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Abstract: Dense mapping is an important part of mobile robot navigation and environmental un-
derstanding. Aiming to address the problem that Dense Surfel Mapping relies on the input of a
common-view relationship, we propose a local map extraction strategy based on spatiotemporal
consistency. The local map is extracted through the inter-frame pose observability and temporal
continuity. To reduce the blurring of map fusion caused by the different viewing angles, a normal
constraint is added to the map fusion and weight initialization. To achieve continuous and stable time
efficiency, we dynamically adjust the parameters of superpixel extraction. The experimental results
on the ICL-NUIM and KITTI datasets show that the partial reconstruction accuracy is improved by
approximately 27–43%. In addition, the system achieves a greater than 15 Hz real-time performance
using only CPU computation, which is improved by approximately 13%.

Keywords: dense mapping; local map extraction; spatiotemporal consistency; point cloud fusion

1. Introduction

Simultaneous Localization and Mapping (SLAM) [1] is a critical technology. It is
important for mobile robots to be able to locate and construct maps in unfamiliar environ-
ments autonomously. A mobile robot’s map reconstruction ability plays a crucial role in
recognizing its 3D environment, navigating safely, and completing tasks [2].

Existing mature SLAM frameworks mainly include keyframe-based and mapping-
based reconstruction methods. The former is more flexible in management, and the latter can
achieve higher precision. Keyframe-based frameworks focus on localization. These frame-
works have become mainstream because the positioning algorithm they employ can achieve
real-time requirements. However, the map obtained by directly overlaying point clouds
is usually not sufficiently accurate. Mapping-based frameworks, on the other hand, take
accurate maps as the main goal and basically require a GPU for acceleration. The research di-
rection of real-time 3D reconstruction is developing towards the reconstruction of large-scale
scenes. However, there are still bottlenecks in terms of reconstruction accuracy, real-time
performance, and adaptability to the environment. These bottlenecks are due to the physi-
cal characteristics of RGB-D sensors and the limitations of computing resources. In 2017,
Wang et al. proposed that a usable reconstructed map for mobile robot applications should
satisfy the following: (1) The map can densely cover the environment to provide sufficient
environmental information for the robot; (2) The system has good scalability; (3) The system
has good global consistency; (4) The system can fuse different sensors and depth maps of
different quality. To meet the above requirements, Dense Surfel Mapping [3] was proposed.
The algorithm is based on the surfel model, which extracts superpixels [4] from the depth
and intensity images to model the surfel and applies depth images of different qualities.
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The resulting map achieves global consistency thanks to the fast map deformation [3]. Most
importantly, the algorithm can work in real time with only CPU computation.

However, Dense Surfel Mapping has the following problems: (1) The lack of general-
purpose ability of local map extraction: the extraction relies on the covisibility graph of
ORB-SLAM2 [5], and pose estimation algorithms without covisibility graphs can only ex-
tract based information based on time series. Thus, we extract the local map based on the
pose relationship between frames. This eliminates the dependence on the covisibility graph
of the input, and it makes the input simpler and the system more versatile. (2) Simple
weighted average fusion may lead to inaccuracy in the surfels with a better viewing angle.
We add normal constraints to the surfel weight’s initialization. Surfels with better view
angles will be initialized with greater weights. For surfels with large differences from
normal, we only keep the one with the better viewing angle instead of using weighted
average fusion. This improves the reconstruction accuracy. (3) The superpixel extraction
traverses the entire image. It is unnecessary to handle the regions with invalid depth or
beyond the maximum mapping distance, so we filter out the invalid regions before per-
forming superpixel extraction, and we dynamically adjust the parameters of the superpixel
extraction based on spatial continuity and temporal stability. Thanks to the dynamic
superpixel extraction, the time efficiency of the system are further improved.

In summary, the main contributions of this paper are the following.

• We propose a local map extraction and fusion strategy based on spatiotemporal consis-
tency. The local map is extracted through the inter-frame pose observability and tem-
poral continuity. This eliminates the dependence on the common-view relationship of
the pose estimation algorithm and is suitable for various pose estimation algorithms.

• A dynamic superpixel extraction. We dynamically adjust the parameters of superpixel
extraction based on spatial continuity and temporal stability, achieving continuous
and stable time efficiency.

• The normal constraints are added to the surfel weight initialization and fusion so that
surfels with better viewing angles are kept during map fusion.

• The experimental results on the ICL-NUIM dataset show that the partial reconstruction
accuracy is improved by approximately 27–43%. The experimental results on the
KITTI dataset show that the method proposed in this paper is effective. The system
achieves a greater than 15Hz real-time performance, which is an improvement of
approximately 13%.

