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Abstract: The monitoring of the coastal environment is a crucial factor in ensuring its proper man-
agement. Nevertheless, existing monitoring technologies are limited due to their cost, temporal
resolution, and maintenance needs. Therefore, limited data are available for coastal environments.
In this paper, we present a low-cost multiparametric probe that can be deployed in coastal areas
and integrated into a wireless sensor network to send data to a database. The multiparametric
probe is composed of physical sensors capable of measuring water temperature, salinity, and total
suspended solids (TSS). The node can store the data in an SD card or send them. A real-time clock
is used to tag the data and to ensure data gathering every hour, putting the node in deep sleep
mode in the meantime. The physical sensors for salinity and TSS are created for this probe and
calibrated. The calibration results indicate that no effect of temperature is found for both sensors
and no interference of salinity in the measuring of TSS or vice versa. The obtained calibration model
for salinity is characterised by a correlation coefficient of 0.9 and a Mean Absolute Error (MAE) of
0.74 g/L. Meanwhile, different calibration models for TSS were obtained based on using different
light wavelengths. The best case was using a simple regression model with blue light. The model is
characterised by a correlation coefficient of 0.99 and an MAE of 12 mg/L. When both infrared and
blue light are used to prevent the effect of different particle sizes, the determination coefficient of 0.98
and an MAE of 57 mg/L characterised the multiple regression model.

Keywords: water quality; salinity; total dissolved solids; physical sensor; inductive coils; light
abortion; electromagnetic sensor; optical sensor

1. Introduction

The oceanic ecosystem covers about 70% of the Earth’s surface. It is estimated that
the oceans contain around 97% of the total water on the Earth [1]. Oceans are known
for their extraordinary biodiversity [2]. Exploiting these ecosystems has increased the
environmental impact in recent decades. Moreover, the impact linked to activities linked
to tourism in coastal areas has risen [3]. The study of coastal areas is challenging due
to their high biodiversity and the wide variety of human activities developed in these
locations [4]. Each habitat presents physicochemical and topological characteristics [5],
including the distributions of nutrients, organisms, water quality, temperature, pH, and
salinity [6]. The oceans present temporal variability, annual, seasonal and daily changes,
which involve phenomena such as tides, river plumes, marine currents, weather, and
maritime traffic, among others [7]. In addition, the exploitation of resources by human
beings causes alterations in the ecosystem, occasionally leading to severe damage [8].
Therefore, monitoring the water quality in the oceans is crucial to better managing coastal
and marine areas [9]. The study of water physicochemical parameters allows the application
of smart green protocols to ensure the sustainability of the exploitation of resources, as well
as the protection of biodiversity.
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Remote sensing is the most widely used system for monitoring the land, oceans, and
seas [10]. These systems are mainly based on obtaining information from the studied
surfaces from the electromagnetic waves that are emitted [11]. Different information
sources for remote sensing include satellites, aircraft, and drones. Satellites present different
resolutions, and some have excellent spatial resolution that allows the obtaining of highly
accurate values of the studied parameters [12]. Nevertheless, the temporal resolution is
low, considering that the studied phenomenon usually presents changes in a short period.
Therefore, satellites might not detect the change produced in the time necessary to act if
necessary. Some examples of satellites used for land and oceans monitoring are Landsat [13],
Sentinel [14], MODIS [15], and NOAA [16]. Moreover, satellites do not allow studies in sea
depths or studies of the variation along the water column.

An alternative to remote sensing systems is the Wireless Sensor Network (WSN).
Although WSNs might have a low spatial resolution, they are characterised by offering
an excellent temporal resolution and the possibility of having real-time information [17].
The implementation of low-cost sensors and the reduction in communication technologies
and deployment costs allow for increasing the number of nodes, enhancing the spatial
resolution. These low-cost WSNs are currently used in many fields of study, such as
agriculture, health, smart cities, and oceans [18]. Their use has increased in recent years for
water quality monitoring in fresh and saltwater ecosystems. In addition to optical sensors
(such as light-emitting diodes (LEDs) and photodiodes), electromagnetic sensors are used
to measure parameters such as water conductivity [19].

Electromagnetic sensors are based on the external electromagnetic field near and inside
the studied environment. This type of sensor can be implemented in many different cases.
An example of this is the monitoring of the evolution of scour in the foundations of bridges,
using intelligent probes based on electromagnetic sensors [20]. There are studies in which
this type of sensor is used to detect water pollution by nitrates [21,22]. Another type of
electromagnetic sensor is the inductive coil, which allows the detection of water pollution
and uses the flow produced to apply Internet of Things sensors [23].

