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Abstract: Recently, deep learning has become more and more extensive in the field of fault diagnosis.
However, most deep learning methods rely on large amounts of labeled data to train the model,
which leads to their poor generalized ability in the application of different scenarios. To overcome
this deficiency, this paper proposes a novel generalized model based on self-supervised learning
and sparse filtering (GSLSF). The proposed method includes two stages. Firstly (1), considering the
representation of samples on fault and working condition information, designing self-supervised
learning pretext tasks and pseudo-labels, and establishing a pre-trained model based on sparse
filtering. Secondly (2), a knowledge transfer mechanism from the pre-training model to the target task
is established, the fault features of the deep representation are extracted based on the sparse filtering
model, and softmax regression is applied to distinguish the type of failure. This method can observ-
ably enhance the model’s diagnostic performance and generalization ability with limited training
data. The validity of the method is proved by the fault diagnosis results of two bearing datasets.

Keywords: self-supervised learning; sparse filtering; bearing fault diagnosis; deep learning

1. Introduction

With the continuous improvement of science and technology, high-end mechanical
equipment tends to be characterized by high speed, high power, and high precision, which
causes the fault diagnosis of this type of equipment to face great challenges [1,2]. As
important components of modern mechanical equipment, bearings are widely used in
production and life [3,4], for instance, in automobiles, ships, airplanes, generators, and
household appliances, as well as in mining plants, electrical plants, printing plants, textile
plants, and medical equipment. The normal operation of the bearing can guarantee the
smooth running of the mechanical equipment, can guarantee the economy of the enterprise,
and can improve the efficiency of production. However, during the long-term operation
of bearings, there may be rolling element failures, inner ring failures, outer ring failures,
etc., which have a great impact on the benefits to the company and which even threaten
personal safety in severe cases [5–8]. Therefore, in order to guarantee the normal operation
of the mechanical equipment, there are important security for condition monitoring and
fault diagnosis of the bearings [9].

In general, the learning process of the most intelligent fault diagnosis work is divided
into two steps: feature extraction and feature classification [10]. However, the collected
vibration signals may have heavy noise, so it is necessary to use advanced signal processing
technology for feature extraction of weak fault signals [11]. In recent years, many advanced
signal processing techniques, such as time–domain processing [12], frequency–domain
processing, and time–frequency transformation [13], have been successfully applied in
signal-processing. Gao et al. used time–domain, frequency–domain, and time–frequency–
domain analysis to preprocess the collected original gear box data and extract representative
features. Finally, a support vector machine is used to classify faults [14]. After fault features
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are extracted from the original data, Support Vector Machines (SVM) [15,16], K-Nearest
Neighbors (KNN) [17], and softmax regression can be used for fault classification.

It can be found that intelligent fault diagnosis research has achieved many good
results [18]. However, the traditional intelligent fault diagnosis method also has some
disadvantages. Much depends on the expertise and experience of the researcher in the
diagnostic process. Second, the model may require redesigning when faced with new
diagnostic problems. To overcome these shortcomings, deep learning has attracted more
and more attention because it can automatically extract sample features from complex data
and apply nonlinear multi-hidden layer networks to express complex feature information.
In addition, deep learning can efficiently process a large number of data signals and provide
accurate classification results, so it may be a promising tool for processing mechanical
big data [19–22].

Currently, a variety of intelligent deep learning methods such as GAN (generative
adversarial network) [23], Stacked Autoencoder (SAE) [24], convolutional neural networks
(CNN) [25], and Restricted Boltzmann Machine (RBM) [26], etc. have been successfully
applied in many fields. Xu et al. combined the improved GAN with Continuous Wavelet
Transform (CWT) and applied it to the field of fault diagnosis. CWT solves the problems
of too few samples and sample annotations and effectively enhances the veracity of fault
diagnosis [27]. Aiming to address the fault diagnosis problem of rolling bearings, Du et al.
established a fault diagnosis approach based on optimized and improved stacked denoising
autoencoders, which effectively improved the extraction ability of the fault features [28].
Zhang et al. established a multi-modal attention convolutional neural network to effectively
boost the precision of fault diagnosis, aiming at the problem of poor fault diagnosis due
to the changing working environment and insufficient samples of rolling bearings [29].
In view of the problem that traditional fault diagnosis methods rely on artificial feature
extraction and diagnosis expertise, Tang et al. proposed a deep convolutional network fault
diagnosis method, and the experiment proved that the method has good generalization
performance [30].

Although deep learning has made massive strides in the field of mechanical fault
diagnosis, there is a common disadvantage for most deep learning methods: excessive
reliance on a large amount of labeled training data and poor model generalization ability.
In actual working conditions, when the bearing fails, the mechanical equipment cannot
run for a long period of time, so it is very difficult for us to obtain extensive marked failure
data [31,32]. When only a small amount of labeled data is available, it is difficult for deep
learning to perform a good fault diagnosis task. How to use a small amount of labeled data
to improve the feature extraction ability of the model has become the main topic of current
research [33]. Researchers try to solve this problem using semi-supervised learning [34,35]
and transfer learning [36]. L.A. Bull et al. proposed a semi-supervised Gaussian mixture
model for the signal label classification problem, which obviously enhances the classifi-
cation accuracy of the model and does not require further inspection of the system [34].
Wu et al. combined semi-supervised learning with a hybrid classification autoencoder and
used a softmax classifier to classify fault features [35]. Guo et al. established a multi-task
CNN based on knowledge transfer, which dramatically enhances the efficiency and preci-
sion of the model [36]. These methods have achieved certain results in fault diagnosis with
limited training data, but the working performance does not satisfy the demands of actual
working conditions. Compared with semi-supervised learning methods, self-supervised
learning methods can facilitate learning useful information in large-scale datasets without
any manual annotation, and such methods have better generalization ability.