2. Related Work

This section mainly introduces the development of dense reconstruction methods and
their scalability and efficiency.

With the commercialization of RGB-D sensors such as Kinect[6], a 3D reconstruc-
tion based on RGB-D sensors gradually attracted the attention of researchers, steadily
developing and maturing. At present, dense mapping methods are mainly divided into
voxel-based methods [7–10], surfel-based methods [3,11], and so on. KinectFusion [12]
realized real-time 3D reconstruction based on an RGB-D camera for the first time. This
system uses the TSDF (truncated signed distance function) [13] model to reconstruct the
environment, but it takes a lot of memory to store the voxel grid. ElasticFusion [14] is a
rare reconstruction model using the surfel model [15] model, which focuses on the fine con-
struction of the map. ElasticFusion also improves the pose estimation and reconstruction
accuracy by continuously optimizing the reconstructed map. However, ElasticFusion is
only suitable for small scenes because of the large computation required. BundleFusion [16]
achieves detailed local surface detail registration using the sparse-to-dense registration
strategy and achieves real-time continuous model updates using the re-integration model
update strategy. It is currently one of the best algorithms for dense 3D reconstruction based
on an RGB-D camera. In recent years, many researchers have focused on the combination
of neural networks and 3D reconstruction techniques. NICE-SLAM [17] used a hierarchical
neural implicit encoding to reconstruct large-scale scenes. Guo et al. used neural implicit
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representation to model the scene with the Manhattan-world constraint [18]. Azinović et al.
effectively incorporated the TSDF model in the NeRF framework [19]. SimpleRecon [20]
tried to learn the depth map directly by using an encoder–decoder architecture based
on cost volume, and it introduced metadata into the cost volume to provide more prior
knowledge for model training. BNV-Fusion [21] proposed a bi-level fusion algorithm to
achieve superior performance. The above reconstruction algorithms need GPU acceler-
ation to achieve good real-time performance because of the huge amount of calculation
required. Wang et al. proposed a novel mapping system named Dense Surfel Mapping [3].
The system can fuse sequential depth maps into a globally consistent model in real time
without GPU acceleration. Because of the novel superpixel model, the system is suitable
for room-scale and urban-scale environments.

The scalability of the voxel-based method is general. It requires a lot of memory to
store voxels, so the voxel-based method is, therefore, not suitable for large-scale scenarios,
such as KinectFusion [12]. Kintinuous [7] uses a cyclical buffer to improve the scalability
of the mapping system. Nießner et al. [22] proposed a voxel hashing method that only
stores reconstructed sparse surfaces. This method greatly improves the model’s scalability.
Compared with voxel-based methods, surfel-based methods are more scalable. This is
because surfel-based systems only store reconstructed surface point clouds. Dense Surfel
Mapping and [23] further improve scalability by maintaining local maps. Dense Surfel
Mapping [3] extracts local maps according to the common-view relationship provided
by the ORB-SLAM2. Similar to Dense Surfel Mapping, we use a more general local
map extraction method to improve the scalability. The method eliminates the model’s
dependence on the input. It is extracted through the inter-frame pose observability
and temporal continuity. It is more versatile and can be compatible with various pose
estimation algorithms.

Runtime efficiency is an essential indicator of the mapping algorithm. Different
algorithms offer unique methods to improve runtime efficiency. Voxblox [9], based on
voxels, proposes grouped raycasting: each point is projected to a voxel, all points in the
same voxel are averaged, and only one raycasting process is performed to speed up fusion.
FIESTA uses Indexing Data Structures and Doubly Linked Lists for map maintenance [10].
The efficient data structures and BFS framework of FIESTA allow the system to update as
few nodes as possible. Steinbrucker et al. [24] represent scenes using an octree, which is
an efficient way to store 3D surfaces. FlashFusion [25] filters out invalid chunks using
valid chunk selection; that is, only the chunks in the frustum of the camera view are
considered. This highly efficient method allows the algorithm to render at 25 Hz. Dense
Surfel Mapping [3] uses superpixels to extract surfels quickly. A local map is maintained
to reuse the existing surfels and reduce the memory burden. We further filter out the
invalid regions of the image and dynamically adjust the parameters of the superpixel
extraction. Thanks to the dynamic superpixel extraction method, our system achieves
better time efficiency.

3. System Overview

As shown in Figure 1, the system framework is mainly divided into five parts.
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Figure 1. System framework. The system is mainly divided into five parts, as shown by the dot-
ted boxes.

