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Abstract: Driver fatigue reduces the safety of traditional driving and limits the widespread adop-
tion of self-driving cars; hence, the monitoring and early detection of drivers’ drowsiness plays
a key role in driving automation. When representing the drowsiness indicators as large feature
vectors, fitting a machine learning model to the problem becomes challenging, and the problem’s
perspicuity decreases, making dimensionality reduction crucial in practice. For this reason, we
propose an embedded feature selection algorithm that can be later utilized as a building block in the
system development of a neural network-based drowsiness detector. We have adopted a technique:
a so-called Feature Prune Layer is placed in front of the first layer in the architecture; as a result,
its weights change regarding the importance of the corresponding input features and are deleted
iteratively until the desired number is reached. We test the algorithm on EEG data, as it is one
of the best indicators of drowsiness based on the literature. The proposed FS algorithm is able to
reduce the original feature set by 95% with only 1% degradation in precision, while the precision
increases by 1.5% and 2.7% respectively when selecting the top 10% and top 20% of the initial features.
Moreover, the proposed method outperforms the widely popular Principal Component Analysis and
the Chi-squared test when reducing the original feature set by 95%: it achieves 24.3% and 3.2% higher
precision respectively.

Keywords: feature selection; drivers’ drowsiness detection; EEG signals; driving automation

1. Introduction

Several factors might cause driver drowsiness, including sleep deprivation, physical
exhaustion, medication side effects, and monotony. The last one is even more significant
in the case of automated driving, where, due to the lack of active involvement, the driver
is prone to become fatigued. At levels 2 and 3 on the driving automation scale defined
by the Society of Automotive Engineers (SAE), the driver is out of the loop for prolonged
periods, however, they are expected to take over the control in certain scenarios [1]. This
might lead to severe consequences if the driver is not alert and fails to perform a critical
action. Therefore, detecting drivers’ drowsiness not only increases the safety of manual
driving, but it also facilitates the widespread adoption of automated driving. For this
reason, the development of a reliable machine learning-based driver assistant drowsiness
detector system is a currently active, widely studied research topic.

Nevertheless, various methods have been proposed for the identification of drivers’
drowsiness using different indicators, such as subjective self-assessment, expert assessment,
reaction time measurements, the percentage of eyelid closure over the pupils (PERCLOS)
and other physiological signals, like electroencephalograms (EEG) describing brain func-
tion, electrooculograms (EOG) representing eye movements, electrocardiogram (ECG)
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representing heart waves, breathing, etc. [2]. Unfortunately, in practice, all these indi-
cators can be described as large feature vectors at every timestamp, which enlarges the
input data’s dimensionality significantly, also it is likely to contain redundancy. When
dealing with machine learning problems, high dimensional input raises various issues,
for example, it increases the space and computational complexity, makes the clustering
of similar features challenging, and increases the risk of overfitting the machine learning
model [3]. Moreover, it decreases the perspicuity and the testability of the given system.
Many dimensionality reduction methods exist to overcome these issues, originated to the
fact that the optimal feature subset selection for any given estimator is already proven to be
an NP-hard problem [4].

1.1. Objectives and Contribution

• Motivation. Our work aims to find a high dimensional input’s smallest available
feature subset that contribute the most to the classification of the driver drowsiness
without causing relevant performance drop in the selected metrics.

• Contribution. Implementation-wise, the proposed feature selection method was in-
spired by a state-of-the-art (SOTA) embedded feature selection algorithm that exploits
the neural network updates’ working principle for selecting the features with the
highest predictive power, namely that its weights change depending on the actual rel-
evance of the input. We performed its domain adaptation, namely, we have modified
the algorithm to be able to handle extremely redundant high dimensional input data.
Another part of the work is the definition of an adequate data set that can model
the driver drowsiness well enough. EEG-based features have been proven to be one
of the best indicators of drowsiness as a detector model is able to provide accurate
predictions when trained with EEG only without other sources of information [5]. Due
to the characteristics of the sensor used to measure it, a large number of features can
be extracted from the raw recordings, therefore, we extended the selected benchmark
set within a preprocessing step.
We also provided the evaluation of the proposed method as a comparison between
different kind of FS methods, a reproducibility test and insights about its behavior.

• Benefits. The proposed method ensures to reveal complex, non-linear relations be-
tween the features during the training of the detector network and maximizes the
amount of drowsiness-related information extracted from a set of EEG features ex-
tracted from the raw signal. As a result, we were able to reduce the number of features
by 95% with a minor deterioration in the model’s precision and to produce a more
accurate prediction when deleting 80% and 90% of the initial features. Furthermore,
the efficiency of the proposed method is also proven by the fact that it outperforms
the popular Principal Component Analysis (PCA) and the Chi-squared test feature
selection algorithms.

1.2. Paper Organization

In this paper, the reader can first find a literature overview (Section 2) about the
basics of working with EEG signals and how they can be utilized for drowsiness detection,
the high dimensionality-related problems in the field of machine learning and basics of
feature selection methods. This is followed by a brief introduction to the SOTA embedded
feature selection method that primarily inspired our work. After that, we define the
problem to be solved and briefly introduce the proposed method’s architecture in Section 3.
In Section 4, we can find a detailed description of the goal-directed modification of the
initial SOTA method to make it suitable for solving the defined problem. In Section 5, we
present the achieved results and evaluate them in terms of the performance of the models
trained on the original feature set and reduced feature sets produced by traditional feature
selection algorithms and by our method. In Section 6, we discuss the proposed method’s
advantages and disadvantages and the credibility of the selected features based on the
literature. Finally, in Section 7 conclusions are drawn.
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2. Preliminaries
2.1. Driver Drowsiness Detection

The field of driver drowsiness detection has been actively studied in the past decades,
and several solutions have been proposed. Drowsiness detection methods are commonly
grouped into the following categories based on the source of the data used for the detection:

1. behavior-based,
2. vehicle-based,
3. physiological signal-based,
4. hybrid methods.