This work aims to design and test a sensor node based on electromagnetic sensors, such
as inductive coils combined with optical sensors. In this way, it is intended to determine the
water quality through parameters such as conductivity and turbidity in different aquatic
environments. Conductivity is associated with total dissolved solids (TDS), which are
associated with turbidity and Total Suspended Solids (TSS), thus allowing the detection of
the discharge of pollutants in the coastal areas. The calibration test is composed of up to
25 calibration samples with variable values of salinity and TSS. Compared with previous
studies regarding the nodes, the novelty of this study is the integration in a single device
of existing commercial and own-developed optical and electromagnetic sensors and the
analysis of its operation. In addition, previous sensors were calibrated for conductivity
and turbidity; in this case, the calibration will be for salinity and TSS. The paper presents
the design, creation and calibration of the sensor node for the water quality monitoring of
coastal areas. The main contributions are the following:

• The complete design of the low-cost node based on physical sensors to measure
physical and chemical parameters is presented. We include the creation of new
physical sensors, which can be easily adapted to commercial devices due to their
low cost and good sensibility. In addition, the design of the node, including the
software and hardware aspects, is described.

• Regarding the measurements, we have studied the possible interferences in the per-
formance of the sensor, including the following: (i) electrical interferences of sensors’
signal and circuits for powering the sensor and receiving the signal, (ii) interference
of salinity in the optical sensor for TSS measurement, (iii) interference of TSS in the
electromagnetic sensor for salinity measurement, and (iv) interference of temperature
on both TSS and salinity sensor.

The rest of the paper is structured as follows: Section 2 outlines different studies
related to the determination of water quality, such as conductivity and turbidity. Section 3
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describes how the development of the proposed system has been carried out. The test
bench for the calibration is detailed in Section 4. The results are discussed in Section 5.
Finally, Section 6 summarises the conclusion and future work.

2. Related Work

This section shows different studies on the implementation of sensors to determine
water quality (conductivity and turbidity) in aquatic environments. In addition, studies
related to remote sensing are presented as well as how different techniques have been
interconnected to establish conductivity and turbidity values for decision-making.

Brinda Das and P.C. Jain, in 2017 [24], implemented a real-time water quality system
using different sensors (pH, conductivity, temperature). They used the ZigBee module
to transfer the data obtained to the microcontroller. The GSM module sends these data
to a smartphone or computer. In addition, the system sends messages to alert them of
discharges that may contaminate the water. In 2015, Parra et al. [25] developed a low-cost
sensor based on conductivity. To do this, they used two coils using the method of mutual
inductance. They tested five prototypes and concluded that the coils that gave the best
results were those of 40 turns and 80 turns (fed and induced, respectively). With the
results obtained, they extracted an equation that made it possible to calculate the water
conductivity with high precision. Wang et al. in 2020 [26] reviewed conductivity systems.
The sensors used were based on conductive polymers (CP). CPs are mainly composed
of polyaniline, polypyrrole and poly(3,4-ethylene dioxythiophene). These were prepared
under different polymerisation conditions and used as various sensors. It was observed
that CP and other detection materials, such as metals, metal oxides, etc., show a high
detection performance.

In addition to conductivity, another parameter which characterises water quality
is turbidity. In 2016, Azman et al. [27] developed a nephelometric turbidity sensor for
continuous water quality monitoring. The results obtained can be visualised directly by
the consumer. They compared the developed sensor with the commercial turbidity sensor
(Hach 2100P) from the Nephelometric Turbidity Unit (NTU). This system is based on the
use of LEDs that transmit light and receivers based on light-dependent resistors. They
communicated with the central processor (PIC 16F777) and a module (RS232). Arifin et al.
in 2017 [28] developed a turbidity sensor of different wavelengths of polymer optic fibre to
measure turbidity. They used infrared LED, photodetector and polymer optic fibre. As a
result, they found that the output voltage is affected by the length of the sensor, whether or
not it has a coating, the curvature of the sensor and the concentration of turbidity that the
water presents.

In 2018, Wang et al. [29] developed a low-cost sensor for turbidity monitoring. The
sensor is based on detecting transmitted and scattered light by using 850 nm (insert full
name) infrared LEDs and dual orthogonal photodetectors. The proposed design can
measure turbidity within the 0–1000 NTU range. Mulyana and Hakim [30], in the same
year, developed Arduino Leonardo, a water turbidity monitoring system. They used a
photodiode and an infrared LED to implement the turbidity sensor. They processed
the analogue signal received by the Arduino Leonardo. They found that the turbid-
ity detection range for the developed sensor was between 0 NTU and 40 NTU. Finally,
Parra et al. [31] developed a turbidity system to differentiate the type of turbidity it was.
The implemented sensor consists of four LEDs. In addition, it is composed of photodiodes
and resistors, which are located at 180◦. They used different types of samples; Isochrysis
galbana, Tetraselmis chuii and sediment. Finally, they created an algorithm to establish the
turbidity, the concentration of the turbidity source and the origin of it. As a result, they
found that the type of turbidity present in the water can be differentiated.

Mansor et al. in 2022 [32] developed an alert system for water pollution in rivers.
With the implementation of this system, they intend to notify the authorities when there
is an anomaly. It is a low-cost system. The data obtained through ammoniacal nitrogen,
suspended solids and biochemical oxygen demand sensors are sent via WiFi to the ThingS-



Sensors 2023, 23, 1871 4 of 19

peak platform. They found that the errors of the conductivity sensor were 6.84% and 6.35%,
comparing it with the reference sensor. They finally obtained accurate readings for the
turbidity sensor.

