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Abstract: The growth in online child exploitation material is a significant challenge for European
Law Enforcement Agencies (LEAs). One of the most important sources of such online information
corresponds to audio material that needs to be analyzed to find evidence in a timely and practical
manner. That is why LEAs require a next-generation AI-powered platform to process audio data
from online sources. We propose the use of speech recognition and keyword spotting to transcribe
audiovisual data and to detect the presence of keywords related to child abuse. The considered models
are based on two of the most accurate neural-based architectures to date: Wav2vec2.0 and Whisper.
The systems were tested under an extensive set of scenarios in different languages. Additionally,
keeping in mind that obtaining data from LEAs are very sensitive, we explore the use of federated
learning to provide more robust systems for the addressed application, while maintaining the privacy
of the data from LEAs. The considered models achieved a word error rate between 11% and 25%,
depending on the language. In addition, the systems are able to recognize a set of spotted words with
true-positive rates between 82% and 98%, depending on the language. Finally, federated learning
strategies show that they can maintain and even improve the performance of the systems when
compared to centralized trained models. The proposed systems set the basis for an AI-powered
platform for automatic analysis of audio in the context of forensic applications of child abuse. The use
of federated learning is also promising for the addressed scenario, where data privacy is an important
issue to be managed.

Keywords: speech recognition; keyword spotting; child abuse; federated learning; Whisper;
Wav2vec2.0

1. Introduction

The growth in online child exploitation and abuse material is a significant challenge
for European Law Enforcement Agencies (LEAs). Currently, the revision of online material
about child abuse exceeds the capacity of LEAs to respond in a practical and timely
manner. One of the most important sources of information that needs to be analyzed to find
evidence about child abuse corresponds to audiovisual material from multimedia content.
With the aims of safeguarding victims, prosecuting offenders and limiting the spread of
online child abuse related material, LEAs need a next-generation AI-powered platform
to process multimedia data from online sources. One of the main goals of the GRACE
project (https://www.grace-fct.eu/ accessed on 1 February 2023) is to develop robust
AI-based technology to equip LEAs with the aforementioned platform. Two of the core
applications to be incorporated in order to accurately transcribe audiovisual online material
and to detect the presence of specific keywords about child abuse in the transcriptions are
automatic speech recognition (ASR) and keyword spotting (KWS).

Within this context, ASR technology has been applied in various forensic scenarios—
for instance, to collect evidence via the examination of electronic devices [1] or to analyze
multimedia content related to specific threats [2,3]. Nevertheless, the successful implemen-
tation of an ASR system in forensics introduces a series of issues to be solved, which are not
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present in other domains where ASR is applied. For instance, it is common to find audio
coming from different sources, which are highly affected by background noise, overlapping
speakers, and audio reverberation, among other factors. All these aspects affect the quality
of the obtained transcription and the capability of the system to detect specific keywords.

Despite the aforementioned problems, recent advances in ASR have introduced novel
end-to-end architectures [4] that have shown to be accurate enough in those adverse
conditions. The core idea of end-to-end models is to directly map the input speech
signal to character sequences and therefore greatly simplify training, fine-tuning, and
inference making [5–9]. Two main approaches are distinguished in the literature to train
end-to-end ASR systems: fully supervised or self-supervised models. Regarding the first
group, NVIDIA proposed Quartznet [10] with the aim of building a competitive but lighter
end-to-end ASR model. The architecture consists of multiple blocks of 1D convolutions
stacked with residual connections. The model has been trained and tested on the Common
Voice corpus, achieving word error rates (WERs) between 7.7% and 12.5%, depending on
the language [11]. A Quartznet model also produced WERs of 19.2% and 18.3% in French
and Spanish language multimedia data, respectively, from the MediaSpeech corpus [12].
Researchers from NVIDIA recently proposed Citrinet [13] as an evolution of Quartznet. The
model consists of a residual network formed by 1D time-channel separable convolutions
combined with a sub-word encoding and a squeeze-and-excitation mechanism [14]. The
authors reported a WER of 5.6% on the TEDLIUMv2 corpus. Another architecture that has
proven to be accurate in many ASR benchmark scenarios is the recurrent neural network
transducer (RNN-T) [15]. The RNN-T is formed by three main blocks: (1) an encoder net-
work that receives input acoustic frames and produces high-level speech representations,
(2) a predictor that acts as a decoder by processing the previous produced token, and (3) a
joint network that combines the outputs from the two previous blocks and produces the
distribution of the next predicted token or blank symbol. Recent models based on RNN-T
achieved a WER 14.0% in the TEDLIUMv2 corpus [16].