The non-invasive behavior-based methods measure fatigue levels using parame-
ters like eye closure ratio, eye blinking, head position, facial expressions, and yawning.
From these parameters, behavioral features are extracted with the help of cameras and
computer vision techniques. One of the most frequently used metrics in this category is the
Percentage of Eye Closures (PERCLOS), which is the ratio of eye closures over a period.
Vehicle-based methods aim to detect fatigue from the different states of the vehicle, such as
lane-changing patterns, speed variability, steering wheel angle, etc. To collect these types
of data, various sensors are required on the vehicle’s different parts. Finally, physiological
signal-based approaches detect drowsiness based on the subjects’ physiological condition,
such as heart rate, brain changes, respiration, body temperature, etc. To measure these
invasive biological parameters electrodes need to be placed on the subjects’ body [6].

The classification method determines the resolution of the detection: threshold-based
and binary classification methods distinguish between drowsy and alert stages, in contrast
multi-class classification methods can predict several levels of fatigue. Multi-class classifiers
are more suitable for estimating the severity of drowsiness, since they can detect the
drowsiness in its early stage and provide early warning. Unlike the aforementioned
methods that predict discrete labels, regression methods can estimate continuous variables.
The most widely used decision-making models are radial basis functions (RBF), support
vector machines (SVM), artificial neural networks (ANN), fuzzy inference systems (FIS),
linear discriminant analysis (LDA), receiver support vector regression (SVR), multiple linear
regression (MLR), self-organizing neural fuzzy inference networks (SONFIN), etc. [2].

In the case of supervised machine learning-based decision-making models, the ground
truth is used to label the training data; to determine the true drowsiness value of the
events. Having a reliable ground truth is crucial as its precision directly implies the exact
characteristics of the decision-making model. Ground truth can be obtained by subjects’
self-assessment, expert rating, reaction time, and physiological signals [2]. In many studies,
EEG has been reported to be the most reliable indicator of drowsiness, as it directly describes
the drivers’ physical state [5,7]. However, its main drawback is that it requires sensors to
be attached to the driver’s body, which may obstruct them. In addition, EEG signals might
vary based on the subjects’ age, gender, physical state, etc. [8].

Several aspects must be considered when developing a drowsiness detector system.
Usually, the data acquisition is cumbersome and expensive, as it requires either an environ-
ment simulator or a vehicle equipped with all the necessary expensive sensors. In addi-
tion, most measures used for producing ground truth data are highly subject-dependent.
These factors make the development of an effective, reliable driver drowsiness detector
extremely challenging.

2.2. EEG Features
2.2.1. Measuring EEG Signals

Electroencephalography measures the electrical activities of different brain regions
using surface electrodes placed on the scalp. EEG is a graphic display of potential differ-
ences between two sites of the brain recorded over time [9]. EEG can be used to diagnose
several medical conditions, such as epilepsy, Parkinson’s Disease, autism, anxiety, sleep
disorders, insomnia, and many more. Moreover, different research fields have also utilized



Sensors 2023, 23, 1874 4 of 22

it, namely brain-computer interfaces, biometrics, neuroscience and clinical applications,
and neuromarketing [10].

The International Federation of Clinical Neurophysiology standardized the electrode
placement into the 10–20 system. This system requires the use of at least 21 electrodes and
enables the measurements to be proportional to the size and shape of the skull, provides
adequate coverage of the entire head, and expresses the electrode designations in terms
of brain areas. The designations consist of a letter that refers to the region of the brain
(F: frontal, C: central, T: temporal, P: posterior, and O: occipital) and of a number that
differentiates between left and right homologous regions—odd numbers indicate the left,
even numbers indicate the right hemisphere, while “z” designation refers to the midline—in
such way, that lower numbers reflect positions closer to the midline (Figure 1) [11].

Figure 1. The 10–20 electrode system of the International Federation [12].

2.2.2. EEG Feature Extraction

A wide range of features can be extracted from raw EEG data (Figure 2) describing
its characteristics which are used in different applications, however, in this paper, we only
focus on features relevant to drowsiness detection. Based on [13], these can be categorized
into the following groups:

1. time-domain (mean, median, variance, skewness, number of zero-crossing, etc.),
2. frequency-domain,
3. nonlinear,
4. entropies,
5. undirected spt.,
6. directed spt.,
7. complex networks.

Among these categories, the FFT-based features are the most commonly used in
drivers’ drowsiness detector systems, most popularly with a 1 min time window for
extracting the features [2]. The Power Spectral Density (PSD) of the signal plays a vital
role in calculating the frequency-domain features. It can be obtained with the Fast Fourier
Transform algorithm (FFT) [14]), Welch’s method [15], or the Thompson multitaper method.

Besides the widely favored Fourier Transform, the signal can be transformed from
the time domain to the frequency domain using wavelet decomposition [16] or matching
pursuit decomposition [17] as well. While Fourier Transform decomposes the signal
into sinusoids, in the case of wavelet decomposition, the decomposition is done by an
underlying mother wavelet function. According to [13], the most frequently used frequency-
domain features in all fields of EEG analysis are the relative powers of the most commonly
used frequency bands, namely: delta (δ, 0.5–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–12 Hz),
beta (β, 12–30 Hz), and gamma (γ, >30 Hz). However, different ratios between these bands
also appear in EEG signal analysis: θ+α

β , α
β , θ+α

α+β , θ
β , θ

θ+α , α
θ+α , θ+α

θ+β [18,19].
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Figure 2. Raw EEG signals recorded on various electrodes.

2.3. Feature Selection (FS)
2.3.1. Dimensionality Reduction in Machine Learning

In today’s digital era, a tremendous amount of data is generated every second with
high-dimensional features, which are ubiquitous in various data science fields. When
applying data mining and machine learning models on high dimensional data, the Curse of
Dimensionality (CoD) phenomenon is likely to occur: the volume of the space increases to-
gether with the dimensionality, causing the data to become sparse [20]—this usually means
the features having zero values. A model trained with sparse data is prone to learning the
noise, it cannot generalize well, which leads to overfitting and performance degradation
on unseen data [21]. Besides, high dimensional data enhances the computational burden
and decreases the perspicuity and the testability of the given problem.

Many dimensionality reduction techniques have been introduced to alleviate the
aforementioned obstacles. During the dimensionality reduction process, the the redundant
and irrelevant features are omitted, yielding a more compact, more easily interpretable
representation of the target concept with the most relevant features [22]. Dimensionality
reduction is commonly categorized into two main groups: feature extraction (FE) and
feature selection (FS). Feature extraction compresses the high-dimensional feature set into
a smaller one by constructing a new, lower-dimensional feature space, usually by applying
linear or nonlinear projection of the original set. It is preferred in applications where only
the raw data is available, which is not interpretable for a learning algorithm. However,
in this case, the problem of further analysis arises, as we cannot retain the physical meaning
of the new features. On the other hand, FS means selecting a subset of relevant features
from the initial set, keeping the physical meanings of the original features [21].