In contrast to the works presented so far, water quality and remote sensing studies are
shown. In 2017, Sharaf El Din et al. [33] based their study on determining the deterioration
of surface water. They mapped different surface water quality parameters (SWQP) to do
this. Additionally, they developed an artificial intelligence modelling method to map this
type of water based on the backpropagation neural network to quantify the concentrations
of different parameters by using the images of the Landsat 8 satellite. They concluded
that using that neural network based on Landsat8 can establish concentrations of different
SWQPs from Landsat8 images. Abdelmalik, in 2018 [34], wanted to show a spatial distribu-
tion map in Lake Qaroun for each water quality parameter. He used data from Advanced
Spaceborne Thermal Emission and Reflection Radiation (ASTER) to do this. Among the
parameters analysed in this study are the electrical conductivity of water and turbidity, as
well as temperature. He used different samples to obtain the relationship between the water
quality parameters and the ASTER values. As a result, he found a significant correlation
between the observed values and the remote sensing data, with R2 > 0.94 sig. < 0.01. Finally,
in 2020, Sagan et al. [35] evaluated the ability of remote sensing to assess water quality.
This study analysed more than 200 data sets, including dissolved oxygen, organic matter,
and electrical conductivity. They combined the data taken in the laboratory and collected
by proximal sensors distributed in different areas with hyperspectral images and satellite
data. As a result, they found that the optically active parameters can be obtained by the
satellites. However, those optically non-active parameters can be estimated indirectly, but
there are still problems. To do this, you have to use deep learning.

Although all these studies present significant advances, they also offer some difficulties.
For example, remote sensing often only allows for continuous monitoring of the study
area. In addition, image processing techniques are often expensive and complicated to
handle. However, the present study shows that combining different sensors for developing
a low-cost parametric probe can allow the evaluation of different water quality parameters.
With the evolved low-cost node, continuous conductivity monitoring is allowed, as well
as turbidity determination. In this case, the conductivity is measured as salinity, which is
also known as Total Dissolved Solids (TDS). Salinity or TDS is measured in g/L and is the
summation of diluted solids in the water. Regarding turbidity, it is measured in terms of
TSS, which represents the amount of solids in water which are not diluted or sedimented.
The TSS is usually measured in mg/L. The proposed solution also allows more excellent
coverage to be established due to the large number of sensors deployed throughout the
study area. In addition, these temperature measurements can be compensated for by using
a temperature sensor.

3. Overall Description of the Proposed Water Quality Monitoring System

This section describes the sensor node developed for water quality monitoring. The
system is composed of a low-cost node capable of collecting and storing environmental
data on an SD card.

3.1. Sensor Node

In order to develop the water quality sensor node, an Arduino Leonardo module is
used [36]. Other microcontrollers can be used; we have selected the Arduino Leonardo
module for its features and its quality–price rate. The Arduino Leonardo module is a board
based on an Atmega328 microcontroller. Its features are shown below:

• Microcontroller: ATmega328
• Operating Voltage: 5 V
• Input Voltage (Recommended): 7–12 V
• Digital Input/Output Pins: 14 (6 of them are PWM outputs)
• Analog Input Pins: 6
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• DC current per pin: 20 mA/pin
• DC current for 3.3 V output pin: 50 mA/pin
• Flash Memory: 32 KB (ATmega328) of which 0.5 KB is used by Bootloader
• SRAM: 2 KB (ATmega328)
• EEPROM: 1 KB (ATmega328)
• Clock Speed: 16 MHZ
• Physical characteristics: Weight (25 gr), Width (53.4 mm), Length (68.6 mm).

Likewise, different peripheral sensors useful in environmental monitoring are required.
Specifically, the system is able to measure the levels of salinity, the amount of TSS and the
water temperature which is used, if necessary, to compensate the measurements of salinity
and TSS.

3.2. Water Salinity Sensor

The water salinity sensor is based on the use of two different coils coiled over a PVC
tube and introduced into a water sample. As is shown in [25], the principle of operation of
this sensor is based on the concept of mutual inductance between a powered coil (Lpower)
and an induced coil (Linduced). In this case, the sensor has two coils with lengths hp and
hi and a number of spires: Npower and Ninduced. Additionally, the sensor does not have a
ferromagnetic core. Instead of this, it has a cylindric space, section S, which will be filled
with water with concentrations of dissolved salts with a relative permeability µr_water. The
solenoids are coiled over the PVC pipe with a diameter of 2.6 cm. The wire used to form
the coils is enamel copper wire with a calibre of 0.4 mm. For our deployment, Lpower has
40 spires while Linduced is composed of 80 spires. Figure 1 shows the circuit used to create
our water salinity sensor. As Figure 1 shows, the developed sensor is inserted inside the
methacrylate tube, which is used to measure other parameters with the rest of the device.
This sensor is an own design used previously as a conductivity meter.

1 
 

 

Figure 1. Diagram of our water salinity sensor.

Regarding the manner of feeding the powered coil, the system also contains a 7555
integrated circuit in Astable mode [37] to create a square signal that alternates between a
positive voltage of 5 V and 0 V. Finally, the output voltage that comes from an induced coil
is sent to a general-purpose diode and a low-pass filter to rectify the alternating signal and
obtain a continuous value.