3.1. System Input

The system input is mainly divided into two parts: one is the depth and RGB image
obtained by the RGB-D sensor, and the other is the pose graph obtained by the pose
estimation algorithms (e.g., ORB-SLAM series [5,26,27], VINS-Mono [28], VINS-Fusion [29]).
The pose graph in [3] is similar to the covisibility graph of ORBB-SLAM2. It includes the
path and the common-view relationships of the keyframes because it needs the covisibility
graph to extract the local map. The input of a pose graph is complex, so it cannot be widely
used in various pose graph inputs. Different from [3], the pose graph used in this paper is
just the path of keyframes or the ordinary frames. It is simpler and more generic for pose
estimation algorithms, and the constraints are relatively loose.

3.2. Global Consistency Deformation

Same as [3], if the input pose graph is updated, the previous poses are optimized.
The map is quickly deformed according to the pose difference between the current pose
graph and the database. Surfels attached to frame F are deformed according to the matrix
T2 T−1

1 , where T1 ∈ R4×4 is the pose of the frame F in the database and T2 ∈ R4×4 is the
pose of the frame F in the current pose graph. Then, T1 is replaced by T2 and stored in
the database. The pose is a homogeneous transformation matrix that includes a rotation
matrix and a translation vector.

3.3. Superpixel and Local Map Extraction

In [3], superpixels are extracted by a k-means approach adapted from the extended
SLIC [30]. Pixels are clustered [31] according to their intensity, depth, and pixel location.
Finally, a down-sampled superpixels image is obtained. The superpixel extraction in [3]
traverses the entire image. It is unnecessary to handle the regions with invalid depth or
beyond the maximum mapping distance. So, as shown in Figure 1, we first filter out the
invalid regions before the superpixel’s extraction. Meanwhile, we dynamically adjust the
parameters of the superpixel extraction based on spatial continuity and temporal stability.
This allows the system to achieve better time efficiency. More details are described in
Section 4.2. The local map extraction in [3] is based on the covisibility graph of the input.
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Keyframes with the number of minimum edges to the current keyframe below Gδ are
locally consistent. Surfels attached to these keyframes are extracted as the local map [3].
To make the system more versatile, we simplify the input in Section 3.1, and we propose
a spatiotemporal consistent local map extraction strategy that is simple and effective.
We extract the local map based on the pose relationship between frames and continuity in
time. More details are described in Section 4.1.

3.4. Map Fusion

In this part, extracted surfels in the local map are fused with extracted surfels in
the current frame. The work of [3] transforms the local surfels into the current frame.
A weighted average is used to fuse the transformed surfel, and the surfel is extracted in
the current frame with a similar depth and normals. However, simple weighted average
fusion may lead to inaccurate surfels with better viewing angles. We, thus, add the normal
constraints to the surfel weight initialization so that a surfel with a better view angle will be
initialized with a greater weight. For surfels with a large difference in normals, we directly
keep the one with the better viewing angle instead of performing weighted average fusion.
This improves the accuracy of the surfels. And more details are described in Section 4.3.

3.5. Map Publication

In this part, the publication is an independent thread. We retrieve the reconstructed
map from the database regularly and publish it as a ROS topic. The topic can be subscribed
to for use in later applications, such as navigation and planning.

4. Methods and Principles
4.1. Spatiotemporally Consistent Local Map Extraction

Reconstructing large-scale environments may generate millions of surfels. To reduce
map growth, local maps are extracted to reuse and fuse previous surfels and redundant
surfels. In this paper, we extract the relevant common-view frames as a local map based on
the pose relationship between the two frames. As shown in Figure 2, the pose relationship
between two frames is mainly divided into three cases.

(a)Horizontal long distance (b)Horizontal close distance

(c)Back to back (d)Same direction (e)Opposite

α 

F1

F1 F1 F1

F2 F1 F2

F2 F2 F2

α 

Figure 2. Inter-frame pose relationship. The gray sectors represent the view of the camera, and the
arrows in the sectors are their directions.
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4.1.1. In the Same Direction Horizontally

As shown in Figure 2a,b, two frames (F1 and F2) are nearly parallel. The distance
between the two frames is calculated as:

D =‖ p1 − p2 ‖ , (1)

where p1 ∈ R3 and p2 ∈ R3 are the 3D coordinates of frames F1 and F2. The cosine of the
angle between the two frames’ directions is determined as:

cos α =
n1 · n2

‖ n1 ‖‖ n2 ‖
, (2)

where n1 ∈ R3 and n2 ∈ R3 are the direction vectors of frames F1 and F2, respectively.
The constraints should satisfy: (1) the distance D between two frames is less than the
maximum mapping distance k · f ar_dist, where k is the scale factor, and (2) their angle α is
less than the camera’s field of view (FOV), denoted as θth. There is a common area between
two frames only when constraints (1) and (2) are both satisfied.