Through the above discussion, this paper proposes a new intelligent fault diagnosis
framework integrating self-supervised learning and a sparse filtering model and applies it
to the fault identification of bearings. Firstly, the pretext tasks and corresponding pseudo-
labels that can represent sample fault information and working condition information
are set up to complete the pre-training process of the sparse filtering model, and the
signal transformation types are identified in the pretext tasks. Then, by establishing a
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parameter transfer mechanism, the valuable information learned by the model is transferred
to the target task. Finally, the bearing fault type identification is realized through the
softmax regression.

The main research and conclusions of this paper are described as follows:
(1) In this paper, a new intelligent fault diagnosis framework is proposed to achieve

the efficient diagnosis of bearing faults with minimal training samples.
(2) Based on the representation of samples for the information of the fault and working

condition, self-supervised learning pretext tasks and pseudo-labels are designed. The
effective information extracted by pre-training is applied to the sparse filtering feature
extraction through the knowledge transfer mechanism, which improves the generalization
performance of the model.

(3) The diagnostic results of two bearing fault diagnosis experiments prove the effec-
tiveness and generalization ability of GSLSF in the case of minimal training data.

The structure of this paper is described as follows. Section 2 introduces softmax
regression and self-supervised learning. The intelligent fault diagnosis model framework
is described in Section 3. Section 4 tests the proposed method experimentally. Section 5
summarizes the research content of this paper.

2. Related Work

At present, self-supervised learning is becoming more and more popular because it
can reduce the cost of annotating large-scale datasets. It can use custom pretext tasks and
pseudo-labels for multiple downstream tasks [37]. This section mainly introduces the latest
progress of self-supervised learning.

Self-supervised learning has made great progress in the field of image processing,
for example, in image rotation [38], image completion [39,40], image coloring [41,42],
image super-resolution [43], image clustering [44,45], etc. Because the mechanical vibration
signal is a strong periodic non-stationary signal, and its characteristics are completely
different from the image data, it is difficult to design an appropriate agent task for the
mechanical vibration signal using the image processing method. Therefore, according to
the characteristics of mechanical vibration signals, it is worthwhile studying these signals
to find a self-monitoring method. Previously, in the field of fault diagnosis, scholars have
conducted little research on self-supervised learning methods. For example, Senanayaka
et al. combined support vector machine (SVM) and convolutional neural network (CNN)
to realize online detection of multiple faults and fault levels under different speeds and
loads. In this method, the self-supervised learning of the proposed CNN algorithm allows
online diagnosis based on the latest data learning features, and the effectiveness of this
scheme is verified by experiments [46]. Li et al. proposed an intelligent fault diagnosis
method based on vibration signal gray image (GI), depth InfoMax (DIM) self-supervised
learning (SSL) method, and convolution neural network (CNN) [47]. This method has
good diagnostic performance and alleviates the over-fitting problem of model training
caused by limited labeled samples. These methods have promoted the development of
self-supervised learning, but there are also some shortcomings. Their diagnosis framework
is complex, and the principle behind self-supervised learning requires further analysis. It
can be found that only when the model learns sufficient useful features of vibration signals
can it better complete the fault diagnosis task. It is difficult to obtain a large number of
labeled samples, so the model feature extraction ability is insufficient.

Therefore, this paper conducts further research on self-supervised learning and uses a
large number of unmarked samples to optimize the model, so that the model has better fault
diagnosis ability. The sparse filtering algorithm is easy to implement and must adjust only
one parameter (the number of features); thus, this paper chooses to study self-supervised
learning based on the sparse filtering model. In addition, three fault diagnosis methods are
selected and compared with the proposed self-supervised learning to verify the excellent
performance of the proposed method. Zhang et al. [5] proposed a sparse filter extraction
method based on time–frequency features, which can be used for diagnosis under different
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loads. Experimental results show that this method has good fault diagnosis ability and
classification performance. Xue et al. [24] proposed a rolling bearing fault diagnosis method
based on an entropy feature and a stacked sparse autoencoder. The experimental results
show that the proposed method has higher fault diagnosis accuracy. Zhang et al. [48]
proposed a generalized Sparse Representation based Classification (SRC) algorithm for
open set recognition in which not all classes presented during testing are known during
training. The effectiveness of the proposed method is verified by several examples, and
the performance is obviously better than many open set recognition algorithms. It can
be seen that sparse filtering (SF), Stacked Autoencoder (SAE), and Sparse Representation
Classification Algorithm (SRC) have good fault diagnosis performance and can be used as
a comparison method to compare with the proposed method.

3. Proposed Method
3.1. Methodology

GSLSF aims to improve the fault diagnosis performance with minimal training data
and the generalization ability of the model. Based on this problem, an intelligent fault
diagnosis method integrating self-supervised learning and sparse filtering is proposed.
The proposed method can learn useful information from many unlabeled data and transfer
it to the downstream tasks of model training, thereby improving the model classification
accuracy and generalization ability. The proposed method is divided into two learning
stages, namely model pre-training based on self-supervised learning and sparse filtering
model training and classification based on knowledge transfer. Thus, the pretext tasks and
the target tasks are established. Firstly, a data collector is used to collect a large number
of unlabeled samples. Then, a self-supervised learning pretext task and pseudo-labels
are designed based on the representation of samples of fault and operating condition
information. In addition, the knowledge transfer mechanism is used to apply the useful
features learned from the pre-training to the target task. Finally, CWRU dataset and rolling
bearing experiments are used to verify the effectiveness of the GSLSF method. Figure 1
depicts the framework for the proposed self-supervised method GSLSF.