3.3. TSS Sensor

The water TSS sensor [38] is based on the use of an LED [39] and a photodiode [40]
in the infrared band. The infrared LED and the photodiode are placed at a distance of
3.2 cm. Both elements work at 900 nm and are disposed at an angle of 180◦. Both devices are
supplied with a voltage of 5 V, which can be directly extracted from the Arduino module.
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An alternative to power this circuit is the use of a voltage regulator of LM7805, powered
with a voltage up to 25 Volts, since this type of regulation permits a maximum output
current of 1 A. Figure 2 shows the electronic circuit of our proposed system. The Vout
terminal is connected to an analogue pin of the Arduino module. This sensor is an own
design previously used for determining and characterising turbidity.

Figure 2. The electronic circuit of the turbidity sensor.

In order to improve the TSS measuring and provide the sensor with further use, an
RGB LED and an LDR are used. The sample of water is illuminated by the RGB LED, and
the LDR registers the amount of light that reaches it. As Figure 3 shows, the RGB LED uses
a common cathode connected to the GND, while terminals that control each colour are
connected to an output pin of the Arduino module through a resistor between 100 Ω and
330 Ω. On the other hand, the LDR is powered by a 5 V Arduino pin, and the voltage value,
which is proportional to the amount of received light, is registered by an analogue input of
the Arduino module. Additionally, a resistor of 1 kΩ is added, creating a voltage divisor to
better control the amount of voltage the Arduino receives.

Figure 3. Schematic of RGB sensor.

3.4. Water Temperature Sensor

The DS18B20 temperature sensor [41], a commercial probe, is one of the most versatile
sensors available on the market. This sensor is suitable when the temperature in humid
or water environments should be measured since there is a waterproof probe model. The
DS18B20 can measure temperatures between −55 ◦C and 125 ◦C. It has a very wide range;
however, it does not have the same error in the entire range. Specifically, for temperatures
between −10 ◦C and 85 ◦C, the sensor has an error of ±0.5 ◦C, while for the rest of the
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temperatures between −55 ◦C and 125 ◦C the error is ±2 ◦C. Figure 4 shows the electric
connections of this sensor to a digital pin of an Arduino.

Figure 4. Connections for DS18B20.

3.5. Timing Tag of Measurements

Finally, the measurements collected are tagged using a time tag provided by the real-
time clock (RTC). There are several RTC models widely used in electronic developments,
among which we can highlight the DS1307 [42] and the DS3231 [43]. The DS1307 model is
highly affected by temperature variations. This fact affects the time measurement of the
resonator crystals, translating it into errors in an accumulated lag, which can be 1 or 2 min
per day. To solve this, the DS3231 incorporates a temperature measurement mechanism and
compensation system that guarantees an accuracy of at least 2 ppm, which is equivalent to
a maximum lag of 172 ms/day (1–2 s/month). Our system incorporates the RTC DS3231,
which guarantees the correct operation for a longer time. Figure 5 shows the connection
diagram of the entire system, while Figure 6 shows a real photo of the prototype of the
system. The RTC is also used to generate a routine in the node to ensure data gathering
every hour and to put the node into a deep sleep in the meantime to save energy. This
enhances the battery life, allowing more extended monitoring periods.

Figure 5. Full circuit of our sensor node.
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Figure 6. Real image of our prototype.

3.6. Communication Technology

Concerning the communication of the node, there are different options for communi-
cating information to the gateway and across the network. The most simple one, which is
implemented for the tests conducted in this paper, is to integrate an ESP32 module that
allows a WiFi connection with the Arduino Leonardo. To do this, we connect the Arduino
Leonardo and ESP32 modules using the UART port.

4. Test Bench

In this section, the material and methods for the calibration test are defined. First, we
describe the preparation of calibration samples, the materials used, the number of samples,
and how they are generated. Next, the calibration procedure is defined.

4.1. Calibration Samples

Different samples were created to conduct a complete calibration and evaluate the
performance of the different sensors included in the multiparametric probe; see Table 1.
The samples were created according to the expected values in the coastal areas, which
might differ from other marine areas. Generally, the salinity is lower and the turbidity is
greater in the coastal area. Since, in our possible scenarios in the marine areas, there are
river mouths, deltas, and wetlands, a wide range of values of salinity and turbidity are
included for the calibration.

The calibration samples have a volume of 100 mL. Each was prepared in the laboratory
using an analytical balance, NaCl, lime, and distilled water. NaCl was used as a source of
dissolved solids which increased the salinity of the water. Meanwhile, the lime was the
source of suspended solids.

The last variable parameter in our calibration is the temperature. The temperatures
for the calibration were 14, 21 and 26 ◦C. The temperatures were attained by heating the
water with a microwave and cooling the samples in the fridge. The temperature sensor,
which is a commercial probe, was used to measure the temperature of the samples at the
calibration moment.
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Table 1. Samples for the salinity sensor calibration.