Contrary to fully supervised models, recent studies are focused on the use of big
acoustic models trained with self-supervised learning methods and a large amount of
unlabeled data. Researchers from Meta AI demonstrated the capabilities of models of
this type by introducing Wav2Vec2.0 [17]. This system outperformed many benchmark
results, especially when considering ASR for low-resource languages in the Common Voice
corpus [18]. Particularly, the authors in [19] considered a Wav2vec2.0 model combined
with their proposed language modeling approach and achieved state-of-the-art results in
the German Common Voice corpus, with a WER of 3.7%. Wav2Vec2.0-based models have
also been successfully tested in more adverse acoustic environments, such as in multimedia
Portuguese data from the CORAA database [20]. Due to these reasons, Wav2Vec2.0 has
become one of the most often considered neural-based models for ASR. Self-supervised
approaches such as Wav2Vec2.0 are challenging because there is not a predefined lexicon
for the input sound units during the pre-training phase. Moreover, sound units have
variable length with no explicit segmentation [21]. With the aim of solving such issues, Meta
AI released HuBERT as a new approach to learn self-supervised speech representations [22].
The combination of convolutional and transfomer networks from Wav2Vec2.0 and HuBERT
has achieved state-of-the-art results in many ASR scenarios. With the aim of combining the
best features from both type of networks in a single neural block, researchers from Google
introduced the “convolutional augmented transfomer” or Conformer [23]. A Conformer
network achieved a WER of 7.2% in the TEDLIUMv2 corpus [24].

Self-supervised audio encoders like Wav2Vec2.0, HuBERT, and Conformers learn high
quality audio representations. However, due to its unsupervised pre-training nature, they
lack a proper decoding to transform such representations into usable outputs. This is why
a fine-tuning stage is always necessary in order to accurately implement models for ASR or
audio classification. With the aim of solving the aforementioned issue, researchers from
OpenAI recently proposed “Whisper” [25]. Whisper is a sequence-to-sequence transformer
trained in a fully supervised manner, using up to 680,000 h of labeled audio from the
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Internet. The model has achieved state-of-the-art WER results on many benchmark datasets
for ASR, including librispeech, TEDLIUM, and Common Voice, among others.

There are two main issues that appear when designing ASR solutions for forensic
scenarios: The first one is related to find the most appropriate neural architecture from
the ones previously described in order to deal with different acoustic environments. The
second one is related to data privacy and protection [26]. Generally, obtaining operative
data from LEAs for the addressed scenario is not possible. In this context, federated
learning (FL) has emerged as an alternative with which to train machine learning models
on remote devices, such as mobile phones and remote data-centers in a non-centralized
manner, preserving data privacy [27–30]. The procedure is as follows: LEAs’ operative data
are stored in on-premise data servers. Then, FL strategies aim to transfer only local model
updates to a central server, keeping LEAs’ data private. The central server aggregates
information obtained from multiple clients, i.e., LEAs, and updates a central model that is
transmitted back to the clients for their consumption. FL has been applied to train robust
federated acoustic models for ASR [31–33] and KWS [34]. In [32], the authors proposed a
client-adaptive federated training scheme to mitigate data heterogeneity when training
ASR models. The proposed system achieved a similar WER with respect to the obtained
one using fully centralized training. In [33], the authors proposed a strategy to compensate
non-independent and identically distributed (non-IID) data in federated training of ASR
systems. The proposed strategy involved random client data sampling, which resulted
in a cost-quality trade-off. The optimization of such a trade-off led to obtaining ASRs
with similar WERs to the obtained by training-centralized systems. The authors in [34]
demonstrated the capabilities of federated training to obtain robust KWS systems locally
trained on edge devices such as smartphones, reaching similar accuracies when compared
with centralized trained models.