3.2. Two-Stage Learning Task

In addition, the knowledge transfer mechanism is used to apply the useful features
learned from the pre-training to the target task. Figure 1 depicts the framework for the
proposed self-supervised method GSLSF. In this section, the creation process of the two-
stage learning task is described in detail. In the first learning stage, given an original

dataset D1 = {Xi}N
i=1, a new dataset Ds =

(
Yl

i , Pl
i

)N

i=1
is generated through multiple

signal transformation types. This pseudo-label is automatically generated without manual
annotation. Defining F(·) as a function of the signal transformation type yields Yl

i = F
(
Xi).

l is an integer, and l ∈ (1, 2, . . . , S), S is the total number of classes of signal transitions.
Then, the generated data is taken as the training set, and the sparse filtering model is
applied for pre-training to obtain the weight matrix W. The specific training process is as
follows. First of all, the input dimension is set as Nin, and the output dimension is set as
Nout. The input sample DS is divided into Ns segments in a random way. This purpose
of this step is to obtain random segments by overlapping. A new segment set

{
Sj}Ns

j=1

consists of these random segments, where Sj ∈ <Nin×1 is the jth segment containing Nin

data points. The segment set
{

Sj}Ns
j=1 is rewritten as a matrix form Sj ∈ <Nin×Ns , and the

sample set
{

Xi}m
i=1 is rewritten as x ∈ <Nin×M. The linear expression of training matrix

and weight matrix is used to obtain local features.

f i
j = Wx (1)
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where W ∈ <Nout×Nin is the weight matrix, and f i
j is the jth feature of the ith segment. Then

the average method is used to obtain the learned features.

Fi =
1

Ns

Ns

∑
n=1

f i
n (2)

In the second learning stage, the knowledge transfer method is adopted. Transfer
learning is one of the machine learning methods, and it refers to the transfer of the feature
parameters learned by pre-training in the source domain to the target domain [34]. In this
stage, the label set DT =

(
Xi, Gi)N

i=1 is redefined, where Xi is the raw vibration data and Gi

is the real fault label, and the overall class of health condition is G = 1, 2, 3, 4. As can be
seen in our proposed framework, transferring the parameters of the first learning stage to
the target task is a key operation to improve performance. Therefore, we freeze the weight
matrix W obtained by pre-training in the first learning stage as the initialization weight
matrix of the target task and perform the fault diagnosis task (target task). Finally, various
fault types are identified using the softmax regression.

3.3. Pretext Task Design

To ease the workload of annotating large amounts of data, we generally set up a
pretext task for which the pseudo-labels are automatically generated based on the inherent
characteristics of the data. At present, researchers have invented many pretext tasks and
have successfully applied them to self-supervised learning with good performance, such as
foreground object segmentation [49], image completion [39], image colorization [41], etc.
Only when an effective pretext task is established can the model learn effective features
of the data. Therefore, there are many categories of signal transformation, and there is
no fixed standard, as long as the pretext task that satisfies the self-supervised learning is
established according to the actual situation. These pretext tasks share two characteristics.
Firstly (1), the model must learn useful features to solve the pretext task. Secondly (2), the
creation of pseudo-labels is automatically generated based on a certain characteristic of
the signal. In this paper, a new signal transformation pretext task is proposed based on
the transformation characteristics of signals. Six signal transformation types are adopted,
namely normal, value increase, value decrease, random zeroing, adding white noise, and
disordered splicing. We argue that if the signal transition types in the pretext task can be
identified by the model, then the model after knowledge transfer can identify the types of
failures in the target task, thereby improving the robustness and generalization ability of
the model. The following is an introduction to the six types of signal transformations.

Normal. Given an original vibration signal X(i) = [x1, x2, . . . , xi], where i represents
the length of the signal, without any signal transformation, so that Y(i) = X(i).

Value increase. A signal X(i) and a signal conversion vector B(i) = [b1, b2, . . . , bi]
are given, and the value of the original vibration signal is amplified by linear multiplica-
tion to obtain the vibration signal Y(i) = X(i)B(i) = [x1b1, x2b2, . . . , xibi] after the value
is increased.

Value decrease. Given a signal X(i) and a signal transformation vector B(i) = [b1, b2, . . . , bi],
the signal X(i) divided by the corresponding element of B(i) gives the transformed
Y(i) = X(i)/B(i) = [x1/b1, x2/b2, . . . , xi/bi].

Add Gaussian white noise. Gaussian white noise is added to the vibration signal X(i),
which is a random signal with a constant power spectral density. We obtain the signal
converted from the signal Y(i).

Disordered splicing. The signal X(i) is cut into m segments, namely
X(i) = [X1(i), X2(i), X3(i), . . . Xm(i)]. In addition, these fragments are randomly com-
bined into a new signal set Y(i).

Random zeroing. Given a signal X(i) and a signal transformation vector B(i) = [b1, b2, . . . , bi],
where 25% of the elements are 0, and 75% of the elements are 1. Use multiplication to
obtain the converted vibration signal Y(i) = X(i)B(i) = [x1b1, x2b2, . . . , xibi].
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Pretext tasks are established based on the above six signal transformation types.
During training of the surrogate task, the signal transformation type is randomly selected to
transform the original vibration signal, and its corresponding pseudo-label P = [1, 2, . . . , 6]
is generated. The sparse filtering model is used to pre-train the pretext task, and the
softmax regression is applied to distinguish different types of signal change. The model
can thereby learn the meaningful information of the signal. The learned weight matrix
is transferred to the target task to complete the fault diagnosis task. As can be seen from
Figure 2, the samples processed by these six signal transformation methods are very similar,
but there are great differences in nature. This requires the network to learn the essential
characteristics of the signal, so as to accurately classify the signal type.
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4. Experimental Validation
4.1. Case 1: Bearing Fault Diagnosis Based on Case Western Reserve University Dataset
4.1.1. Dataset Description

In this section, the proposed self-supervised learning approach GSLSF is experimen-
tally validated using rolling bearing data from Case Western Reserve University [50]. The
instruments and equipment of the test bench have acceleration sensors, rolling bearings,
and loading motors. The sampling frequency of 12 kHz is used to collect vibration signals
at the motor drive end of the test bench. Bearings have four different health states: nor-
mal (Nor), inner ring fault (IR), outer ring fault (OR), and ball fault (B). Each fault type
corresponds to three different severities, and the fault sizes are 0.18 mm, 0.36 mm, and
0.53 mm, respectively. The vibration signals of the bearing under loads 0, 1, 2, and 3 hp were
collected. The rotational speeds of the four loads are 1797 r/min, 1772 r/min, 1750r/min,
and 1730 r/min, respectively. For the convenience of representation, the samples composed
of signals under four different loads are referred to as A, B, C, and D. The faults with the
same fault location but different severity are regarded as one kind of operating condition;
thus, there are 10 failure types in total. There are 100 samples under each load, and each
sample includes 1200 points; thus, the bearing dataset has a total of 4000 samples. The
details of this dataset are shown in Table 1.

