), F1 score (F1), and AUC,
i.e., the area under the receiving operator characteristic (ROC) curve. In binary classification
they are defined as:

Acc =
TP + TN

TP + TN + FP + FN
(11)

Pre =
TP

TP + FP
(12)

Sen =
TP

TP + FN
(13)

Spe =
TN

TN + FP
(14)

F1 =
2 ∗ Sen ∗ Pre

Sen + Pre
(15)

where TP is true positive, i.e., the number of truly classified positive pixels representing the
foreground or the vessels. Similarly, TN, FP, and FN are true negative, false positive, and
false negative. AUC is the area under the curve created by 1 − Spe in the x axis and Sen in
the y axis.

Sensitivity is the accuracy rate for the foreground. Specificity is the accuracy for the
background. A higher sensitivity means better connectivity for the vessels while the effect
of specificity is inverse. Therefore, the main effect of my model is increasing the sensitivity
at the cost of slightly decreasing specificity.

4.2. Results and Discussion

First, the development of λi’s is tested with 30 selected crack images. These images
are selected from Crack Forest Dataset in which the cracks are all in horizontal direction
(Figure 4). As shown in Figure 5, after 50 epochs, the value of λ2 becomes the smallest
so that the weight of k2 is the smallest. Note that k2 corresponds to the horizontal kernel,
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and, therefore, the trained network tends to enhance the connectivity in horizontal direc-
tion. This example shows that the neural network can automatically decide the dominant
direction of the boundary.

Figure 4. An example of the crack images. (Left) image. (Right) ground truth.

Figure 5. Development of weights of different kernels.

4.2.1. Crack Forest Dataset

First, the full Crack Forest Dataset is tested. The performance with or without the
proposed regularization is compared in Table 1. The proposed regularization improves the
performance of the first four metrics except AUC. Specifically, as we expected more pixels
are classified as foreground, therefore the regularization can obviously increase sensitivity
and thus improve connectivity. An example shown in Figure 6 more explicitly illustrates
the improvement. In the bottom right, while preserving the main part of the crack like the
bottom left, the proposed regularization helps recognize more details of small branches
and connect some disconnected parts.
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Table 1. Results of CFD dataset with and without regularization.

Metrics Without Regularization Proposed Regularization

Acc 0.9911 ± 0.0002 0.9914 ± 0.0001
Pre 0.6997 ± 0.0229 0.7131 ± 0.0256
Sen 0.6489 ± 0.0359 0.6582 ± 0.0567
Spe 0.9960 ± 0.0007 0.9962 ± 0.0008
F1 0.6627 ± 0.0093 0.6747 ± 0.0210

AUC 0.9600 ± 0.0117 0.9548 ± 0.0131

Figure 6. An example of the crack images. (Top left) image. (Top right) ground truth. (Bottom left)
without regularization. (Bottom right) with proposed regularization.

4.2.2. Retina Vessel

We test the performance of our model on DRIVE dataset. The comparison of results
with and without the proposed regularization are shown in Table 2. As expected, the
sensitivity is increased at a cost of slightly reduced specificity. While the accuracy and
F1 score almost remain unchanged, the AUC is largely improved. An example is shown
in Figure 7, and a zoomed region indicated by white boxes is shown too. Some missing
branches are elongated, and some disconnected parts are connected. In Table 3, our results
are compared with some state-of-the-art methods. Our accuracy and specificity are the
highest among them and our sensitivity and AUC are also comparable to them. F1 score is
not included because few of the papers show it. Even better performance are expected if
we apply attention mechanism or more pre- and post-processing techniques.

Table 2. Results of DRIVE with and without regularization.