Sample ID Added NaCl (g) Added Lime (mg) Salinity (g/L) TDS (mg/L)

1 0 150 0 1500
2 0 75 0 750
3 0 18 0 180
4 0 9 0 90
5 0 0 0 0
6 0.5 150 5 1500
7 0.5 75 5 750
8 0.5 18 5 180
9 0.5 9 5 90
10 0.5 0 5 0
11 1.5 150 15 1500
12 1.5 75 15 750
13 1.5 18 15 180
14 1.5 9 15 90
15 1.5 0 15 0
16 2.5 150 25 1500
17 2.5 75 25 750
18 2.5 18 25 180
19 2.5 9 25 90
20 2.5 0 25 0
21 3.5 150 35 1500
22 3.5 75 35 750
23 3.5 18 35 180
24 3.5 9 35 90
25 3.5 0 35 0

4.2. Calibration Test

A calibration test is proposed to evaluate the suitability of the proposed sensor. Data
from the different available sensors (inductive coils, IR photodiode, and LRD with the
different lights) are gathered using the samples described above. The water of each sample
is introduced into the methacrylate tube. One of the extremes of the tube was sealed for
the calibration procedure. The sample was kept in the tube for 1 min in order to gather the
calibration data. A total of five repetitions were performed.

4.3. Measurement Process

The sensor node is powered with the battery to gather the data of each calibration
sample. When the node is powered, it starts to measure all the variables one by one. The
node starts triggering the RGB LED and measuring the signal of the LDR. The light colours
go from red, green, blue, yellow, purple, cyan, and white. One value of the LDR signal
is gathered for each light colour. Then, the IR LED is turned on and data are collected
from the IR photodiode. After that, the coil is powered, and the signal from an induced
coil is measured. The whole process is entirely automatic and conducted in sequential
order by the node. In order to avoid the impact of artificial light, which might affect the
measurement procedure, a back box is used to cover the node.

The samples are carefully introduced into the tube and extracted using pipettes, since
during the calibration the box is not waterproof. We start by measuring the samples with
less salinity and TSS; sample 5. Then, the samples with the same TSS and higher salinity
concentrations are used: samples 10, 15, 20, and 25. This way, we do not contaminate the
salinity samples. After finishing measuring the samples with TSS equal to 0 mg/L, the tube
is cleaned and the next set of samples is measured; the sample with TSS equals 9 mg/L,
starting with sample 4, and then samples 9, 14, 19, and 24. This process is repeated, and the
measurement finishes with samples 1, 6, 11, 16, and 21.
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The node is connected to a computer to both power it and view the information. We
have used the Arduino IDE monitor to see and gather the data in real-time. Data are obtained
from the Arduino IDE monitor and introduced into Statgraphics for statistical analyses.

4.4. Statistical Analysis

Statgraphics Centurion XVIII is used for data processing. First of all, a multivariate
analysis is carried out with all the data to evaluate if there are interferences and correlations
between unexpected parameters. Then, single-way ANalysis Of Variance (ANOVA) and
multiple groups tests were conducted for each correlated pair of variables between the
measured parameter (salinity or TSS) and the sensor signal. Regarding the multiple group
test, Duncan’s multiple range test is selected. Finally, for that cases in which correlation
and ANOVA indicate that the measured parameter might be measured with the sensor, a
regression model is obtained with Statgraphics. For the regression models, all available
models for Stagraphics are considered, and based on the results of the comparison of
alternative models the regression model with better R2 is selected. For all tests, 95% of
confidence is used.

5. Results

In this section, we present and discuss our results. First, we show the general results
of the calibration test. Then, the detailed data for the salinity are analysed. Subsequently,
the evaluation of data from the TDS sensor is described. Finally, the main discussion linked
to the obtained results is presented.

5.1. General Results of the Calibration Test

First of all, in order to evaluate if any of the target variables (temperature, salinity and
TSS) might act as an interferent with the data gathering of another variable, a multivariate
analysis is performed. The result of this analysis can be seen in Figure 7. The graphic
depicts the correlation between included parameters and the measurement of the coil, the
photodiode and the LDR with the different lights. The correlation values close to −1 and
+1 indicate that the input variables are highly correlated. Meanwhile, the correlation values
close to 0 indicate that variables are not correlated.

Figure 7. Correlation matrix from the multivariate analysis.

Focusing on the studied parameters, the temperature is not correlated with any of
the sensors. Thus, it is possible to affirm that, for the tested temperature range (14 to
26 ◦C), the temperature does not act as an interferent for any of the measured variables
(TSS and salinity) with the proposed sensors (electromagnetic and optical sensor). The
salinity is correlated only with the response of the salinity sensor. This indicates that the
salinity does not interact with the measurement of the TSS sensors. Regarding the TSS, it is
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only correlated with the measurement of the TSS sensors. In this case, the correlation is a
strong negative correlation.

Concerning the response of the sensors, the tension coil and the Vpp coil (the input
tension in the Arduino and the Vpp measured with an oscilloscope) only correlated between
each other and with salinity. This indicates that any or both responses can be used for
the calibration. The tension coil is preferred for the calibration since it is the input for
the Arduino node. Therefore, the obtained calibration equation can be used directly in
the node.