4.1.2. In the Same Direction or Opposite

As shown in Figure 2d,e, frames F1 and F2 are in forward or opposite motion. The co-
ordinates of F1 are projected to the coordinate system of F2, and the pixel coordinates are
calculated as follows:

[p1_F2
T , 1]T = T−1

wF2
[p1_w

T , 1]T , (3)

[u1, v1, 1]TF2
= Kp1_F2 , (4)

where TwF2 ∈ R4×4 is the pose matrix of the frame F2 in global coordinates, K ∈ R3×3 is
the camera intrinsic matrix, and p1_w ∈ R3 is the 3D global coordinate of the frame F1.
Similarly, the coordinates of F2 are projected to the coordinate system of F1 and the pixel
coordinates are calculated as follows:

[p2_F2
T , 1]T = T−1

wF1
[p2_w

T , 1]T , (5)

[u2, v2, 1]TF1
= Kp2_F1 , (6)

where TwF1 ∈ R4×4 is the pose matrix of the frame F1 in global coordinates, K ∈ R3×3 is the
camera intrinsic matrix, and p2_w ∈ R3 is the 3D global coordinate of the frame F2. F1 ’s
pixel coordinates [u1, v1]

T
F2
∈ R2 are in the valid coordinate range of the image (V2×1 ∈ R2).

This means that u1 is between 0 and the image’s width, while v1 is between 0 and the
image’s height. The depth p1_F2 |z is less than the maximum mapping distance k · f ar_dist.
F1 and F2 are considered to have a common-view area when the above two conditions
are satisfied, and it is the same for F2. Surfels attached to this frame can be used as local
map frames.

4.1.3. Back to Back

As shown in Figure 2c, the directions of frames F1 and F2 are almost opposite. There is
no overlap in the fields of view between them. The projection of each frame is not within
the other’s field of view, and the direction angle is greater than θth. In general, this case
does not satisfy Sections 4.1.1 and 4.1.2 at the same time. In this case, the two frames have
no common area and cannot be used as local map frames.



Sensors 2023, 23, 1876 7 of 19

4.1.4. Summary

In summary, the current frame Fj and extracted frames Fi should satisfy:

‖ pi − pj ‖ < k · f ar_dist
cos−1 ni ·nj

‖ni‖‖nj‖
< θth

or
(K (T−1

wFi
[pj_w

T , 1]T) |3×1) |2×1∈ V2×1

(T−1
wFi

[pj_w
T , 1]T) |z < k · f ar_dist

or
(K (T−1

wFj
[pi_w

T , 1]T) |3×1) |2×1∈ V2×1

(T−1
wFj

[pi_w
T , 1]T) |z < k · f ar_dist ,

(7)

where V2×1 ∈ R2 is the valid coordinate range of the image. To further enhance the
temporal continuity of the local map, frames that are continuous in time are also ex-
tracted. For a value of Fi that satisfies the above constraints, 2n frames in the time-series
{Fi−n, Fi−n+1, · · · , Fi−1, Fi+1, · · · , Fi+n−1, Fi+n} are continuously extracted as the local map
at the same time.

The complete algorithm is shown in Algorithm 1.

Algorithm 1 Local Map Extraction.

Input: j is the index of the current frame. TwFj is the pose of the current frame. poseDatabase
is the pose database that stores the poses of each frame and their surfels. f ar_dist is the
maximum mapping distance.

Output: local Indexes is a vector of the local frame indexes. localSur f els is a vector of the
local surfels.

1: local Indexes.CLEAR()
2: localSur f els.CLEAR()
3: for each Fi ∈ poseDatabase do
4: f lag← f alse
5: TFj Fi ← transform(TwFi , TwFj )
6: [u, v]← project(TFj Fi )
7: if isValidRange([u, v]) && TFj Fi |z ≤ k · f ar_dist then
8: f lag← true
9: end if

10: TFi Fj ← transform(TwFj , TwFi )
11: [u, v]← project(TFi Fj )
12: if isValidRange([u, v]) && TFi Fj |z ≤ k · f ar_dist then
13: f lag← true
14: end if
15: if distance(TwFi , TwFj ) ≤ k · f ar_dist && angle(TwFi , TwFj ) ≤ θth then
16: f lag← true
17: end if
18: if f lag then
19: for t← −n,−n + 1...n− 1, n do
20: local Indexes.PUSH(i + t)
21: end for
22: end if
23: end for
24: for each i ∈ local Indexes do
25: localSur f el.INSERT(poseDatabase[i].surfels)
26: end for
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4.2. Dynamic Superpixel Extraction

Reconstructing large-scale scenes puts a large burden on memory. Superpixels can
solve this problem well. Similar to [3], the superpixels are extracted from the intensity and
depth images.