2.3.2. FS Categories Based on Selection Strategy

FS is one of the most used dimensionality reduction methods. Its general working
principle consists of four main steps: generation of a feature subset, evaluation of the
feature subset, checking the termination condition, and result validation [23]. FS methods
can be categorized based on different perspectives. In terms of the availability of the
labels in the training data set, they can be divided into supervised (labels are available),
unsupervised (labels are not available), and semi-supervised methods [21]. Aligned with
the original problem statement, a supervised solution was preferred in this study. Another
categorization type relies on the selection strategy and distinguishes three main methods:
filter, wrapper, embedded (Figure 3) [24].
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Figure 3. Flowchart of the FS process in different FS categories: Filter, Wrapper, Embedded [25].

Filter Methods

Filter methods utilize the data’s intrinsic properties to assess feature importance. They
calculate a score for each feature using different evaluation criteria that can be univariate
(examining each feature individually) and multivariate (multiple features are examined
together in a batch). The features are then ranked according to these scores, and a specified
number of them with the lowest scores are filtered out, resulting in the most predictive
subset of features. In the case of filter methods, the selection is performed before the model
training, therefore, the FS is considered a pre-processing step. Among its most significant
character traits, its independence from any learning algorithm should be mentioned, which
makes filter methods usually faster than others, but raises the risk that the selected features
may not be optimal for the given algorithm [21,24].

Several evaluation criteria exist for separating the features which approach the problem
from different perspectives. The first option is to examine feature discriminative ability and
select features so that within-class distance [26] is as small as possible while between-class
distance [26] is as large as possible [27], meaning that features that strongly represent
the given class and differ the most from features in other classes are selected into the
subset. Some popular algorithms based on the aforementioned principle are the Fisher
Score [28] and the Linear Discriminant Feature Selection [29] algorithms. Another idea is to
exploit correlation measures, either to remove redundant features that can be applied in
the case of unsupervised learning as well, or to select the most similar—highly correlating—
features to the target variable if labels are provided. For the first scenario, PCA is a widely
used method . For the latter scenario, various statistical measures can be used, including
Pearson’s correlation coefficient (linear), ANOVA correlation coefficient (linear), Sperman’s
rank coefficient (nonlinear), Kendall’s rank coefficient (nonlinear), the Chi-squared test and
mutual information analysis. Their applicability for a given problem depends on the data
variable types.

Wrapper Methods

In contrast to the filter methods, in the case of wrapper FS methods, the learning
algorithm has to be defined, wrappers exploit their black-box nature to score subsets of
features according to their importance and predictive power. Wrappers work iteratively,
repeating the following steps until a stopping criterion is satisfied: they generate a subset
from the initial features, which are then evaluated with the help of the predefined learning
algorithm [21]. The stopping criterion is usually defined as the combination of the desired
number of selected features and the highest possible learning performance achieved when
training the model with this subset.
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Besides the learning algorithm and the stopping criteria, the space search strategy
also has to be selected. Sequential search methods (also called hill-climbing or steepest
ascent) are search strategies that use greedy techniques to examine features sequentially.
They either start from the initial set of features and eliminate them one by one (sequential
backward selection (SBS)) or start with an empty set and add features one by one (sequential
forward selection (SFS)). One shortcoming of these methods is that they can only guarantee
local optimality. Genetic algorithms add some randomness to the search procedure, hence
helping to overcome the local optimum problem [24,30–32]. Other feature subset selection
algorithms are the best-first search, branch-and-bound search, etc. [30,33].

Unfortunately, it is perceptible that in terms of speed, wrapper methods are not
efficient, due to the huge search space—2N where N is the number of features [24], which is
even more problematic when dealing with very large sets of features. While some criticize
this property of theirs and blame it for wrappers’ rare application in practice [21], others
claim that choosing an efficient search strategy can alleviate this obstacle [34].

Embedded Methods

The embedded FS method is a trade-off between the filter method’s high speed but
low accuracy and the wrapper method’s high accuracy, but expensive computational
requirements. According to its descriptive name, in the case of embedded methods, the FS
is integrated into the selected machine learning model’s training procedure; the best
feature subset is produced during the training of the chosen learning algorithm. Therefore,
the performance of the model highly depends on the selected features. It has the merits of
interacting with the model, but due to the lack of iterative feature subset evaluation, it is
significantly more efficient than wrapper methods [21]. Similar to the wrappers, embedded
methods are also not confined to supervised FS and can be applied for unsupervised feature
selection [24].

The most widely used embedded methods are the regularization methods, which aim
to minimize fitting errors in order to fit the model to the feature set. To do so, they force
feature coefficients to be as small as possible simultaneously [21]. Some popular examples
of the regularization approach are the LASSO, RIDGE, and Elastic Nets. An embedded FS
can also be done by any kind of tree-based algorithm, such as Decision Tree, RandomForest,
ExtraTree, etc. [35].

2.4. FS Methods Used in This Paper

In this subsection, we are going to briefly summarize the widely popular conventional
FS methods that are used as baselines in this paper to evaluate the performance of the
proposed method. After that, the SOTA FS method that inspired our work in the first place
is introduced in detail.

2.4.1. Conventional FS Methods

• Principal Component Analysis (PCA). PCA relies on linear algebra techniques, and is
widely used due to its easy application and non-parametric property. It projects the
original, high-dimensional data into new dimensions to re-express it and explore
hidden qualities. In a mathematical sense, the goal is to find the most meaningful
basis by performing basis change transformations [36]. The summarized computation
complexity of PCA is O(d2n + d3), this comes from the O(d2n) covariance matrix time
complexity and O(d3) eigen-value decomposition; where d stands for the number of
features, n is the number of samples in the dataset.

• Univariate FS. The two test methods used in this paper are the Chi-Squared Test [37]
and the Mutual Information (MI) Analysis [38]. These filter methods select predefined
number of most contributing features based on χ2 test and entropy based dependency
measurement, respectively. They both serve as an additional step to a given estimator
algorithm, bringing additional training cost of O(n2) as a naive implementation and
O(n ∗ log(n)) as a purpose optimized version [39,40].