According to the reviewed literature, the two main paradigms and solutions for ASR
to date include self-supervised models based on Wav2Vec2.0 and fully supervised models
such as Whisper. This work considered and compared these two approaches to test their
capabilities to perform robust ASR and KWS in a large set of test scenarios. We also
evaluated the use of FL in the context where different LEAs can share a common ASR and
KWS system, keeping the privacy of their data. In summary, the main contributions of this
paper are four-fold:

1. We performed an extensive comparison between two of the most accurate neural-
based ASR architectures to date: a fine-tuned version of Wav2Vec2.0 and Whisper.
The evaluation was performed in many scenarios, but paying special attention to
corpora coming from multimedia content. The models were tested on data from
seven indo-European Languages, including English, Spanish, German, French, Italian,
Portuguese, and Polish. This evaluation can be useful in other domains besides ASR
forensics, making our contribution open and viable for other scenarios.

2. We created and released an in domain corpus that includes specific keywords of the
child abuse domain, and a set of accompanying audio files where the keywords are
present. The included audio was selected from open available corpora used in the
literature. The created corpus can be used as a benchmark to test ASRs in uncontrolled
acoustic conditions.

3. The two neural architectures are compared as well in the created corpora within the
scope of child abuse forensics. To the best of our knowledge, this is the first study to
comprise the use of open ASR solutions and their capabilities to recognize specific
words within a forensic domain.

4. We validated the use of FL strategies to train ASR systems in the context of forensic
applications. The core idea is that different LEAs can share a common model while
keeping the privacy of their data.

The rest of the paper is distributed as follows. Section 2 details different technical
aspects of Wav2Vec2.0 and Whisper architectures for ASR. Section 3 describes the consid-
ered corpora to test the ASR systems, and the process to deliver an in domain corpus for
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KWS in the context of forensics. Section 4 describes the pilot study on the use of FL for the
addressed application. Section 5 displays the main results obtained regarding ASR, KWS,
and FL. Section 6 discusses the main insights obtained from the results. Finally, Section 7
shows the main conclusion derived from this work.

2. Methods

We considered two of the most accurate neural-based ASR architectures to date: (1)
Wav2vec2.0, which is trained following a self-supervised paradigm, and (2) Whisper, which
is trained following a fully supervised strategy. Details about each model are found in the
following sub-sections.

2.1. Wav2vec2.0

Wav2vec2.0 [17] is a self-supervised end-to-end architecture based on convolutional
and transformer layers (see Figure 1). The model encodes raw audio waveforms χ into
latent speech representations z1, . . . , zT via a multi-layer convolutional feature encoder
f : χ → Z. These latent representations fed a transformer-masked network g : Z → C.
The transformer network initially quantizes the continuous representations, forming a
discrete set of outputs q1, . . . , qT that represent targets in the self-supervised learning
objective [17,35]. Those quantized representations are then contextualized using the at-
tention blocks from the transformer module, obtaining a set of discrete contextual repre-
sentations c1, . . . , cT . The feature encoder is formed by seven convolutional blocks with
512 channels, strides of {5, 2, 2, 2, 2, 2, 2} and kernel widths of {10, 3, 3, 3, 3, 2, 2}. The trans-
former network is formed by 24 blocks, 1024 dimensions, inner dimensions numbering
4096, and a total of 16 attention heads.

Figure 1. Wav2vec2.0 architecture representation. The raw audio signal is mapped to speech
representations that are fed into a transformer network to output context representations. Figure
based on the one presented in [17].