The cluster center is described as Ci = [xi, yi, di, ci, ri]
T , where [xi, yi]

T is the average
location of clustered pixels and di ∈ R+, ci ∈ R+, and ri ∈ R+ are the average depth,
intensity value, and the radius of the superpixel, respectively. Each pixel u is assigned to
a cluster center according to the distance D between itself and its neighborhood cluster
center Ci as follows:

D =
(xi − ux)

2 +
(
yi − uy

)2

N2
s

+
(ci − ui)

2

N2
c

+
(1/di − 1/ud)

2

N2
d

, (8)

where
[
ux, uy, ud, ui

]T are the location, depth, and intensity of pixel u. Ns, Nc, and Nd are
used for normalization. This is the same as in [3].

To enhance the time efficiency of the superpixel extraction, we only handle the depth-
valid pixels in the assignment. The superpixel size sp_size and the maximum mapping
distance f ar_dist are the main parameters that affect the time efficiency. We periodically
resize the superpixels in time-series frames with the high common-view area:

sp_sizei+1 =


SP_SIZE, eacc ≥ FAR_DIST or erot ≥ c1
c2 · SP_SIZE, sp_sizei ≥ c2 · SP_SIZE
sp_sizei + 1, others

, (9)

where SP_SIZE and FAR_DIST are the basic superpixel size and maximum mapping
distance, c1 is the rotation difference threshold (default is 0.1), c2 is the scale constant,
and e_rot ∈ R+ and e_acc ∈ R+ are the rotation errors and the accumulated pose errors,
respectively, between two consecutive frames. The maximum mapping distance f ar_dist is
dynamically adjusted according to the real-time efficiency as follows:

f ar_disti+1 =


c3 · f ar_disti, k ≤ −c4
f ar_disti/c3, k ≥ c4
f ar_disti, others

, (10)

where c3 (default is 1.1) is the scale factor, c4 (default is 3) is a positive integer. k means
that the time cost of consecutive | k | frames is lower than the average time cost when k is
negative and the time cost of consecutive | k | frames is higher than the average time cost
when k is positive.

4.3. Projection Matching and Optimal Observation Normal Map Fusion

There will be a large number of redundant surfels between the surfels generated by the
current frame and the local map because of the similar poses. The same surfels observed in
different orientations of the frame should be fused to reduce map growth. In this paper,
the same surfels are matched by projection and then culled and fused according to their
position and normal constraints.

Different from the surfel in [3], the surfel in this paper is S = [Sp, Sn, Sc, Sw, Si, St, Sv, Sr]T,
where Sp ∈ R3 is the global coordinate, Sn ∈ R3 is the unit normal, Sc ∈ R+ is the color
vector, Sw ∈ R+ is the weight coefficient, Si ∈ N is the frame number to which it belongs,
St ∈ N is the number of updates, Sv ∈ R+ is the observation cosine in frame Si, and Sr is the
radius of the surfel. An observation cosine is added for the screening of better observation
surfels. Project the surfel Sj in the local map to the coordinate system of the current frame Fi:
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[Sj
p_i

T
, 1]T = T−1

wi [S
j
p_w

T
, 1]T , (11)

Sj
n_i = R−1

wi Sj
n_w , (12)

where Sj
p_i ∈ R3 and Sj

n_i ∈ R3 are the 3D coordinates and normals of Sj in the coordinate

system of the current frame, and Twi ∈ R4×4 is the pose matrix of the current frame
Fi. Rwi ∈ R3×3 is the rotation matrix of Fi.

As shown in Figure 3a, the red squares are surfels generated by the current frame,
and the dots are surfels of the local map. Surfels can be divided into three categories based
on the relationship between surfels of the local map and the newly generated ones:

1. Outlier surfels, such as the blue dots in Figure 3a, whose projections are not within
the field of view of the current frame:

[uj, vj]
T = (KSj

p_i) |2×1 /∈ V2×1 , (13)

where K ∈ R3×3 is the camera intrinsic matrix, V2×1 ∈ R2 is the valid coordinate range
of the image, or the projection depth is much larger than the depth of the corresponding
surfel Si in the current frame:

Sj
p_i |z −Si

p_i |z > th , (14)

th = min

min_th,

(
Sj

p_i |z
)2
· σ

b · f · k · Sj
v

 , (15)

where th is the depth difference threshold of outliers, set to 0.5m in the first culling and
calculated by the Formula (15) in secondary culling, min_th is the minimum threshold
constant, b is the baseline of the camera, f is the focal length of the camera, σ is the parallax
standard deviation, k is the scale factor of the observed cosine (default is 1.5). The equation
shows that there will be a larger tolerance threshold with the farther distance and the larger
viewing angle. Thus, the farther surfels are considered more lenient for fusion. Surfels that
satisfy condition (13) or do not satisfy condition (14) are not considered for fusion.