5.2. Calibration of Proposed Sensors
5.2.1. Salinity Sensor

Before entering into detail, the results of a single way ANOVA are shown. The p-
value of the ANOVA, equal to 0.000, indicated that the differences in Vpp of the coil for
the different salinities are statistically significant. The multiple-group test revealed that
four different groups could be identified in Table 2.

Table 2. Summary of ANOVA for salinity.

Dependent Variable Factor F-Value p-Value Average VPP for
0 g/L 5 g/L 15 g/L 25 g/L 35 g/L

Tension Coil Salinity 540.76 0.000 154.187 a 333.613 b 392.773 c 401.267 cd 408.24 d

Different letters indicate different groups.

A single regression model is used because the temperature and the turbidity were
not correlated with the coil’s response in the previous subsection. All data obtained in
the calibration test are used for the correlation. First of all, the detected outlier data are
excluded from the linear regression. Figure 8 depicts the regression model for the salinity.
The mathematical model, the equation to be used in the Arduino, can be seen in Equation (1).
This model is characterised by a correlation coefficient of 0.90, a determination coefficient
of 0.81, and an Absolute Mean Error (AME) of 0.74 g/L.

Salinity
( g

L

)
= (−7.5839 + 0.6055 ×

√
VArduinoCoil)

2
(1)

where Salinity is the value of salinity in the calibration samples and the value of salinity in
analysed new samples, and VArduinoCoil is the input analogue value in the pin in which the
coil is connected to Arduino.

Figure 8. Calibration of the salinity sensor. Blue squares represent the calibration data. The blue
line is the mathematical model, the green lines are the confidence interval, and the grey lines are the
prediction interval.

5.2.2. TSS Sensor

As in the previous case, the first step is to analyse the results of the ANOVA. In
this case, all the responses to different lights are included. The p-value of the ANOVA
for all light sources is equal to 0.000, which indicates that the differences in the Arduino
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inputs for the different TSS are statistically significant. The multiple-group test revealed
differences among the used lights. While with infrared, red, green, and blue lights it is
possible to generate five different groups, for the rest of the lights only three groups can be
identified. Thus, we use the lights that allow the generation of five groups for the obtention
of calibration models.

As in the previous case, since there is no correlation between temperature or salinity
with the light sensor responses, these data are not included in the regression models. All
data obtained in the calibration test are used for the correlation. First of all, the detected
outlier data are excluded from the analyses. Outliers are excluded individually for the
dataset of each light source. Figure 9 depicts the individual regression models for the TSS
and each light source. The mathematical models can be seen in Equations (2)–(5) for IR,
red, green and blue lights. The models are characterised by correlation coefficients of a
determination coefficient of −0.97 for the IR photodiode and −0.99 for the LDR, regardless
of the used light. The determination coefficients are 0.94, 0.98, 0.99 and 0.99 for the IR
photodiode, and LDR with red, green and blue light, respectively. The MAEs are 103, 31,
34, and 12 mg/L for each model.

TSS
(mg

L

)
= 2463.35 − 10.179 × VArduino IR (2)

TSS
(mg

L

)
=
√
(2.3014 × 107 − 3.3967 × 106 × ln(VArduinoRed) (3)

TSS
(mg

L

)
=
√
(1.248 × 107 − 1.9057 × 106 × ln(VArduinoGreen) (4)

TSS
(mg

L

)
=
√
(9.8241 × 106 − 1.4581 × 106 × ln(VArduinoBlue) (5)

where TSS is the value of TSS in the calibration samples and the value of TSS in analysed
new samples, VArduino IR is the input analogue value in the pin in which the IR photodiode
is connected to Arduino, and VArduinoRed, VArduinoGreen, and VArduinoBlue are the input
analogue values in the pin where the LDR is connected to Arduino when different lights
are used.

Figure 9. The calibration of the TSS sensor for different light sources: (a) IR light, (b) red light,
(c) green light, and (d) blue light. Blue squares represent the calibration data. The blue line is
the mathematical model, the green lines are the confidence interval, and the grey lines are the
prediction interval.
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5.3. Measurement in Aquatic Systems

In order to validate the proposed system, measurements in a real aquatic system have
been conducted. Two sites were selected for the verification of the system. The first site is
an irrigation ditch, characterised by freshwater with high clarity and low TSS. The TSS of
the irrigation ditch is mainly related to the degraded organic matter from the surrounding
vegetation. It might be polluted by runoff from agricultural fields, which increases the
turbidity and salinity and might even generate the eutrophication process. Nonetheless, at
the measuring moment, no abnormal conditions were observed.

The second aquatic environment measured is the seashore, at the north side of the
breakwater of the port. In this area, due to the predominant current and the sediment
particle size in the beach, it is normal to find high turbidity values. The salinity of this area
is not as high. At the moment of the data gathering, the water quality was not good. Over
the previous days, a gale affected the area, and the wind and waves caused the movement
of sediment, generating higher turbidity.

The data gathered by the sensors during the test can be seen in Table 3. It must be
noted that, since TSS measurements require some time, three repetitions were performed
and the mean value was used. We can see that the variation of gathered data from the
optical sensors is lower for IR LED. Thus, we decided to apply the equations for the IR LED
instead of using the model for the Blue LED.