Table 1. Composition of the datasets.

Bearing Fault
Pattern

Fault Size
(mm) Load (/hp) Label Abbreviation

Normal / 0, 1, 2, 3 1 Nor

Inner race fault

0.18 0, 1, 2, 3 2 IR1

0.36 0, 1, 2, 3 3 IR2

0.53 0, 1, 2, 3 4 IR3

Ball fault

0.18 0, 1, 2, 3 5 B1

0.36 0, 1, 2, 3 6 B2

0.53 0, 1, 2, 3 7 B3

Outer race fault

0.18 0, 1, 2, 3 8 OR1

0.36 0, 1, 2, 3 9 OR2

0.53 0, 1, 2, 3 10 OR3
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4.1.2. Analysis of Parameter Sensitivity

To verify the superiority of GSLSF, the analysis of sensitive parameters is carried out.
The difference in sensitive parameter values can affect the fault diagnosis accuracy and
robustness; thus, we make optimal choices for the input dimension, output dimension,
and the number of segments in the target task. In the following experiments, we use
A, B, C, and D to denote the four loading conditions of 0 Hp, 1 Hp, 2 Hp, and 3 Hp,
respectively. The samples under A are selected to calculate the best sensitive parameters.
The self-supervised learning method is proposed by randomly selecting 10% samples for
training, that is, 12,000 sample points are used for training, and the rest are tested. In
order to avoid the influence of randomness, a total of 10 experiments is carried out for
each experiment. The average accuracy and average computation time of the experiments
are obtained from 10 trials. In this experiment, the weight decay λ is set to 1 × 10−5. By
default, the input dimension Nin is set to 40, the output dimension Nout is set to 80, and the
number of segments Ns in both the pre-training task and the target task is set is 50.

Firstly, the optimal number of segments for the target task is selected. Input dimension
Nin and output dimension Nout are set to 40 and 80, respectively. Figure 3a is the accuracy
rate corresponding to a different number of segments. As can be seen from Figure 3a, the
size of the number of segments has a great influence on diagnostic accuracy. As can be
analyzed from Figure 3a, the accuracy rate becomes higher, and the average calculation
time increases linearly. When the number of segments Ns > 10, the average accuracy
rate is greater than 95%, and the proposed self-supervised method can distinguish the
ten health conditions of the bearing dataset with high precision. When the number of
segments Ns > 120, the average accuracy basically does not fluctuate, but the average
calculation time becomes longer. Through further analysis, we found that when Ns = 120,
the calculation effect is significantly better than other segment numbers. Therefore, the
number of segments Ns is chosen to be 120 in this experiment.
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Next, select the input dimension Nin, where Nout = 80 and Ns = 50. Figure 3b shows
the fault diagnosis results of different input dimensions. When Nin > 40, the fault diagnosis
accuracy gradually decreases, and the calculation time increases approximately proportion-
ally. When Nin = 40, the fault diagnosis accuracy is the highest, and the standard deviation
is also small, showing better performance. Therefore, we choose Nin = 40 as the best input
dimension for this experiment.

Finally, we obtain the optimal parameter for the output dimension Nout, where Nin = 40
and Ns = 50. The influence of different output dimensions on the diagnostic results is
depicted in Figure 3c. When the output dimension is Nout > 40, the average diagnosis
rate is greater than 93%, which indicates that the method can accurately classify the faults.
The computation time grows linearly as the output dimension increases. When Nout = 80,
the fault diagnosis accuracy is the highest, the standard deviation is smaller, and the
performance is superior to other output dimension values. Therefore, we choose a value of
80 for the output dimension Nout.

4.1.3. Results and Analysis

Comparison approaches: three machine learning methods which have achieved re-
markable success in intelligent fault diagnosis are compared with the proposed method to
verify the effectiveness of the proposed method.

(1) Sparse filtering (SF) [5], which is a novel shallow machine learning approach, and the
model is easy to achieve convergence.

(2) Stacked Autoencoder (SAE) [24] is an advanced deep network architecture which can
extract deep features and is widely used in fault diagnosis.

(3) Sparse Representation Classification Algorithm (SRC) [48] uses class reconstruction
errors for classification.

In this part, we employ three methods to compare the performance of the proposed
method. It is worth noting that the bearing datasets used by the three methods are all in
Table 1. Each experiment is conducted 10 times in order to reduce the randomness that
interferes with the experiment. Finally, the average accuracy is calculated. Figure 4 and
Table 2 show the average diagnostic accuracy of the three methods for the entire dataset
and the dataset under each loading, respectively. The input dimension Nin and output
dimension Nout of the proposed method are set to 40 and 80, respectively. The number of
pre-training segments Ns is 50, and the number of segments Ns in the target task is set to
120. In the pre-training task, we randomly draw eight samples, including Nor1; Nor2; Nor3;
Nor4; B11; IR12; OR11; and OR13. Then, six kinds of signal transformations are performed,
the sparse filtering is trained to obtain the weight matrix, and the parameters are moved
to the target task through knowledge transfer. In the target task, 10% of the samples are
used for training and 90% samples are tested. Finally, the fault types of the test samples
are classified by softmax regression. In Table 2, the proposed self-supervised method has
an average accuracy of about 97.26% in most fault diagnosis tasks, and the fault diagnosis
accuracy and generalization ability are significantly better than the comparison methods,
which verifies the effectiveness and robustness of the proposed method. It can be found
that the diagnostic accuracy of the self-supervised method in the total dataset is higher
than that of the datasets under the four working conditions of A, B, C, and D. Because the
self-supervised method requires minimal labeled data for pre-training, and the labeled
data in the total dataset are more, the model performance is better. In addition, it can be
seen that the larger the sample size, the smaller the standard deviation, and the stronger
the model generalization ability. Generally, calculation efficiency is an important index for
evaluating the effectiveness of the model. It can be seen from Figure 5 that the SRC method
has the longest running time, and the calculation efficiency is poor. The SAE method has a
short running time, and the proposed method has a running time close to that of the SF
method. In general, the proposed method has good computational efficiency.
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The three methods are compared with the proposed method to prove the superiority of
the proposed method. The first is the traditional sparse filtering feature extraction method,
which we call SF for short. The parameter settings are as follows: Nin = 40, Nout = 80,
Ns = 50, λ = 1E− 5. In total, 10% of the samples are used in training, and the rest are
used to test the learning effect of the model and calculate the diagnostic accuracy under
each load. As can be seen from Table 2, the diagnostic precision of this method is around
93.67~97.41%, and the average accuracy is 96.06%, which is 1.1% lower than that of the
proposed method. In addition, the standard deviation of this method is larger than that of
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the proposed method, and the model performance is more unstable. Therefore, compared
with the proposed method, this method has lower diagnostic accuracy and poorer stability.