(a)Before fusion (b)After fusion

Outlier 

points

Outlier 

points

Outlier

points

Outlier 

points

Conflict 

points
Update 

points

Figure 3. Data association. New generated surfels (red squares) are fused with surfels (dots) of the
local map.
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2. Conflict surfels, such as the gray dots in Figure 3a, satisfy [uj, vj]
T ∈ V2×1. If its

depth difference is less than −th, then these surfels are considered to be conflicting and
need to be replaced.

3. Update surfels, such as the black dots in Figure 3a, satisfy [uj, vj]
T /∈ V2×1 after

projection, and its depth difference is within ±th. These surfels are considered to be similar
to the corresponding newly generated surfels and must be fused and updated to reduce
map growth. After the projection constraint, a normal constraint is applied to the matching
local map surfel Sj and the newly generated Si:

Sj
n · Si

n > vth , (16)

where vth defaults to 0.9. If the matching surfels are not satisfied with the constraint from
(16), a strategy based on the best view angle is applied to reserve better surfels. As shown
in Figure 4, pose1 and pose2 observe the same superpixel sp. Compared with pose2, which
is easily affected by reflection and inaccurate depth, pose1 observes it in a better view.
Because there is a smaller angle with the normal, pose1 obtains a high-quality depth and
normal that better describes the superpixel.

z

sp

pose1

pose2

x

y

n

Figure 4. Best viewing angle. sp is a superpixel, and n is its normal. Pose1 observes sp in a better
view because of its smaller angle with the normal.

In summary, the results of surfel fusion are shown in Figure 3b. The weighted average
fusion with normal constraints of the matching surfels is as follows:
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Considering the inaccuracy caused by distant observations and oblique observations,
the weight coefficient of initialization Sw is related to the depth and observation cosine:

Sw = min
(

1,
k · Sv

d

)
, (18)

where d is the depth of S in the current camera coordinate system. Because our input of the
pose graph is loose, only the paths of the keyframes or ordinary frames are needed. For or-
dinary frame reconstruction, especially in large-scale scenes, the rate of pose estimation is
high. Surfels whose last update was 15 frames ago and which have been updated less than
five times are considered outliers and will be removed. Of course, this is not suitable for
reconstruction with a low pose estimation rate input.

5. Experiments

This section mainly evaluates the algorithm through public datasets. The algorithm’s
accuracy is evaluated using the ICL-NUIM dataset [32] and compared with other state-of-
the-art algorithms such as Dense Surfel Mapping [3], ElasticFusion [14], BundleFusion [16],
and FlashFusion [25]. The local consistency and the time efficiency in large-scale environ-
ments are evaluated using the KITTI odometry dataset [33].

The platform used to evaluate our method is a four-core, 4G memory Ubuntu18.04 sys-
tem configured by VMware under an AMD Ryzen5 4600H. To maintain the same conditions
as the comparison method, we also use ORB-SLAM2 in RGB-D mode to track the camera
motion and provide the pose graph.

5.1. ICL-NUIM Reconstruction Accuracy

The ICL-NUIM [32] dataset is a synthetic virtual dataset provided by Imperial College
London and the National University of Ireland. It is designed to evaluate RGB-D, visual
odometry, and SLAM algorithms and is compatible with the TUM dataset. The dataset
mainly includes two scenes: a living room and an office room. In addition to the ground
truth, the living room scene also has a 3D surface ground truth [32]. It is perfectly suited not
just for benchmarking camera trajectories but also reconstruction. To simulate real-world
data, the dataset adds noise to both RGB images and depth images.
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This experiment uses the living room scene with noise to evaluate the reconstruction
accuracy of the algorithm. The input image resolution is 640 × 480. A superpixel size
of SP_SIZE = 4, FAR_DIST = 3m is used for surfel fusion. The mean error of the
reconstruction results is calculated using the CloudCompare tool:

MAE =
1
n
·

n

∑
i=1
‖ pi − p̂i ‖ , (19)

where pi is the 3D coordinate of the reconstructed point cloud, and p̂i is the closest true
value of the 3D surface to pi. The experimental results are compared with algorithms such
as Dense Surfel Mapping [3], ElasticFusion [14], BundleFusion [16], and FlashFusion [25].