We considered a pre-trained Wav2vec2.0 acoustic model based on the Wav2Vec2-XLS-
R-300M model, which is available via Hugginface (https://huggingface.co/facebook/
wav2vec2-xls-r-300m accessed on 1 February 2023). The model was pre-trained in a self-
supervised manner using 436k hours of unlabeled speech data in 128 languages from the
VoxPopuli [36], Multilingual librispeech (MLS) [37], Common Voice [38], BABEL, and
VoxLingua107 [39] corpora. The Wav2Vec2-XLS-R-300M is one of the different versions of
the Meta AI’s XLS-R multilingual model [40] composed by 300 million parameters. The
multilingual pre-trained model was fine-tuned with labeled speech data (see Section 3.1) in

https://huggingface.co/facebook/wav2vec2-xls-r-300m
https://huggingface.co/facebook/wav2vec2-xls-r-300m
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seven languages: English, German, French, Spanish, Italian, Portuguese, and Polish. Each
model was trained for 50 epochs, with a batch size of 2, 16 gradient accumulation steps, and
a learning rate of 5× 10−5, which was warmed up during the initial 10% of the training.

The trained acoustic representations were decoded using a connectionist temporal
classification (CTC) layer with a beam-search decoding strategy (beam-width = 256). The
CTC decoding included the use of separate 3-gram language models that are trained using
large text corpora, and which were included in the decoding with weights of α = 0.5 and
β = 1.5.

2.2. Whisper

Whisper is a recently introduced ASR system by OpenAI [25]. Contrary to Wav2vec2.0,
Whisper is trained in a fully supervised manner, using up to 680k hours of labeled speech
data from multiple sources. The model is based on an encoder-decoder Transformer, which
is fed by 80-channel log-Mel spectrograms. The encoder is formed by two convolution
layers with a kernel size of 3, followed by a sinusoidal positional encoding, and a stacked set
of Transformer blocks. The decoder uses the learned positional embeddings and the same
number of Transformer blocks from the encoder. Figure 2 illustrates the general Whisper
architecture. Different pre-trained models are available with variations in the number of
layers and attention heads. We considered the “Whisper-large” model, which consists
of 1550 million parameter distributed in 32 layers and 20 attention heads. The model is
available via Huggingface (https://huggingface.co/openai/whisper-large accessed on 1
February 2023).
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Figure 2. Whisper architecture representation. The log Mel-spectrograms are encoded by a trans-
former network. Encoded representations are transformed into character outputs and no-speech
tokens via the transformer decoder. Figure based on the one presented in [25].

The model was not fine-tuned in this study; thus, the evaluation for all languages
was conducted in a zero-shot setting. The decoding was performed using a beam search
strategy with 5 beams, an array of temperature weights of [0.2, 0.4, 0.6, 0.8, 1], and a no
repeat n-gram size of 3 in order to take advantage of the language modeling head and to
avoid loops, in a similar way to [25].

https://huggingface.co/openai/whisper-large
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3. Materials

This section describes a set of open corpora used to benchmark the two considered
ASR systems (Section 3.1), followed by the process performed to derive a set of keywords to
be spotted by the considered systems (Section 3.2), and the description of a built in domain
dataset considered as well to test the considered models (Section 3.3).

3.1. Data

The ASR and KWS models were trained an evaluated in a set of seven indo-European
languages: English, Spanish, German, French, Italian, Portuguese, and Polish. These
languages were selected because of two main reasons: (1) we covered German, Latin,
and Slavik-based languages, which represent the majority of type of languages spoken
in Europe, and (2) these languages were particularly selected by the Law Enforcement
Agencies (LEAs) for the applications related to detecting child-abuse in online sources.
Different public corpora were considered to train/test the ASR and KWS models in each
language. Wav2vec2.0 models were fine-tuned using the Common Voice corpus [38] for
each considered language. The amount of available labeled data highly varies depending
on the language, and include: 1600 h for English, 777 h for German, 623 for French, 324 for
Spanish, 158 for Italian, 63 for Portuguese, and 43 for Polish. These data are freely available
via Huggingface (https://huggingface.co/datasets/common_voice accessed on 1 February
2023). The training data for the Spanish model also included 57 h from the RTVE2018
dataset [41] from the Albayzin 2018 evaluation challenge.