Sensors 2023, 23, 1874 8 of 22

• Recursive Feature Elimination (RFE). As a wrapper FS method, it requires an input
scoring estimator to assign weights to the input features. Based on these values,
the most relevant features can be pruned recursively [41]. Currently, we use a de-
cision tree [42] for our comparison, which means O(n ∗ log(n) ∗ d ∗ log(d)) train
time complexity.

2.4.2. Stepwise Weight Pruning Algorithm (SWPA)

SWPA is a novel embedded FS method proposed by [43]. Its main idea is to incorporate
a so-called drop-in layer into a neural network architecture and prune its weights iteratively
until the most important ones are left (Figure 4). Weight pruning refers to the process of
removing parameters from an existing, accurate network. The method exploits the neural
network updates’ working principle, namely that its weights change depending on the
actual relevance of the input:

weighti+1 = weighti + learning_rate · ∂error
∂weighti

(1)

If the drop-in layer (W ∈ R1×d where d is the number of input elements) is the first
layer in the network, and its weights are initialized to ones, the output of this layer
O = {w1x1, . . . , wdxd} will be the multiplication of the corresponding input elements.
Hence, if we set a weight wi to 0 in the drop-in layer, then that directly means that we
removed input element xi. Algorithm 1 summarizes the method’s working principle. By ap-
plying this concept as an additional layer, in which only an element-wise multiplication is
present, just O(d) time complexity will be added to the original training cost of a selected
neural network architecture; where d is the number of features. The SWPA has been tested
on HAR, ISOLET, and MNIST data sets.

Algorithm 1 Original Stepwise Weight Pruning Algorithm (SWPA) [43]
Input: training data X ∈ Rn×d , training labels Y, base network fθ(.), Drop-in Layer W, Step Counter n ∈ Z>1. Selection factor
f ∈ [0, 1]
for count in 1, . . . , n + 1 do

O← {w1x1, . . . , wd xd}
if count > 1 then

k← (1− f )·d
n

Sort the weights W of the Drop-in Layer based on their absolute value.
Set the least k of them to 0.

Train the base network on O
Take the features corresponding to the top f fraction of the weights in W based on their absolute value and train them on the
base network.

Figure 4. Modified network with our drop-in layer interpretation.

For the experiments, they use a 3-layer feedforward neural network with a reduction
factor of 2, which is trained for 20,000 epochs if there is no performance degradation on
any continuous set of 2000 epochs. The most important variables in the SWPA are:
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1. the Step Counter (n): the features that have to be deleted to reach the desired number
are removed in equal-sized groups in n steps.

2. the Selection Factor ( f ), which defines what percent of the initial feature number
should be selected into the final subset.

According to the paper, these variables are set to the following values: n = 4, f = 0.1.
To evaluate the achieved results, besides the random assignment, they use the Permutation
Feature Importance (PFI) as a baseline with the number of random permutations of 10
which is an importance attribution technique commonly used for random forests. SWPA
outperforms both the random assignment and the PFI on all datasets when the 10% of the
original number of features is selected: for example, on the MNIST dataset it yielded a 0.941
accuracy, while using PFI the achieved accuracy was 0.893, and with random selection
0.714. With these results, SWPA has proved itself to be a simple, yet efficient embedded FS
method, which is easy to apply in various tasks as the drop-in layer can be incorporated
into any neural network architecture [43].

In Table 1 a comparison of the above mentioned FS methods can be found.

Table 1. Comparison of the FS method types [44] extended with complexity.

Type Pros Cons Train-Time Complexity

Filter
• Standalone tool
• Reduced risk of overfitting
• Fastest to calculate

• Lack of feature dependencies
• No interaction with model

• χ2 test:
O(n · log(n))

• Mutual Information Analysis:
O(n · log(n))

Wrapper • Interacts with model
• Higher performance levels

• High risk of overfitting
• Slowest construction
• Results are classifier dependent

• Recursive feature elimination:
(decision tree)
O(n · log(n) · d · log(d))

Embedded • Integrated into model
• Highest performance levels

• Middle-speed construction
• Results are classifier dependent

• Stepwise Weight Pruning Algorithm:
(neural network)
O(d) + O(model)/per sample

3. Problem Statement

Our work aims to design and implement an FS algorithm with feature set purification
capabilities that can be later utilized during developing a driver’s drowsiness detector.
According to the outstanding results achieved by SWPA introduced in Section 2.4.2, it’s
easy applicability, and embedded property, we have found it to be a satisfactory choice
for the basis of the designed FS method. However, the paper stays vague about the
implementation of the drop-in layer. Although the description states clearly that the feature
scoring depends on the weights in the drop-in layer which is the first layer of the used
neural network architecture—therefore its weights change according to the importance of
the input elements—, by observing Algorithm 1, the drop-in layer seems to be left out of
the parameter update, as they always retrain the base network on its output [43].

For this reason, we rethink the idea proposed by [43], and completed it with additional
properties to make it better suitable for the introduced problem. The flowchart of the final
algorithm can be seen in Figure 5. This solution also strives to exploit the neural network
updates’ working principle, hence, we implement a layer similar to the drop-in layer,
called Feature Prune Layer (FPL), which has the same size as the number of input features
and is in a one-to-one relationship with them. The network is then trained until any FS
stopping criteria are fulfilled. The FPL remains part of the network for the whole training
process, and a pruning step is performed on it if any of the feature prune criteria is fulfilled.
The pruning consists of removing the dinamically calculated number of weights from the
FPL with the lowest magnitudes. The FS part is followed by the feature subset evaluation
when the base network—without the FPL—is retrained from scratch with the selected
feature subset. These two main parts are considered the proposed FS algorithm, and the
performance is deduced from the precision achieved in the feature subset evaluation part.
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Figure 5. Flowchart of the proposed FS algorithm.

Summarily, according to the literature, the proposed algorithm’s task is to select the
defined number of best predictive features from a set of EEG-based features that are feasible
for driver drowsiness detection. To find the best setup of the algorithm, several tests have
been performed examining the impact of the different hyperparameters. In the following
section, we detail the aforementioned goal-directed modification of the SWPA, the feature
pruning and FS stopping criteria, the hyperparameters in the model, and the motive for
their selection.