The reconstruction map and the corresponding error heat map are shown in Figure 5.
The accuracy evaluation results are shown in Table 1.

Table 1. Reconstruction accuracy on ICL-NUIM (cm).

Methods kt0 kt1 kt2 kt3

ElasticFusion 0.7 0.7 0.8 2.8
BundleFusion 0.5 0.6 0.7 0.8
FlashFusion 0.8 0.8 1.0 1.3
Dense Surfel

Mapping 0.7 0.9 1.1 0.8

Ours 0.4 1.0 0.8 0.8

Among the algorithms in Table 1, both ElasticFusion and BundleFusion require GPU
acceleration. FlashFusion and Dense Surfel Mapping can be directly run in real-time under
the CPU. Based on Dense Surfel Mapping, our method can also be run in real-time without
GPU acceleration. In terms of reconstruction accuracy, our accuracy of kt0 reaches 0.4 cm,
which is slightly higher than the 0.5 cm of BundleFusion, and the accuracy of kt3 also
reaches 0.8 cm, which is the same as BundleFusion. Compared with Dense Surfel Mapping,
the accuracy of our method is slightly higher in kt0 and kt2, the same in kt3, and slightly
worse in kt1.

(a) The trajectory (b) Reconstruction result 

0 

1 

(a) kt0

Figure 5. Cont.
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Figure 5. Reconstruction results of the ICL-NUIM dataset. The left shows the reconstructed point
clouds. The right shows the error heatmap, in which the red part represents a 3 cm error and the blue
part represents a 0 cm error.

As shown in Figure 5, the reconstruction point clouds of sofas and murals are clear,
and even the text in them is faintly visible. It can be seen from the heat map that the main
errors are concentrated within 1 cm. There are some errors around 1 cm of kt1, mainly
on the walls on both sides of the z-axis. These are mainly caused by the inaccurate
pose estimation of ORB-SLAM2. There is always a unidirectional deviation of 2 cm–3 cm
between the estimated pose and the ground truth in the y-axis and z-axis. This also reflects
the side that the algorithm has a certain tolerance for error in pose estimation. It can be
seen in Figure 5a that the error of the walls is small. This is because the walls of kt0 have
been reconstructed from the front. This is a wonderful perspective for observing the object.
According to the strategy presented in Section 4.3, these surfels will have a great weight
in the fusion, and even surfels reconstructed from the front will directly replace surfels in
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the local map instead of weighted average fusion. This is also the case in kt2. This also
explains why the accuracies of kt0 and kt2 are improved in Table 1.

5.2. Kitti Reconstruction Efficiency

This section mainly shows the method’s reconstruction performance in large-scale
environments. The KITTI dataset is a computer vision algorithm evaluation dataset created
by the Karlsruhe Institute of Technology (KIT) and the Toyota University of Technology
at Chicago (TTIC) for autonomous driving scenarios. The dataset mainly contains large
outdoor scenes such as urban areas, villages, and highways. The KITTI odometry used
in this section mainly consists of 22 binocular sequences, 11 of which (00–10) have real
trajectories. Here we only use the sequence 00.

The classic PSMNet [34] depth prediction neural network is used to predict depth
images using binocular images. This is because the KITTI odometry does not provide
depth images. To verify the spatiotemporally consistency of the local map extraction and
fusion method proposed in this paper, we use the ground truth trajectories provided by the
dataset directly.

The reconstruction results are shown in Figure 6. The left shows the motion trajectory
of the camera, and the right is the map reconstructed by our method in real-time. The re-
constructed map covers all the areas that the camera passes through without problems,
such as large-scale blurring and disappearance.

 

(a) The trajectory                  (b) Reconstruction result 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 6. Reconstruction results of KITTI odometry sequence 00. (a) Motion trajectory of the camera.
(b) Point clouds of reconstruction. The area in the red frame of (b) is the revisit area.

Figure 7 shows the local detail of the reconstruction selected from the red box area
in Figure 6b, which is a revisited area. The left is the result with a local map extraction
only based on time series, and the right is the result of our method. The reconstructed cars
in the red box on the left appeared misaligned, and the right solves the problem. As can
be seen from Figure 6, it takes hundreds of frames to pass through the red box area twice.
The left in Figure 7 fails to extract the previous surfels for fusion. The error of the pose
when reconstructing two frames leads to ghosting. The right side of the figure extracts
the first reconstructed surfels as a local map for fusion so that there is no such problem.
It can, thus, be seen that our method of local map extraction and fusion performs well on
the consistency of the local map.
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2 

3 

(a) (b)

Figure 7. Reconstruction details of the revisited area. (a) Reconstruction details with a local map
extraction based on time-series. (b) Reconstruction details of our method. The red frames show the
performance differences between the two methods. Compared with (b), the cars of (a) are misaligned.