The corpora covered in our paper include both European and American accents for
the aforementioned languages. In addition, the common voice corpus, which was used
as our train set, was crowd-sourced from many countries and includes a large number of
accents that helps to improve the generalization capabilities of our models.

The performance of the fine-tuned Wav2vec2.0 and the Whisper-based models were
evaluated in a cross-corpora fashion, considering a large set of databases from the literature
that are available in the different languages. The list of considered corpora is observed in
Table 1. These corpora were selected in order to test the performances of the models in
several recording conditions, which can be more similar to the realistic scenarios found by
LEAs. Notice that due to the sensitive nature of the target application, it is not possible
to get access to realistic operative data from LEAs. However, we created an in-domain
synthetic dataset using these open source corpora, which is described in Section 3.3.

Table 1. List of public speech corpora considered to test the performances of ASR and KWS systems
based on Wav2Vec2.0 and Whisper.

Corpus Name Description Languages Test
Duration (h)

Common Voice [38]

English 173
German 72

Read sentences collected French 38
and validated via Spanish 26
crowd-sourcing Italian 23

Portuguese 6
Polish 7

Spoken Wikipedia Volunteer readers of English 42
Corpus (SWC) [42] Wikipedia articles German 36

Media Speech [12] Speech segments from French 10
YouTube videos Spanish 10

https://huggingface.co/datasets/common_voice
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Table 1. Cont.

Corpus Name Description Languages Test
Duration (h)

Multilingual TEDx [43]

German 2
Audio recordings French 2
and transcripts Spanish 2
from TED talks Italian 2

Portuguese 2

TEDLIUMv2 [44] Audio recordings English 3from TED talks

Multilingual librispeech (MLS) [37]

German 14
French 10

Audio recordings Spanish 10
from audiobooks Italian 5

Polish 2
Portuguese 4

Voxforge

German 3
Crowdsourced French 4
read Spanish 5
speech Italian 2

Portuguese 1

Debating technologies [45] Audio recordings from English 1transcribed public debates

Polish Parliamentary corpus [46] Recordings from the Polish 1Polish parliament

CORAA [20] Combination of five Portuguese 13corpora in Portuguese

3.2. Spotted Keywords

In order to test the capabilities of the ASR models to spot specific keywords within
the child abuse domain, we defined a list of keywords to be spotted. The keyword list
was obtained from a set of open documents that include: (1) the “Best Practices on Victim
support for LEA first responders” deliverable from the GRACE project (https://www.
grace-fct.eu/deliverables/70 accessed on 1 February 2023), (2) the 2021 “Barriers to Com-
pensation for Child Victims of Sexual Exploitation” report from ECPAT (https://ecpat.org/
wp-content/uploads/2021/05/Barriers-to-Compensation-for-Child_ebook.pdf accessed
on 1 February 2023) [47], (3) the study from [48], (4) EUROPOL technical reports [49–51],
(5) EUROPOL press-releases from 2018 to 2022 using the keyword “child abuse” (https://
www.europol.europa.eu/media-press/newsroom?q=child%20abuse accessed on 1 Febru-
ary 2023), (6) Wikipedia articles about “child abuse” and “online child abuse”, and (7)
UNICEF press-releases about “child abuse” (https://www.unicef.org/search?force=0&
query=child+abuse&created%5Bmin%5D=&created%5Bmax%5D= accessed on 1 February
2023). All documents were text crawled and pre-processed by performing lemmatization
and removing stop words, numbers, and date entities. After this process, we obtained a
corpus with 55,059 words, of which 6028 are unique. Figure 3 shows the most important
keywords found in the crawled corpus.

https://www.grace-fct.eu/deliverables/70
https://www.grace-fct.eu/deliverables/70
https://ecpat.org/wp-content/uploads/2021/05/Barriers-to-Compensation-for-Child_ebook.pdf
https://ecpat.org/wp-content/uploads/2021/05/Barriers-to-Compensation-for-Child_ebook.pdf
https://www.europol.europa.eu/media-press/newsroom?q=child%20abuse
https://www.europol.europa.eu/media-press/newsroom?q=child%20abuse
https://www.unicef.org/search?force=0&query=child+abuse&created%5Bmin%5D=&created%5Bmax%5D=
https://www.unicef.org/search?force=0&query=child+abuse&created%5Bmin%5D=&created%5Bmax%5D=
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Figure 3. Top 20 of the most important keywords related to child abuse, which were used to test the
capability of the ASR system to detect specific terminology within the domain.