4. Materials and Methods
4.1. Development Environment

We implement and run the codes in a Python 3.8.10 environment on an Ubuntu 20.04.5
LTS operating system powered by an Intel(R) Xeon(R) Gold 6248R CPU and an NVIDIA T4
Tensor Core graphics card. The pre-processing of the EEG signals is achieved with the help
of the MNE-Python package [45] and the neural network model is built using the PyTorch
framework [46].

4.2. Used Metrics During the Development

To introduce the design and planning process of the proposed solution, it is crucial to
keep the final goal in mind, which includes the awareness of the desired outcome measured
with the chosen metrics. Intending to make the following subsections easily readable,
we introduce the two main metrics used during the design and development of the FS
algorithm. For keeping track the performance changes on unseen data, from the previously
defined 70% train set a randomly selected 10% was nominated as validation set.

• Precision (Macro Averages) [%]: This metric is defined as the precision calculated
separately for each individual class, averaged over all the classes. Ideally, this value
is determined independently for the training set during the training of the classi-
fier and for the validation set, which is carried out after each specified number of
iterations (epochs).

• Pseudo-Overfitting [%]: The difference between the train and validation precision
refers to the generalization ability of the classifier. If the validation precision is lower
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than the train precision, it implies the so-called overfitting phenomenon: the classifier
is unable to perform well on unseen data. Here, we define the pseudo-overfitting
metric as the signed difference between the train and validation precision values.
Therefore, the aim is to achieve as small pseudo-overfitting value as possible.

4.3. Data Preparation
4.3.1. Multi-Channel EEG Recordings Dataset

In this study, the [47] public data set (processed) is used, which is a processed version
of [48] (original). The original data set contains multi-channel EEG recordings recorded
during a sustained-attention driving task with the help of 27 subjects (aged between 22–28).
During a 90-min experiment conducted in a VR driving environment with a dynamic
driving simulator, the subjects were asked to keep the car in the center of the lane and
respond quickly to the randomly introduced lane-departure events. These perturbations
made the car drift to the left or the right side of the lane (deviation onset). For obtaining the
drowsiness level of the driver, in addition to the deviation onset, response onset (the subject
steering the wheel in case of a departure event) and response offset (the car arriving back
to its original position) occurring times have been recorded. These indicators of the drivers’
promptness are instantaneous measures of the drowsiness level that can be calculated using
the method described in [49]. The EEG signals were collected with the help of a wired EEG
cap (Figure 6) with 32 Ag/AgCl electrodes (of which two were used as reference) based on
a modified International 10–20 system [48].

Figure 6. The layout of the electrodes in the EEG cap used for the experiments in [48].

The authors of paper [50] have produced the processed, balanced version of the
original, pre-processed data set where the EEG data were digitalized at 500 Hz, a 1-Hz high-
pass and 50-Hz low-pass filter was applied to it, followed by artifact rejection. They down-
sample the EEG signals to 128 Hz, then extract equal-long, 3-s samples. Each sample was
labeled with a 2-state drowsiness level—drowsy or alert—using the aforementioned [49]
method. The authors have devoted special effort to creating a compact, balanced data set,
containing the most representative samples from different subjects, by carrying out the
following steps:

1. They have discarded sessions where the number of samples from either class is less
than 50.

2. In case of multiple sessions belonging to the same subject, they have chosen the one
with the most balanced class distribution.

3. From each session, they selected alert samples with the shortest- and drowsy samples
with the longest response time.

Steps 1 and 3 ensure the the classes are balanced, while step 2 results in balanced data
from different subjects, hence, it is not likely that the classifier will be prone to favor the
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prediction of a specific subject. The final data set contains 2022 3-s long, pre-processed EEG
samples collected from 11 different subjects [50].

4.3.2. EEG Feature Extraction

The chosen data set introduced in Section 4.3.1 contains 3-s long time-domain EEG
signals, referred to as segments. In order to convert these signals into an interpretable
format for any classification algorithm, we have to extract features that comprehensively
describe the data set. Therefore, for every segment, the commonly used frequency-domain
EEG features introduced in Section 2.2.2 are determined:

α-PSD, β-PSD, θ-PSD, θ+α
β , α

β , θ+α
α+β , θ

β , θ
θ+α , α

θ+α , θ+α
θ+β

The Power Spectral Density (PSD) is calculated with the help of Welch’s method [51],
using a window size of 3 s. These aforementioned features are obtained from the sig-
nals measured individually on every electrode found on the EEG cap used to record the
signals (Figure 6). In addition, the calculated values are averaged over the frontal, the tem-
poral, and all the electrodes, as—according to the literature—some EEG frequency bands
are more active on the frontal or the temporal part of the brain. Namely, these electrode
positions are [48]:

Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCZ, FC4, FT8, T3, C3, Cz, C4, T4, TP7, CP3, CPz,
CP4, TP8, A1, T5, P3, PZ, P4, T6, A2, O1, Oz, O2, frontal, temporal, all

These calculations (Figure 7) have resulted a 330-element feature vector for each 3 s
long EEG segment (Figure 8). This feature set serves as the input for the designed FS
algorithm, which aims to select the desired number with the highest predictive power.
For the development phase, the data set has been split into train and test sets in a 70–30%
ratio while ensuring that the labels stay balanced by not letting the difference between the
number of drowsy and alert labels be greater than 20.

Figure 7. The process of feature extraction from time-domain EEG segments.

Figure 8. The structure of the generated EEG data set.

4.4. Development of the FS Method
4.4.1. Iterative Feature Pruning

Similarly to the SWPA (Section 2.4.2), the feature scoring method of the proposed em-
bedded FS algorithm also relies on the neural network updates’ working principle. An FPL
is attached to the front of the classifier network (base network), which has the same size as
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the number of input features and is in a one-to-one relationship with them. Consequently,
during the training, its weights change according to the importance of the input features,
hence, deleting a weight from the FPL means the removal of the corresponding feature
from the original feature set.