The second method is the Stacked Autoencoder, call SAE. The parameter is set as
follows. The number of hidden neurons is chosen as 100, and the number of iterations is
100. Batch size and learning rate are set to 50 and 3.5, respectively. Of the samples, 10%
are used for training, and 90% are used for testing. Finally, softmax regression is used
to classify the bearing health. In Table 2, the diagnostic accuracy of this method is about
90.41~98.29%, and the average accuracy rate is 93.61%, which is about 3.65% lower than
that of the proposed method, and the stability is poor. When there are minimal training
data, the diagnostic effect of the method has obvious changes; thus, the method is more
dependent on the amount of training data. The third method is the Sparse Representation
Classification Algorithm, also known as SRC. Of the samples, 50% are used for training,
and 50% are used for testing. As can be seen from Table 2, the accuracy rate of this method
is 76.16~90.16%, which is worse than the diagnostic performance of the proposed method. It
can be seen from the fault accuracy rate under various working conditions that the robustness
of this method is poor. To sum up, our proposed method is of great help for bearing fault
diagnosis, and the method can play a better performance under limited labeled samples.

The confusion matrix is applied to further show the fault classification results clearly,
as shown in Figure 6. Figure 6 shows the diagnostic results of the proposed method and
of SF and SAE under A and B conditions, respectively. It is worth noting that there are
90 samples for each failure type, and all are unlabeled data. It can be concluded from
Figure 6a that in case A, there are only nine misclassifications in the proposed method.
Among them, fault 3 is wrongly classified as one fault 7, one fault 4, and one fault 6.
Fault 10 is wrongly classified as three faults 2, one fault 7, one fault 9, and three faults 2,
respectively. In addition, the sparse filtering method has a total of 20 samples misclassified
in case A, which is less effective than the proposed method. From Figure 6b, we can see
that the classification effect of SAE is worse than the proposed method. In the proposed
method, a total of 24 samples are misclassified, and the misclassification results are mainly
concentrated on label 10, and 22 samples are misclassified as label 6. However, a total
of 50 samples are misclassified by SAE, the misclassified results are scattered, and the
overall classification results are poor. In conclusion, the proposed method has better fault
classification performance.
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4.2. Case 2: Fault Diagnosis for Rolling Bearings of Special Test Bench
4.2.1. Dataset Description

In order to verify the superiority of the self-supervised sparse filtering method, as
shown in Figure 7, an experimental platform is employed to simulate bearing failure. The
platform includes the electric machinery, bearing housing, gear box, and brakes. The
vibration data of the bearing base is collected by an LMS data acquisition instrument with a
vibration sensor, and the sensor is placed on the side of the bearing housing. The sampling
frequency is 25.6 kHz. The three bearing types are N205EU cylindrical roller bearings, as
shown in Figure 8. As shown in Table 3, the bearing has four different health conditions:
normal (NC), outer ring fault (OF), inner ring fault (IF), and ball fault (RF). At the same
time, each health condition is damaged by three different degrees of severity: 0.18 mm,
0.36 mm, and 0.54 mm. Thus, there are ten health states of the bearing; each health state
includes 100 samples, and one sample includes 2560 data points.
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Table 3. The description of the datasets.

Health Condition Sampling
Frequency Fault Size (mm) Label

NC

25.6 kHz

0 1

IF1 0.18 2

IF2 0.36 3

IF3 0.54 4

OF1 0.18 5

OF2 0.36 6

OF3 0.54 7

RF1 0.18 8

RF2 0.36 9

RF3 0.54 10

4.2.2. Analysis of Parameter Sensitivity

Firstly, the best parameters for this experiment are set by selecting the parameters in
Section 4.1.2. As shown in Figure 9, the input dimension Nin, the output dimension Nout,
and the segment number Ns in the target task are the optimal parameter selection. Figure 9a
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shows that the average precision increases as the number of segments increases. When
Ns > 30, the accuracy rate is above 90%, indicating that the method can more accurately
classify bearing faults. Considering the average accuracy and computation time, Ns = 120 is
chosen as the optimal number of segments for this experiment. Through the same method,
the input dimension is Nin, and the output dimension is Nout again. From Figure 9b,c, it
can be concluded that the input dimension Nin and the output dimension Nout are selected
as 40 and 80, respectively.
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4.2.3. Results and Analysis

This section adopts the same method as Section 4.1.3, and the advantage of the
proposed approach is proved. The data used in this experiment are listed in Table 3.
The diagnostic precision of the four approaches is shown in Figure 10 and Table 4. Each
experiment is run 10 times in order to reduce the randomness that interferes with the
experiment. As can be seen from Table 4, the diagnostic precision of the proposed approach
is about 95.27~97.87%, the average precision is 97.02%, the standard deviation is small, and
the robustness is good. From Figure 10 and Table 4, it can be observed that the diagnostic
accuracy of the proposed approach is better than that of SF, SAE, and SRC under various
working conditions, and the standard deviation is smaller than SF, SAE, and SRC in most
working conditions, indicating that the robustness performs well. Under all conditions, the
diagnostic accuracy of the proposed approach is 0.85% higher than that of SF, and 1.06%
higher than that of SAE, which proves the advantage of the proposed approach in fault
feature classification. In addition, it can be found that the SAE method has a very poor
diagnostic effect under the four working conditions of A, B, C, and D, and the standard
deviation is large. Meanwhile, the diagnostic accuracy of SRC was 76.14–89% in each
working condition, the diagnostic performance was poor, and the standard deviation was
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large. Through analysis, this method is relatively dependent on the amount of training
data, and it requires a large amount of data to learn reliable features. When the training
data increases, the effect is significantly improved. This article does not discuss this topic
in depth.
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Table 4. The detailed diagnostic results (%) of the bearing data.