Afterwards, we selected the 100 most repeated words from the corpus, which represent
33% of the information within the whole set of crawled documents. Finally, we excluded
12 terms because they were very broad concepts not related to child abuse, leading to a final
set of 88 keywords to be spotted. The obtained keyword list (in English) was translated
into the remaining six considered languages in order to have a common benchmark for
all languages.

3.3. GRACE Dataset

We considered an additional corpus to test the implemented ASR systems by merging
and filtering the data described in Section 3.1. We selected audio samples from all datasets
that contain at least one of the 88 selected keywords. Table 2 shows the data distribution for
each language after selection. The table includes the datasets considered for each language
where the keywords were found, the number of utterances, and the total audio duration
(in hours).

Table 2. Data distribution for the GRACE dataset, which combines different corpora into a single one
within the child abuse domain.

Language Base Corpora # Utterances Duration (h)

English SWC, Debating technologies, TEDLIUMv2 2979 9.2
German Multilingual TEDx, SWC, Voxforge 1712 5.9
French Multilingual TEDx, MediaSpeech, Voxforge 1250 4.1
Spanish Multilingual TEDx, MediaSpeech, Voxforge 557 2.0
Italian Multilingual TEDx, Voxforge 354 1.0
Portuguese Multilingual TEDx, Voxforge, CORAA 1503 2.3

The selected audio files were processed in order to have more realistic acoustic con-
ditions, like those expected in forensic applications within the considered domain. The
process included: (1) adding background noise with signal to noise ratios (SNR) between 5
and 30 dB (randomly), (2) adding reverberation using room impulses from the VOiCES
dataset [52], and (3) randomly applying the ogg-vorbis codec [53] due to it being com-
monly found in audio material from online sources. The final ASR and KWS evalua-
tion was performed considering the two versions of the corpus: clean and noisy. This
corpus is available online (https://datasets.vicomtech.org/di01-grace-automatic-speech-
recognition-and-keyword-spotting/GRACE_ASR.zip accessed on 1 February 2023) to be
used as a benchmark dataset for speech recognition in different languages under uncon-
trolled acoustic conditions.

https://datasets.vicomtech.org/di01-grace-automatic-speech-recognition-and-keyword-spotting/GRACE_ASR.zip
https://datasets.vicomtech.org/di01-grace-automatic-speech-recognition-and-keyword-spotting/GRACE_ASR.zip
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4. Federated Learning

The considered FL pipeline was performed only with English data and included five
nodes that were used for federated training, a dummy node considered to test the evolution
of the learning process, and a central server in charge of aggregating the weights received
from the five nodes. Figure 4 shows the implemented architecture. Three of the servers
were located at Vicomtech premises (Spain), one server was located in Greece, another one
in Portugal, and the remaining one in Cyprus. The aim of these connections was to create a
real environment for the pilot, in similar conditions to the expected one when the model
will perhaps be trained by different LEAs across Europe. In addition, secure communication
between clients and the server was established through a VPN connection to ensure that
sensitive data (parameters) were safely transmitted and to prevent unauthorized access.
Each node contained data from a different dataset: TEDLIUMv2, debating technologies,
Librispeech-other, Librispeech-clean, and SWC. This data configuration aimed to eval-
uate the impact of non-IID data distribution, which is more realistic for the addressed
forensic application.

si te-1
TEDLIUMv2

site-2
Debating 

technologies

si te-3
Libr ispeech other

si te-4
Libr ispeech clean

si te-5
SWC

local model 
update

aggregated 
model 
update

local model 
update

aggregated 
model 
update

local model 
update

aggregated 
model update

aggregated 
model update

aggregated 
model update

local model 
update

local model 
update

dummy node 
Libr ispeech test clean

Figure 4. Configuration of the FL architecture. Central server with five client nodes (site-{1, 2, · · · , 5})
and a dummy node only used to test the performance of the aggregated model.