If a predefined feature pruning criterion (see Section 4.4.2) gets fulfilled, a subset of
the remaining weights with the smallest magnitude in the FPL will be deleted. The number
of deleted weights in a pruning step are defined as follows:

Ndeleted_weights = b
f · d
n
c (2)

where d corresponds to the remaining number of features in the FPL, n is a counter of
the pruning steps and f ∈ [0.1, 0.4] is a constant that directly contributes to the number
of removed weights in a given step. Choosing a higher f results in a coarser pruning
strategy. Nevertheless, the use of n prompts that the further we move with the training the
more gentle the weight pruning gets. The feature scoring and the iterative feature pruning
process are demonstrated by Figure 9.

Figure 9. A few steps of the iterative feature pruning process. The red sticks represent the still
remaining features and the vertical axis shows the corresponding scores for each feature. As we move
forward with the training, the scores change according to the feature’s importance. At a given pruning
step, the Ndeleted_weights number of features with the smallest magnitude are deleted, until only the
desired number of features remain.

4.4.2. Feature Pruning Criteria

A pruning step is performed on the FPL if any of the following feature pruning criteria
is fulfilled:

1. The test precision (prec) reaches a predefined value ( f inal_prec)
2. The predefined number of epochs is reached (max_epochs)
3. The pseudo-overfitting (psov f t) reaches a predefined level (max_psov f t)

Commonly, when a neural network model is pruned, its performance slightly drops
and it needs a few iterations of training to regain its earlier precision. Depending on
the coarseness of the weight pruning defined by Equation (2) and the given training
phase, the degradation of the precision varies in the different scenarios. For example,
if Ndeleted_weights is a large number, a significant amount of the weights is going to be deleted
from the FPL even in the first pruning step, which is likely to cause a heavier precision
degradation than if it was pruned with a smaller Ndeleted_weights. In addition, the longer we
train the network, the more confident it gets, meanwhile, the pruned amounts will decrease
due to their inverse relationship with the pruning step counter. Because of this, it is not
ideal to train the network for the same number of epochs between each feature pruning
step, as it may need a dissimilar amount of iterations to regain its precision. We use the
test precision to determine the appropriate moment of the next pruning step. According to
the first feature pruning criterion, the next pruning step can be performed if the network’s
precision reaches the predefined f inal_prec after the last reduction.

It is possible that the network will never be able to reach the desired f inal_prec after
a certain point. In order to prevent the training from getting stuck in an infinite loop,
according to the second criterion, a feature pruning step may also be carried out if the
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network has been trained for a predefined maximum number of epochs (max_epochs) since
the previous one. Lastly, a pruning step also takes place if none of the aforementioned
criteria is fulfilled, but the pseudo-overfitting reaches the max_psov f t threshold. This is
likely to happen if Ndeleted_weights is too small, and the pruning is performed at a slower
pace than the network’s regeneration ability. A summary of the selected values for the
previously discussed thresholds can be found in Table 2.

Table 2. Thresholds for the feature pruning criteria.

final_prec max_epochs max_psovft

[0.6, 0.95] 20 0.05

4.4.3. Algorithm Structure

The embedded nature of the proposed FS algorithm is due to the fact that the FS
process is carried out during the training of the classifier network, while continuously
performing the feature pruning introduced in the previous subsections. The training may
be terminated if any of the following FS stopping criteria is fulfilled:

1. The desired number (des_ f eat_num) of features is left in the feature set, which is the
ideal case.

2. The network was trained for a maximum number of epochs (max_epochs_ f inal). This
ensures that the training will not get stuck in an infinite loop if the desired number of
features cannot be reached with the selected hyperparameters.

After the termination, the final subset of selected features is evaluated on the base clas-
sifier network—the same architecture but without the FPL. This is considered as the end of
the FS process, and the final results are the ones achieved with this step: the performance of
the base classifier with the selected feature subset (newset_prec, newset_psov f t). The whole
process of the FS is demonstrated by Algorithm 2.

Algorithm 2 Proposed FS Algorithm
Input: original EEG feature set [1 × d]
network← initialize . FPL to ones, rest randomly
n← 1 . pruning step counter
epochs← 0 . epochs between two pruning steps
epochs_ f inal ← 0 . all epochs during training
prec← 0, psov f t← 0
while (d > des_ f eat_num) OR (epochs_ f inal < max_epochs_ f inal) do

if (prec ≥ f inal_prec) OR (epochs ≥ max_epochs) OR (psov f t ≥ max_psov f t) then . Perform pruning on the FPL
Ndeleted_weights ← f loor( f ·d

n )
d← delete the Ndeleted_weights weights in the FPL with the smallest magnitude
epochs← 0
n = n + 1

prec, epochs, epochs_ f inal ← train()
newset_prec, newset_psov f t← take the new k-sized feature subset and train the base network on it from scratch

4.5. Hyperparameter Selection

While reading the previous subsections, it is apparent that during the FS process,
some of the defined thresholds were handled as variables. The changing of these variables
strongly influences the outcome of the FS algorithm: the composition of the final feature
subset. While we might have an assumption about how the changing of these variables
individually affects the outcome, the problem gets more complex if we combine them.
Moreover, due to the neural networks’ black box nature, they act as hyperparameters
and it is impossible to define their value consistently. The proposed FS method has
two hyperparameters:

1. f ∈ [0.1, 0.5] parameter which directly contributes to the number of removed weights
in a given step. Choosing a higher f results in a coarser pruning strategy (Equation (2)).

2. final_prec ∈ [0.6, 0.95] which is on the feature pruning criteria (see Section 4.4.2).
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In order to determine the best selection of these hyperparameters for the FS method, we
have conducted several experiments testing their different values introduced by Algorithm 3.

Algorithm 3 Experiments For Hyperparameter Selection
results← []
for f inal_prec in 0.6, . . . , 0.95 do

for f in 0.1, . . . , 0.5 do
newset_prec← select the des_ f eat_num of number of features from the original set with f inal_prec and f
results.append( newset_prec, newset_psov f t)

find the best performance in results and take the corresponding hyperparameters

4.6. Feature Prune Layer Realization

In terms of the implementation, the FPL is realized the same way as a linear layer,
but instead of matrix multiplication, it computes the Hadamard product between its
weights and the input. When talking about neural network pruning, we can distinguish
two main types based on the structure of the weight removal: structured and unstructured
pruning [52]. In the case of structured pruning entire groups of weights are removed
(like channels, filters, or layers), while unstructured pruning corresponds to deleting
weights individually by setting their value to zero. For removing weights from the FPL
unstructured pruning is used. Implementing unstructured pruning is difficult in practice,
because during the parameter update, the zeroed weights in the networks’ layers also
get updated regardless of their current value. To overcome this issue, instead of setting
the weights in the layer to zero, we use a mask with which the weights of the FPL are
multiplied in every forward pass. This way, in every pruning step, only the mask gets
modified, therefore there is no need to detach the FPL from the computational graph, which
avoids the decrease in the algorithm’s speed. The illustration of the FPL’s implementation
can be seen in Figure 10.