Methods SF SAE SRC Proposed

All 96.78 ± 0.99 96.57 ± 1.23 85.60 ± 2.1 97.63 ± 0.68

A 90.58 ± 3.82 65.92 ± 3.41 76.14 ± 1.68 95.27 ± 1.73

B 96.79 ± 1.94 67.43 ± 4.00 85.32 ± 2.77 97.87 ± 1.74

C 95.24 ± 2.99 68.04 ± 4.00 85.00 ± 2.8 97.11 ± 2.22

D 93.07 ± 3.46 68.46 ± 4.00 89.00 ± 2.5 97.13 ± 2.09

Ave 94.49 73.28 84.21 97.02

To further prove the advantages of the method, we apply t-SNE to visually classify
bearing health conditions. Figure 11 is the fault classification diagram of GSLSF, and the
traditional sparse filtering method under working conditions A and B. From Figure 11a,b,
it can be seen that most of the features are correctly classified, and only a small number
of rolling element faults are confused. From Figure 11c, it can be seen that the proposed
method correctly classifies health status. However, there are some problems in the classifi-
cation of the traditional sparse filtering method in Figure 11d, and a few inner-circle faults
are confused. In general, the classification performance of the proposed approach is clearly
better than that of SF.
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Abstract: Persisting or newly developed malnutrition and sarcopenia after liver transplant (LT) are 
correlated with adverse health outcomes. This narrative review aims to examine the literature re-
garding nutrition strategies to manage malnutrition and sarcopenia after LT. The secondary aims 
are to provide an overview of the effect of nutrition strategies on the incidence of infections, hospital 
length of stay (LOS), acute cellular rejection (ACR), and mortality after LT. Four databases were 
searched. A total of 25 studies, mostly of mid–high quality, were included. Six studies found a ben-
eficial effect on nutritional parameters using branched-chain amino acids (BCAA), immunomodu-
lating diet (IMD), or enteral nutrition (EN) whereas two studies using beta-hydroxy-beta-methyl-
butyrate (HMB) found a beneficial effect on muscle mass and function. Fourteen studies using pre- 
or pro-biotics, IMD, and EN were effective in lowering infection and six studies using IMD, BCAA 
or HMB reported reduced hospital LOS. Finally, four studies using HMB and vitamin D were effec-
tive in reducing ACR and one study reported reduced mortality using vitamin D after LT. In 

Figure 11. Visualization diagram of 2-D bearing fault features. (a) The proposed approach in A.
(b) SF in A. (c) The proposed approach in D. (d) SF in D.

5. Conclusions

In this paper, we focus on using minimal labeled data to enhance the feature extraction
ability and generalization ability of the model and propose an intelligent fault diagnosis
method that combines self-supervised learning and a sparse filtering model. Because
the vibration signal has the characteristics of time sequence and continuity, we establish a
pretext task and pseudo-label for self-supervised learning based on the signal representation
method. Under the condition of a small amount of labeled data, the vibration signal
variation characteristics are learned by pre-training, and then the learned weight matrix is
applied to the target task through the knowledge transfer mechanism, so as to accurately
classify the fault. This approach can facilitate the learning of valuable information from
many unlabeled vibration signals. It renders the network more efficient in extracting signal
features. This approach has been verified on both the CWRU dataset and the bearing
data collected in the experiment, and the method has good performance in fault diagnosis.
The experimental results show that GSLSF has high precision and good robustness and
generalization ability. Therefore, the method can facilitate learning of sample features from
the few labeled training data and improve the fault diagnosis ability of the model.

However, this method also has some disadvantages. Because the self-supervised
method requires a pre-training process, which requires the network to learn the change
of signal category of the pretext task, the total computing time will increase slightly, and
the computational efficiency is lower than that of the traditional sparse filtering method.
Second, the training of self-supervised methods requires a certain amount of labeled data
to train the model to optimize the decision boundary.

In future work, we can improve the pretext task and create different pretext tasks to
classify faults. Secondly, the model pre-trained by the self-supervised learning method can
be applied to a variety of fields, and this paper only analyzes the task of fault diagnosis. In
the future, we can research how this approach performs in other areas.



Sensors 2023, 23, 1858 16 of 17

Author Contributions: Conceptualization, software, and writing—original draft preparation, G.N.;
methodology, Z.Z.; validation, M.S.; investigation, Z.J. and Y.L.; funding acquisition, Z.Z. and L.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This paper and its related research are supported by grants from the National Natural
Science Foundation of China (Grant No. 11902182) and the Natural Science Foundation of Shandong
Province (Grant No. ZR2021QE108).

Institutional Review Board Statement: This study did not involve humans or animals. We choose
to exclude this statement.

Informed Consent Statement: This study did not involve humans. We choose to exclude this statement.

Data Availability Statement: The raw vibration data used in the paper can be download from
https://engineering.case.edu/bearingdatacenter/12k-drive-end-bearing-fault-data (accessed on 10
September 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shen, T.; Li, S.M.; Xin, Y. Review on Fault Diagnosis of Rotating Machinery Based on Deep Learning. Comput. Meas. Control 2020,

28, 1–8.
2. Wen, C.L.; Lv, F.Y. Review on Deep Learning Based Fault Diagnosis. J. Electron. Inf. Technol. 2020, 42, 234–248.
3. Miao, B.Q.; Chen, C.Z.; Luo, Y.Q. Rolling Bearing Fault Feature Extraction Method Based on Adaptive Enhanced Difference

Product Morphological Filter. J. Mech. Eng. 2021, 57, 78–88.
4. Hou, W.Q.; Ye, M.; Li, W.H. Rolling Element Bearing Fault Classification Using Improved Stacked De-noising Auto-encoders.