Table 3. Summary of ANOVAs for TSS.

Dependent
Variable

Factor F-Value p-Value Average Arduino Inputs for
0 mg/L 90 mg/L 180 mg/L 750 mg/L 1500 mg/L

IR photodiode

Turbidity

1669.45 0.000 238.52 e 229.96 d 224.04 c 171.054 b 93.6301 a

Red LDR 3039.94 0.000 889.4 e 867.64 d 848.093 c 751.419 b 472.89 a

Yellow LDR 1106.22 0.000 976.32 c 973.76 c 959.373 c 957.176 b 643.205 a

Green LDR 4484.62 0.000 718.08 e 683.907 d 663.213 c 525.811 b 232.507 a

Cian LDR 2855.08 0.000 973.893 c 977.4 c 969.307 c 943.122 b 386.685 a

Blue LDR 5533.26 0.000 883.12 e 813.293 d 786.547 c 584.311 b 193.644 a

Purple LDR 1256.16 0.000 976.467 c 799.493 c 972.307 c 958.27 b 616.767 a

White LDR 293.22 0.000 977.97 bc 980.107 c 978 bc 963.581 b 771.767 a

Different letters indicate different groups.

After applying the equations described above, the TSS and salinity values for the
seashore and the irrigation ditch water are the following: 3.39 and 227.33 mg/L of TSS and
0.37 and 34.20 g/L of salinity. These values are normal for these environments, especially
considering the high turbidity found on the seashore due to inclement weather in previous
days. Nonetheless, since most of the monitoring equipment is developed for measuring the
turbidity in NTUs and the salinity as conductivity in mS/cm, a fair comparison cannot be
made with existing probes. Even though it is possible to convert the salinity into mS/cm
considering factors such as water temperature, the conversion of TSS in mg/L into NTUs
depends on the type of particles causing the turbidity.

5.4. Discussion
5.4.1. Analyses of Calibration Results

The salinity calibration showed that the proposed sensor could be used in coastal areas,
mainly in regions with abrupt salinity changes, such as river mouths, areas with under-
ground water emergence, or events in areas with emissaries or desalinisation plants [44,45].
It will be possible to detect the direction and magnitude of the freshwater or brackish water
in the sea since in this case the variation in salinity is higher than 1 g/L. Nonetheless, with
an MAE of 0.74 g/L and the reduced sensibility of the sensor for high values of salinity,
the use of this sensor for monitoring the changes in salinity in very stable areas where the
changes are less than 0.5 g/L this sensor is not recommended [46,47].
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Concerning the TSS sensor, according to data for this calibration, blue light is the one
that offered the most accurate measure of TSS. Nevertheless, according to several authors,
IR light should be preferred. Therefore, we suggest creating a multiple regression model
that incorporates both light sources in order to avoid and correct the effect of particle size.
The multiple regression model obtained by combining both light sources is defined in
Equation (6). It has a determination coefficient of 0.98 and an MAE of 57 mg/L.

TSS
(mg

L

)
= 2104.65 + 1.7 × VArduinoBlue + 2.54 × VArduino IR (6)

As for the salinity sensor, the MAE does not allow the direct use of this sensor for
deep water or seawater characterisation. The typical TSS values in these waters are below
100 mg/L [48–50], and even below 10 mg/L in some areas [51].

Regarding the sensitivity of designed and tested sensors and existing ones, Table 4
summarises some examples. The sensitivity of our sensor has been calculated as the mini-
mal detectable concentration according to the calibration curve and the node characteristics.
After calculating the minimum detectable concentration, the sensitivity is converted into
a percentage according to the minimum and maximum detected values. The proposed
sensors’ sensitivity is similar to commercial probes and handheld equipment. The proposed
system can be used as a probe to measure the environment, or as a handheld system with
minor modifications in the code of the node.

Table 4. Summary of data gathered in real tests.

Arduino
Input for:

Irrigation Ditch Seashore
Measure 1 Measure 2 Measure 3 Mean Measure 1 Measure 2 Measure 3 Mean

Red LED 870 897 898 888.33 838 836 845 839.67
Green LED 667 751 732 716.67 613 656 684 651.00
Blue LED 875 874 891 880.00 702 796 808 768.67
Yellow LED 1003 961 964 976.00 956 945 977 959.33
Purple LED 967 988 951 968.67 964 975 974 971.00
Cian LED 956 1003 963 974.00 957 972 972 967.00
White LED 980 983 971 978.00 1000 966 964 976.67
IR LED 242 241 242 241.67 219 220 220 219.67
Inductive
Coil 195 200 196 197.00 496 492 497 495.00

Finally, considering the cost of commercial ready-to-use devices, the cost of our system
is lower than the ones included in Table 5. The estimated price of the presented sensor
node, including the sensors, the battery, the node, the SD card, the box, and all required
circuits, is less than EUR 100.

Table 5. Comparison with existing sensors in the market.