Figure 10. Architecture of the network used for FS.

4.7. Classifier Network

Similarly to the SWPA, we also use a small network with four hidden layers for the
classification. In order to deduce the most beneficial size for these layers, we have trained
multiple networks with different layer sizes on the whole feature set. Each training session
ran for 70 epochs, using Adam optimizer, a batch size of 64, and an initial learning rate of
0.001. Every architecture has been tested four times and the average of the achieved results
is demonstrated in Table 3. The do sign between the layers in the network architectures
stands for the dropout layer which serves as a regularization technique by randomly
zeroing out some elements of the input with probability p using samples from a Bernoulli
distribution [53]. Here, we used probability p = 0.5. The prec and psovft are defined the
same way as described in Section 4.2. The avg and std extensions refer to the average and
the standard deviation of the performed tests’ results, respectively.
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Table 3. Results of predicting the drowsiness labels using different neural network architectures.

Name Network Architecture precavg psovftavg precstd psovftstd

arch1 64; 32; 16; 2 0.893 0.029 0.004 0.0015

arch2 64; do; 32; do; 16; do; 2 0.881 0.016 0.0043 0.009

arch3 128; 64; 32; 2 0.907 0.032 0.0042 0.0042

arch4 128; do; 64; do; 32; do; 2 0.899 0.016 0.0015 0.0013

arch5 256; 128; 64; 2 0.926 0.037 0.042 0.004

arch6 256; do; 128; do; 64; do; 2 0.902 0.014 0.004 0.009

Arch4 seems to provide the most stable training as the standard deviation of both met-
rics is the smallest in this case. Nevertheless, arch5 achieves the highest precision, and given
that the rest of the metrics do not vary significantly between the different architectures,
the 256; 128; 64; 2 network architecture is chosen to be used for the further experiments.

5. Results
5.1. Reducing the Feature Subset

The aim of the experiments introduced in this subsection is to find out to what extent
it is possible to reduce the feature set without a major degradation in the classification
performance. The top 5%, 10%, and 20% of the original feature set are examined. For finding
the desired number of features, the proposed FS method is tested with all the possible
hyperparameter settings described in Section 4.5. As f varies in the range of [0.1, 0.4]
with a step size of 0.1 and f inal_prec varies in [0.6, 0.95] with a step size of 0.05, all their
variations resulted in 32 test cases for each feature subset size. Each test case resulted in
a feature subset, with which the base network was trained 4 times, and the achieved results
have been averaged. Table 4 summarizes these results: the three best performing test cases
are shown for each feature subset, while Table 5 shows the case when the classifier is trained
on the original feature subset.

Table 4. Results achieved by the classifier when training with the original feature subset.

All Features (#330)

prec psovft

0.926 0.037

Table 5. Results of different sized feature subsets generated with the proposed FS method.

TOP 20% (#66) TOP 10% (#33) TOP 5% (#17)

Results Hyperparameters Results Hyperparameters Results Hyperparameters

prec psovft f final_prec prec psovft f final_prec prec psovft f final_prec

0.953 0.033 0.2 0.95 0.941 0.028 0.2 0.7 0.916 0.01 0.2 0.75

0.948 0.039 0.3 0.95 0.935 0.027 0.2 0.65 0.906 0.022 0.2 0.7

0.946 0.031 0.3 0.9 0.931 0.039 0.2 0.9 0.901 0.016 0.3 0.75

0.916 0.036 0.3 0.75 0.887 0.017 0.4 0.9 0.795 0.002 0.3 0.95

The results indicate that it is possible to reduce the original number of features by 95%
without significant performance degradation. In the best-performing test case, the classi-
fier’s precision is 91.6% accompanied by 1% pseudo-overfitting, which is just slightly worse
than the results achieved when training with the entire feature set: 92.6% precision and
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3.7% pseudo-overfitting. This proves that the proposed FS algorithm is able to select the
most important features in terms of their contribution to the prediction. Moreover, when
reducing the number of features by 90% and 80%, the classifier’s precision increases by
1.5% and 2.7%, respectively. At first thought, this phenomenon might be unexpected, as one
would think that the loss of information due to the reduction of the input will definitely
lead to performance degradation. However, in a recent study, it has been proven that—even
linear, correlation-based—FS indeed can improve the performance of a classifier neural
network model [54]. This might be possible as FS also reduces the noise in the input data,
which helps the model to generalize better.

A general observation is that f has a stronger impact on the outcome than f inal_prec.
When training with a very small f , the pruning is performed in such slow steps, that
the desired number of features cannot be reached within the maximum iteration limit.
On the other hand, if it is too large, the weights are removed sooner than their value would
stabilize, which leads to an improper selection strategy. Changing the f inal_prec does not
evoke significant differences: with the fixed value of f = 0.2, the results of the test cases
remain close to each other even when choosing vastly different values for f inal_prec—see
the test cases for selecting the top 5% of the original features. Nevertheless, f = 0.2 and
f inal_prec = 0.75 seems to be an advantageous hyperparameter combination for selecting
the top 5% of the features, and as we have seen, the changing of the f inal_prec does
not have a significant effect on the outcome, further experiments are carried out using
this setting.

5.2. Reproductibility

The EEG cap that provides the data has a quite dense electrode distribution, meaning
that the signals measured on the adjacent electrodes may be similar. Therefore, the original
feature set with PSD values for each electrode will likely contain redundant information
and many correlating features. Due to the random initialization of the weights in the
classifier network and the highly correlated input features, occasionally different features
may be selected into the final subset. This will result in slightly different performances in
different runs when the FS is performed with the exact same settings. However, the features
themselves might be different, the difference between the comprehensive descriptive power
of the generated feature subsets is negligible. This is proven by the results in Table 6, which
shows the performance of the FS algorithm from 4 different sessions, using the same
settings in each of them: f = 0.2, f inal_prec = 0.75, des_ f eat_num = 10% of the original
set. Similarly as before, with each obtained feature subset, the base network was trained
4 times, and the averaged results are presented in the table. Even though the feature subsets
are not completely the same (Figure 11), the performances achieved in the different sessions
are close to one another.