J. Mech. Eng. 2018, 54, 87–96. [CrossRef]
5. Zhang, Z.W.; Chen, H.H.; Chen, S.M. A novel sparse filtering approach based on time-frequency feature extraction and softmax

regression for intelligent fault diagnosis under different speeds. J. Cent. South Univ. 2019, 26, 1607–1618. [CrossRef]
6. Chen, Q.Q.; Dai, S.W.; Dai, H.D. Review Diagnosis on the Rolling Bearing. Instrum. Technol. 2019, 9, 1–4+42.
7. Zhang, C. Bearing Fault Diagnosis Method Based on CNN-SVM. Modul. Mach. Tool Autom. Manuf. Tech. 2021, 11, 114–116.
8. Xue, Y.; Shen, N.; Dou, D.Y. Fault Degree Diagnosis of Rolling Bearings on One-Dimensional Convolutional Neural Network.

Bearing 2021, 4, 48–54.
9. Hu, C.S.; Li, G.L.; Zhao, Y. Summary of Fault Diagnosis Method for Rolling Bearings under Variable Working Conditions. Comput.

Eng. Appl. 2022, 58, 26–42.
10. Li, Y.B.; Xu, M.Q.; Wang, R.X. A new rolling bearing fault diagnosis method based on multiscale permutation entropy and

improved support vector machine based binary tree. Measurement 2016, 77, 80–94. [CrossRef]
11. Zhang, W.; Peng, G.L.; Li, C.H. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation

ability on raw vibration signals. Sensors 2017, 17, 425. [CrossRef] [PubMed]
12. Zhang, Y.C. PSO-RBF Fault Diagnosis of Wind Turbine Bearing on Time Domain Features. Mod. Manuf. Technol. Equip. 2022,

58, 13–16+20.
13. Sun, S.X.; Gao, J.; Wang, W. Intelligent Fault Diagnosis Technique of Convolutional Neural Networks Based on Multi-channel

Time-frequency Signals. Sci. Technol. Eng. 2021, 21, 6386–6393.
14. Gao, K.M.; Zhang, H.; Song, Y.D. Design of Active Suspension Sliding Mode Controller Based on Multi-objective Genetic

Algorithm. Mech. Electr. Eng. Technol. 2022, 51, 287–291.
15. Wang, F.; Zhou, F.X.; Yan, B.K. Rolling Bearing Fault Diagnosis Based on Feature Fusion and Support Vector Machine. Sci. Technol.

Eng. 2022, 22, 2351–2356.
16. Deo, T.Y.; Patange, A.D.; Pardeshi, S.S.; Jegadeeshwaran, R.; Khairnar, A.N.; Khade, H.S. A white-box svm framework and its

swarm-based optimization for supervision of toothed milling cutter through characterization of spindle vibrations. arXiv 2021,
arXiv:2112.08421.

17. Lv, C.; Chen, S.Y.; Hua, X.G. Fault diagnosis method of turbine flow passage based on improved KNN algorithm and its
application. Therm. Power Gener. 2021, 50, 84–90.

18. Zhang, Z.; Li, S.; Lu, J.; Wang, J.R.; Jiang, X.X. A novel intelligent fault diagnosis method based on fast intrinsic component
filtering and pseudo-normalization. Mech. Syst. Signal Process. 2020, 145, 106923. [CrossRef]

19. Lei, Y.G.; Yang, B.; Jiang, X.W. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst.
Signal Process. 2020, 138, 106587. [CrossRef]

20. Dang, Z.; Yong, L.; Li, Y. Improved dynamic mode decomposition and its application to fault diagnosis of rolling bearing. Sensors
2018, 18, 1972. [CrossRef]

21. Krishnan, M.; Gugercin, S.; Tarazaga, P.A. Wavelet-based dynamic mode decomposition. PAMM 2021, 20, 1. [CrossRef]
22. Lei, Y.G.; Jia, F.; Lin, J. An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big

Data. IEEE Trans. Ind. Electron. 2016, 63, 3137–3147. [CrossRef]

https://engineering.case.edu/bearingdatacenter/12k-drive-end-bearing-fault-data
http://doi.org/10.3901/JME.2018.07.087
http://doi.org/10.1007/s11771-019-4116-5
http://doi.org/10.1016/j.measurement.2015.08.034
http://doi.org/10.3390/s17020425
http://www.ncbi.nlm.nih.gov/pubmed/28241451
http://doi.org/10.1016/j.ymssp.2020.106923
http://doi.org/10.1016/j.ymssp.2019.106587
http://doi.org/10.3390/s18061972
http://doi.org/10.1002/pamm.202000355
http://doi.org/10.1109/TIE.2016.2519325


Sensors 2023, 23, 1858 17 of 17

23. Ding, X.; Wang, D.; Zhai, H. Application of Semi-Supervised Ladder Network and GAN in Fault Diagnosis of Rolling Bearing.
Mach. Des. Manuf. 2022, 375, 152–156.

24. Xue, Y.; Zhu, J.; Deng, A.D. A Rolling Bearing Fault Diagnosis Method Based on Entropy Feature and Stack Sparse Autocoder.
Ind. Control Comput. 2020, 33, 44–46.

25. Zhao, X.Q.; Zhang, Y.Z. Improved CNN-Based Fault Diagnosis Method for Rolling Bearings under Variable Working Conditions.
J. Xi’an Jiaotong Univ. 2021, 55, 108–118.

26. Li, W.H.; Shan, W.P.; Zeng, X.Q. Bearing fault identification based on deep belief network. J. Vib. Eng. 2016, 29, 340–347.
27. Xu, L.; Zheng, X.T.; Fu, B. Fault Diagnosis Method of Motor Bearing Based on Improved GAN Algorithm. J. Northeast. Univ. (Nat.