Ref. Description Measured Parameter Measured Range Sensitivity (%) Price (EUR)

[52] Handheld equipment Turbidity (NTUs) 0–1000 2% 2813.00
[53] Probe Turbidity (NTUs) 0–4000 1% N.I.
[54] Handheld equipment Turbidity (NTUs) 0–1000 2% 1670.71
[55] Probe Turbidity (FTUs) 0–1250 2% N.I.
[56] Handheld equipment Turbidity (NTUs) 0–1100 2% 2020
Our Handheld equipment and probe TSS (mg/L) 0–1500 0.7% <100
[57] Handheld equipment Conductivity (mS/cm) 0–400 1% 795
[58] Probe Salinity (ppt) 0–48 2% 979.00
[59] Probe Conductivity (mS/cm) 0–650 5% N.I.
[60] Probe Conductivity (mS/cm) 0–200 N.I. N.I.
Our Handheld equipment and probe Salinity (ppt) 0–35 0.94% <100
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5.4.2. Potential Impact of the Proposed Multiparametric Probe

The low-cost, low-energy consumption, and low maintenance of the proposed mul-
tiparametric probe are aimed at maximising the possibility of its adoption. It is a low-
maintenance probe, considering that no membranes, no electrodes, and no reagents are used
for the water quality measurement. Even though cleaning will be necessary and strongly
correlated with the monitored environment, the nutrients in the water, the epiphytes, and
other fauna, this need will be lower for conductivity sensors based on electrodes. The
correct design of the external protection and barriers against invertebrates and ichthy-
ofauna, as well as deployment, ensures the avoidance of the obstruction of the tube for
water measurement caused by sediments or fauna.

Under the project SALVADOR, part of the Thinkinblue program, we aim to promote
water quality monitoring in coastal areas. This multiparametric probe is part of the pro-
posed system composed of tens of probes deployed in different coastal areas, which send
the gathered data to a database [61]. On the one hand, this generation of data will be
crucial for local and regional marine managers, who will have updated data about the
water quality of the coastal area. This will help them to improve the management of these
areas. On the other hand, the data will also be accessible to the scientific community, who
can use the data for the study of climate change, the recovery of natural areas, or changes
in water due to pollution.

Moreover, according to the calibration, the proposed sensors of the multiparametric
probe are not affected by temperature changes. This is relevant since it reduces the complex-
ity of its operations, since no temperature regulation of correction for the data is needed, at
least for the studied temperature range.

5.4.3. Main Limitations of the Proposed Multiparametric Probe

The most relevant limitation is the relatively low sensibility of the probe for high
salinity and low TSS values. These aspects will be considered and improved in future work,
including new calibrations with more samples and physical and electronic changes to the
physical sensors. Thus, the use of the multiparametric probe can be extended to other
marine areas far from the coast.

On the other hand, more TSS than lime should be used, such as phytoplankton
and organic matter. Using multiple light sources, it is most probable that the sensor can
distinguish between different sources of TSS. Thus, including new calibrations, the sensor
can provide data of TSS, turbidity in NTU, and chlorophyll-a in mg/m3, among others.

Regarding the node’s communication, the node is configured to operate with an
ESP32 module using a WiFi connection. Nonetheless, the WiFi technology will only allow
the monitorisation of superficial water. For monitoring the water column, the use of an
Ethernet connection and the use of an additional ESP32 module on the water surface will
be implemented. In these cases, as the box will be completely submerged under the water,
it is recommended that the connection between them uses a low-losses wire such as the
UTP 6e category to avoid problems in the data transmission. The ESP32 module will be
located over the water surface inside a buoy, ensuring a good signal transmission over
the air.

6. Conclusions

The need for low-cost and low-maintenance multiparametric probes is crucial for
efficient coastal management. Nonetheless, the existing solutions are expensive and require
considerable maintenance. This fact precludes the appropriate monitoring of coastal
water. The most efficient option, the use of remote sensing, is limited in terms of temporal
resolution and adverse climatological conditions.

In this paper, we have designed, created and calibrated a low-cost and low-maintenance
multiparametric probe for coastal areas, composed of our own developed optical and elec-
tromagnetic sensors for salinity and TSS and a commercial probe for temperature. The
scientific contribution of this paper can be summarised as follows:
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• A sensor node combining two physical sensors (for TSS and for salinity) designed,
created, calibrated in the laboratory, and verified in the real environment with a
commercial probe for temperature has been presented.

• The complete design of the low-cost node is detailed, including the electronic compo-
nents and the communication technology for integrating the node into a WSN.

• No electrical interferences of the sensors’ signal and circuits for powering the sensor
and receiving the signal are detected when sensors are connected sequentially.

• No interference of salinity with the optical sensor for TSS measurement is detected.
• No interference of TSS in the electromagnetic sensor for salinity measurement

is detected.
• No temperature effect on TSS and salinity sensors in the measured range is detected.

Future work will include the increment of calibration values to check if it is possible
to improve the sensibility of the sensor at lower TSS values and higher salinity values.
Moreover, if no improvement can be obtained, physical or electronic modification of the
physical sensor will be considered. For the TSS sensor, the effect of increasing the tube size
to have a greater optical path length and the reduction of light intensity on the sensibility for
low TSS will be evaluated. For the salinity sensor, the increase of the water volume by using
a tube with a bigger diameter increase the number of spires, and other coil configurations
will be checked.
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