Metrics Without Regularization Proposed Regularization

Acc 0.9685 ± 0.0002 0.9680 ± 0.0002
Pre 0.843 ± 0.0108 0.8192 ± 0.0038
Sen 0.7930 ± 0.0128 0.8205 ± 0.0048
Spe 0.9857 ± 0.0014 0.9824 ± 0.0005
F1 0.8140 ± 0.0019 0.8167 ± 0.0012

AUC 0.9484 ± 0.0042 0.9760 ± 0.0029
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Figure 7. An example of results in Table 2. From left to right: ground truth, results with original
softmax, and results with proposed regularization.

Table 3. Performance of different models on DRIVE. The best values are boldened.

Method Acc Sen Spe AUC

U-Net [10] 0.9656 0.8132 0.9805 0.9430
DeepLabV3+ [16] 0.9391 0.6950 0.9628 0.9213

R2U-Net [42] 0.9556 0.7792 0.9813 0.9784
Vessel-Net [43] 0.9578 0.8038 0.9802 0.9821

DUNet [44] 0.9566 0.7963 0.9800 0.9802
CE-Net [45] 0.9545 0.8309 0.9747 0.9779

Pyramid U-Net [46] 0.9615 0.8213 0.9807 0.9815
DCU-Net [47] 0.9568 0.8115 0.9780 0.981

CSAU-Net [48] 0.9676 0.834 0.981 0.9758
Our results 0.9680 0.8205 0.9824 0.9760
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4.2.3. Unsupervised Model

To show the effectiveness of the proposed regularization term, we add it to the energy
function in the variational model [5] that only involves total variation. The optimization
problem can be formulated as:

arg min
u∈U

〈u, f1 − f2〉+ λ1

∫
Ω
|∇u|dx + λ2〈u, k ∗ (−u)〉 (16)

where f1 = ( f − c1)
2 and f2 = ( f − c2)

2, f represents the image and c1 and c2 are the
means of the foreground and background indicated by u. Because in unsupervised method
the parameter λ’s are fixed, we just apply Gaussian kernel in the regularization added with
TV. Since the added regularization term is smooth, the modified model can be solved with
commonly used methods, such as ADMM. The proposed model (16) is compared with the
one in [5] and some results are shown in Figures 8 and 9. Figure 8 is a typical example
of images with multi-scale features, the legs of the insect are long and slim, and some
parts of the insect mix with the background due to low contrast. In variational models
these parts with low contrast are naturally recognized as background. However, in the
third figure of Figure 8, the legs are connected as a whole and some noise on the body
caused by the texture pattern are removed. Another example is shown in Figure 9, which is
human arteries. The image noise is strong and the contrast between the vessels and the
background is very low. As shown in the second column of Figure 9, if the effect of TV is
strong, the model will eliminate some fine structures together with noise. However, in the
third column, the model retains some vessels, and we can find the corresponding parts
from the original image in the first column. The parameters λ1 and λ2 in the Equation (16)
should be fine-tuned. Typically, λ1 is between 0.01 to 1. λ2 should be as small as 10−6. Both
results show the potential of the proposed regularization in enhancing segmentation of
images with multi-scale structures and low contrast.

Figure 8. The effect of the proposed regularization on unsupervised model. Column 2: the model
in [5] with TV regularization only. Column 3: the proposed model (16).
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Figure 9. Another example to show the effect of the proposed regularization on unsupervised model.
Column 2: the model in [5] with TV regularization only. Column 3: the proposed model (16).

5. Conclusions

A novel spatial regularization for image segmentation is proposed, which can be ap-
plied flexibly in neural networks. It is designed to enhance segmentation of fine structures
especially in images with low contrasts through improving connectivity. During process
of training the neural network can learn to find the dominant direction of the boundary.
Our results show that the proposed regularization can improve the performance of neural
network on some suitable datasets. Specifically, we test the retina vessel and forest crack
datasets and achieve better results compared with some recently proposed models. We
observe obvious improvements of sensitivity corresponding to better connectivity. In
addition, the effect of the proposed regularization applied in an unsupervised model is
tested and we find improvement. In the future, we will focus on improving connectivity
locally. Additionally, we will continue to design other specific spatial regularizations based
on similar mechanism.
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