Sci.) 2019, 40, 1679–1684.
28. Du, X.J.; Jia, L.L. Fault diagnosis of rolling bearing based on optimized stacked denoising auto. J. Jilin Univ. (Eng. Technol. Ed.)

2022, 12, 2827–2838.
29. Zhang, K.; Wang, J.Y.; Shi, H.T. Research on Rolling Bearing Fault Diagnosis Under Variable Working Conditions Based on CNN.

Control Eng. China 2022, 29, 254–262.
30. Tang, B.; Chen, S.S. Method of bearing fault diagnosis based on deep convolutional neural network. J. Electron. Meas. Instrum.

2020, 34, 88–93.
31. Wang, H.; Liu, Z.L.; Ge, Y.P. Self-supervised signal representation learning for machinery fault diagnosis under limited annotation

data. Knowl. -Based Syst. 2022, 239, 107978. [CrossRef]
32. Jing, L.; Tian, Y. Self-Supervised Visual Feature Learning with Deep Neural Networks: A Survey. IEEE Trans. Pattern Anal. Mach.

Intell. 2020, 43, 4037–4058. [CrossRef] [PubMed]
33. Zhao, K.L.; Jin, X.L.; Wang, Y.Z. Survey on Few-shot Learning. J. Softw. 2021, 32, 349–369.
34. Bull, L.A.; Worden, K.; Dervilis, N. Towards semi-supervised and probabilistic classification in structural health monitoring.

Mech. Syst. Signal Process. 2020, 140, 1–15. [CrossRef]
35. Wu, X.; Zhang, Y.; Cheng, C. A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery. Mech.

Syst. Signal Process. 2021, 149, 107327. [CrossRef]
36. Guo, S. Multi-task convolutional neural network with coarse-to-fine knowledge transfer for long-tailed classification. IEEE Trans.

Ind. Electron. 2020, 67, 8005–8015. [CrossRef]
37. Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A Survey on Contrastive Self-supervised Learning. Technologies

2021, 9, 2. [CrossRef]
38. Zhao, Q.L.; Dong, J.Y. Self-supervised representation learning by predicting visual permutations. Knowledge-Based Systems. 2020,

210, 1–8. [CrossRef]
39. Pathak, D.; Krahenbuhl, P.; Donahue, J.; Donahue, J.; Efros, A.A. Context Encoders: Feature Learning by Inpainting. IEEE Comput.

Vis. Pattern Recognit. 2016, 2536–2544.
40. Doersch, C.; Gupta, A.; Efros, A.A. Unsupervised Visual Representation Learning by Context Prediction. IEEE Comput. Soc. 2015,

1422–1430.
41. Zhang, R.; Isola, P.; Efros, A.A. Colorful image colorization. In Computer Vision—ECCV 2016; Lecture Notes in Computer Science;

Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 649–666.
42. Ohri, K.; Kumar, M. Review on self-supervised image recognition using deep neural networks. Knowl.-Based Syst. 2021,

224, 107090. [CrossRef]
43. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.P.; Tejani, A.; Totz, J.; Wang, Z.; et al.

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114.

44. Asano, Y.M.; Rupprecht, C.; Vedaldi, A. Self-labelling via simultaneous clustering and representation learning. Int. Conf. Learn.
Reoresentation Open Rev. 2020.

45. Bautista, M.A.; Sanakoyeu, A.; Sutter, E.; Ommer, B. CliqueCNN: Deep Unsupervised Exemplar Learning. arXiv 2016,
arXiv:1608.08792v1.

46. Senanayaka, J.S.L.; Van Khang, H.; Robbersmyr, K.G. Toward Self-Supervised Feature Learning for Online Diagnosis of Multiple
Faults in Electric Powertrains. IEEE Trans. Ind. Inform. 2020, 17, 3772–3781. [CrossRef]

47. Li, G.; Wu, J.; Deng, C.; Wei, M.; Xu, X. Self-supervised learning for intelligent fault diagnosis of rotating machinery with limited
labeled data. Appl. Acoust. 2022, 191, 108663. [CrossRef]

48. Zhang, H.; Patel, V.M. Sparse Representation-Based Open Set Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39,
1690–1696. [CrossRef] [PubMed]

49. Pathak, D.; Girshick, R.; Darrell, T. Learning Features by Watching Objects Move. Comput. Vis. Pattern Recognit. 2017, 6024–6033.
50. Loparo, K. Case Western Reserve University Bearing Data Center. 2013. Available online: http://csegroups.case.edu/bearing-

datacenter/pages/12k-drive-end-bearing-fault-data (accessed on 4 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.knosys.2021.107978
http://doi.org/10.1109/TPAMI.2020.2992393
http://www.ncbi.nlm.nih.gov/pubmed/32386141
http://doi.org/10.1016/j.ymssp.2020.106653
http://doi.org/10.1016/j.ymssp.2020.107327
http://doi.org/10.1109/TIE.2019.2942548
http://doi.org/10.3390/technologies9010002
http://doi.org/10.1016/j.knosys.2020.106534
http://doi.org/10.1016/j.knosys.2021.107090
http://doi.org/10.1109/TII.2020.3014422
http://doi.org/10.1016/j.apacoust.2022.108663
http://doi.org/10.1109/TPAMI.2016.2613924
http://www.ncbi.nlm.nih.gov/pubmed/28114060
http://csegroups.case.edu/bearing-datacenter/pages/12k-drive-end-bearing-fault-data
http://csegroups.case.edu/bearing-datacenter/pages/12k-drive-end-bearing-fault-data

	Introduction 
	Related Work 
	Proposed Method 
	Methodology 
	Two-Stage Learning Task 
	Pretext Task Design 

	Experimental Validation 
	Case 1: Bearing Fault Diagnosis Based on Case Western Reserve University Dataset 
	Dataset Description 
	Analysis of Parameter Sensitivity 
	Results and Analysis 

	Case 2: Fault Diagnosis for Rolling Bearings of Special Test Bench 
	Dataset Description 
	Analysis of Parameter Sensitivity 
	Results and Analysis 


	Conclusions 
	References