Table 6. Results of 4 different sessions with the same hyperparameter settings: f = 0.2, f inal_prec = 0.75,
des_ f eat_num = 10%.

Experiment prec psovft

repr1 0.924 0.036

repr2 0.932 0.025

repr3 0.938 0.025

repr4 0.927 0.027

5.3. Comparison to Other FS Methods

To get a thorough view of the proposed method’s efficiency, it is compared to the
following conventional FS methods: PCA, random selection, Chi-squared est, MI analysis
and RFE, that were introduced in Section 2.4.1. The top 5%, 10%, and 20% features of the
original feature set have been selected using the aforementioned methods. In the case of
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PCA, the projection was not completed. Instead, the des_ f eat_num number of features
that mostly contributed to the first principal component has been selected, and the base
network is trained with them. The averaged results from 4 runs are summarized in Table 7.
In all three scenarios, the proposed method outperforms all the examined conventional
FS methods.The efficiency of the method is the most visible when reducing the initial
feature set by 95%: it achieves more than 24% higher precision compared to PCA and
even 3.2% higher precision compared to the best performing conventional FS method,
the Chi-squared test.

Figure 11. The selected features in 4 different sessions with the same hyperparameter settings:
f = 0.2, f inal_prec = 0.75, des_ f eat_num = 10%. Each color corresponds to a session, thus, features
that are represented with more than one color, were selected into the final subset multiple times. This
implies that these features have the highest predictive power.

Table 7. Classification performances when training with the subsets of the TOP 20%, 10%, and 5% of
the original features generated using different FS methods. The indicated metrics—Accuracy (A),
Precision (P), Recall (R) and F1-score (F1)—are calculated using macro averaging.

TOP 20% (#66) TOP 10% (#33) TOP 5% (#17)

FS Method A P R F1 A P R F1 A P R F1

random 0.523 0.648 0.571 0.607 0.55 0.539 0.548 0.55 0.51 0.504 0.51 0.48

PCA 0.887 0.886 0. 89 0.888 0.739 0.75 0.739 0.745 0.67 0.673 0.672 0.672

Chi 0.929 0.928 0.93 0.929 0.911 0.912 0.914 0.913 0.885 0.884 0.887 0.886

MI 0.925 0.926 0.928 0.927 0.908 0.908 0.911 0.91 0.842 0.85 0.841 0.846

RFE 0.911 0.91 0.912 0.911 0.88 0.88 0.88 0.88 0.82 0.831 0.822 0.826

proposed 0.943 0.94 0.945 0.943 0.927 0.927 0.928 0.927 0.916 0.916 0.918 0.917

Figure 12 shows the chosen features by the proposed method and PCA with their final
scores. The selected features are highly dissimilar in the case of the two FS methods: while
the proposed method mostly selects the sole α, θ, β PSDs, PCA assigns higher scores to the

α
α+θ feature, measured on different electrodes.
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Figure 12. Selected TOP 5% features by the proposed algorithm (up) and by PCA (bottom).

6. Discussion

The proposed FS algorithm proves its efficiency by being able to reduce the original
feature set even by 95% without major degradation in the performance: using the best
performing hyperparameter setting, the classifier’s precision drops only by 1%. When
moderately reducing the initial feature set, the proposed FS algorithm is able to reduce
the noise and extract vital information. This is revealed by the results when selecting the
top 10% and top 20% of the initial features, the classifier’s precision increases by 1.5% and
2.7%, respectively. Furthermore, it achieves better results on the given problem than the
examined conventional FS methods.

The features selected by the proposed FS method also appear in other studies as best
indicators of driver fatigue among other EEG features. In [55], they examined the relation-
ship between reaction ability, physiological signals, and driving fatigue, and concluded that
among the frequency domain features β-PSD has the greatest correlation with the reaction
time based on Grey correlation analysis. This is due to the fact, that β waves appear in case
of excitement or alertness. The experiments in study [56] show that the effect of the mutual
addition of α, β and θ waves are more satisfactory compared to when these waves are used
alone. Similarly to this conclusion, it can be seen that the proposed method always selects
these α-PSD, β-PSD and θ-PSD based features together into the final subset, regardless of
the different settings or runs (Figure 11). Lastly, the credibility of the θ-PSD’s presence in
the final subsets is proven by the fact that high θ activity refers to the microsleep state [57],
which indicates high-level drowsiness and sleep-onset state [58].

One drawback of the introduced solution is that the feature scoring relies on the
weights in the classifier network, therefore in its current state, the FS is highly sensitive to
the network’s random initialization; the results may slightly vary in different runs.

7. Conclusions

The stated goal—the development of a FS algorithm that can be later utilized for the
development of a reliable drivers’ drowsiness detector—has been successfully achieved.
Inspired by an idea introduced in a SOTA paper, we have designed an embedded FS
method that exploits the neural networks’ working principle for feature scoring: the
classifier network is supplemented with a an FPL that has the same size as the number of
input features, is in a one-to-one relationship with them and the magnitude of its weights
represent the importance of the corresponding features. In order to find the desired number
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of features with the best predictive power, the FPL was pruned iteratively during the
classifiers’ training.

As EEG measures the electrical activities in the brain, and has been proven to be one
of the best indicators of drowsiness, we have used this data source in this study. The initial
feature set has been constructed from frequency-based features extracted from a public
data set that contains raw EEG data recorded during sustained-attention driving tasks.

Using our FS algorithm, we were able to reduce the initial feature set by 95% without
a significant deterioration in the drowsiness detection model’s precision. Additionally, we
have showed its feature purification capabilities compared to linear projection. With this
outstanding result, the proposed algorithm outperforms all of the tested conventional FS
methods: random selection, PCA, RFE, Chi-squared test, and mutual information analysis.

Further plans include discovering the stabilization opportunities for the method and
the comparison of its performance to a widely used nonlinear FS method. In addition, we
also plan to examine its generalization ability over different drowsiness indicator features.
Our final goal is to incorporate the proposed FS algorithm into the development process of
our in-house drowsiness detector system.
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