The memory usage of the surfels throughout the runtime is shown in Figure 8. The or-
ange curve is the result of our method without removing outliers. The black one is the result
of our method with removing outliers. The blue one is the result of extracting local maps
only based on time-series. There is almost no difference in the first 3200 frames because the
car was moving to an unknown area in the scene. Between about 3200 and 4000 frames,
the memory usage of our method stays almost unchanged because the car revisits the area
between two red flags in Figure 6a, but the blue curve is still growing In addition, it can be
seen that the memory usages of the black curve and orange curve are quite different. That
is because large-scale scenes can easily generate outliers, and the input pose graph rate
is high (10 Hz). If the outliers are not removed, the number of reconstructed surfels will
greatly increase. Of course, when the rate of the input pose graph is low, the strategy of
removing outliers is not advisable, causing the normal surfels to be removed and resulting
in an incomplete reconstruction scene.
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Figure 8. Memory usage of reconstructing KITTI odometry sequence 00. Between about 3200 and
4000 frames, the memory usage of our method stays almost unchanged.

As shown in Figure 9 and Table 2, as the superpixel’s size becomes smaller, the average
time cost per frame increases. As the maximum mapping distance increases, the average
time cost per frame increases, too. This is because we filter the invalid pixels and only
handle the valid regions. When SP_SIZE = 8 and FAR_DIST = 20, the average time cost
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is around 60 ms per frame, making our system about 15 Hz in real-time. Compared
with [3], our time efficiency is improved by approximately 13% under the same conditions
(SP_SIZE = 8 and FAR_DIST = 30).
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Figure 9. Time efficiency of reconstructing KITTI odometry sequence 00 (SP_SIZE = 8, FAR_DIST = 20 m).
The average cost time is around 60 ms per frame.

Table 2. Time efficiency (average).

SP_SIZE FAR_DIST (m) Generate Superpixels (ms) Fusion (ms) Total (ms)

8 10 35.6 1.3 38.8
8 20 56.1 1.4 59.9
8 30 60.5 1.4 64.7
4 10 37.1 1.4 41.2
4 20 60.8 2.0 67.6
4 30 63.4 2.1 70.6

8 [3] 30 ≈70.0 ≈1.0 ≈75.0

To verify the effect of c3 and c4 of Formula (10) on time efficiency, we control the
values of c3 and c4 in our experiments. SP_SIZE = 8 and FAR_DIST = 30 are used in
the experiments. The results are shown in Figures 10 and 11 and Table 3. With the
increase in c3 and c4, large jitters in the running time occasionally appear, which have a
larger standard deviation. This is because a larger c4 will cause a delay in the dynamic
adjustment parameters that will not be adjusted in time according to the current running
state. A larger c3 results in a larger change in f ar_dist, which is not conducive to smooth
and stable time efficiency.

Table 3. Time efficiency with different c3 and c4.

c3 c4 Average Time (ms) Standard Deviation

1.1 2 66.5 5.3
1.1 3 65.5 5.8
1.1 4 67.4 7.1
1.1 5 68.0 6.4
1.05 3 66.9 5.2
1.15 3 68.2 7.3
1.2 3 71.5 7.3
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Figure 10. Time efficiency of reconstruction KITTI odometry sequence 00 with different c3. When c3

is larger than 1.1, large jitters in the running time occasionally appear.
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Figure 11. Time efficiency of reconstruction KITTI odometry sequence 00 with different c4. When c4

is larger than 3, large jitters in the running time occasionally appear.

6. Conclusions

Aiming to improve the generalization ability of Dense Surfel Mapping, we propose
a spatiotemporally consistent local map extraction method. It makes the system widely
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applicable to various pose estimation algorithms that only need to provide the path of
poses. Meanwhile, the system achieves local accuracy and local consistency. An optimal
observation normal fusion strategy is used for better surfels fusion. Compared with [3],
the partial reconstruction accuracy of ICL-NUIM is improved by approximately 27–43%.
Thanks to the dynamically adjusted superpixel extraction strategy, we achieve a greater
than 15 Hz real-time performance. This is 13% higher than [3]. The mapping system is
suitable for room-scale and large-scale environments. The local map reuses the previous
surfels in space so that the memory usage grows according to the environment’s scale
instead of the runtime. Adjusting superpixels according to their time cost makes the
runtime more stable and efficient. The system achieves a balance between memory usage
and time efficiency.
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