The FL pilot test was performed only with the Wav2Vec2.0 model and with the pre-
trained Wav2Vec2-XLS-R-300M model. The training hyperparameters were the same for
the five clients, and included a batch size of 2, a learning rate of 5× 10−5 warmed up in the
first 10% of the training time, and a gradient accumulation of 16 steps. The local training
was performed for 5 epochs. The central server was configured to run for 10 rounds of
federated training, while using the federated averaging (FedAvg) aggregation mechanism
to update the central model. The architecture configuration and the training process were
implemented using Nvidia Flare (https://nvflare.readthedocs.io/en/main/index.html
accessed on 1 February 2023).

https://nvflare.readthedocs.io/en/main/index.html
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5. Results
5.1. Speech Recognition

Wav2Vec2.0 and Whisper models were evaluated under the corpora described in
Section 3.1. The results of the ASR systems in terms of WER are shown in Table 3. The
results included those obtained in the evaluation of the seven languages, and using both the
open benchmark corpora and the two versions (clean and noisy) of the synthetic GRACE
corpus.

Table 3. Results of the ASR models in different languages considering all benchmark datasets. Results
in terms of WER.

Model Common MLS TED- MTEDx SWC Media Voxforge Debates Polish CORAA GRACE GRACE AVG.
Voice LIUMv2 Speech Parl Clean Noisy

English

Wav2Vec 2.0 16.1 - 17.2 - 20.6 - - 11.7 - - 18.9 32.6 19.5
Whisper 10.0 - 5.4 - 20.6 - - 7.0 - - 24.5 19.8 14.6

German

Wav2Vec 2.0 11.9 12.9 - 36.7 34.5 - 7.5 - - - 20.0 33.8 22.5
Whisper 7.1 6.7 - 21.7 18.3 4.2 - - - 15.5 22.5 13.7

French

Wav2Vec 2.0 16.7 17.0 - 25.3 - 29.1 16.7 - - - 26.5 56.3 26.8
Whisper 21.7 8.0 - 23.3 - 35.8 14.6 - - - 36.8 34.1 24.9

Spanish

Wav2Vec 2.0 4.7 7.2 - 12.9 - 14.5 6.3 - - - 12.6 33.3 13.1
Whisper 6.2 5.3 - 9.4 - 15.8 4.2 - - - 19.6 18.8 11.3

Italian

Wav2Vec 2.0 12.8 21.1 - 22.2 - - 14.3 - - - 18.0 46.3 22.5
Whisper 7.9 13.6 - 11.6 - - 10.5 - - - 14.1 20.2 13.0

Portuguese

Wav2Vec 2.0 12.9 20.1 - 33.8 - - 17.8 - - 48.5 42.7 68.1 34.8
Whisper 5.4 8.8 - 13.1 - - 11.2 - - 21.7 22.1 42.3 17.8

Polish

Wav2Vec 2.0 11.5 12.7 - - - - - - 32.1 - - - 18.8
Whisper 8.9 6.0 - - - - - - 32.5 - - - 15.8

On average, the WER for each language using Whisper ranged from 11.3% (in Spanish)
to 24.9% (in French). The results using Wav2Vec2.0 ranged from 13.1% (in Spanish) to 34.8%
(in Portuguese). In general, Whisper produces less errors than Wav2Vec2.0 (see Figure 5
left). The difference between the models was statistically significant according to a Mann–
Whitney test (U = 1203.5, p-value = 0.016). Whisper outperformed Wav2Vec2.0, especially
under the most affected acoustic conditions, such as in the GRACE noisy, TEDLIUMv2,
Debates, and CORAA corpora. However, there are some scenarios where Wav2Vec2.0
outperformed Whisper and which should be considered with special attention, such as the
results for Spanish Common Voice.

The results obtained were compared to those found in the literature for the multilingual
corpora: Common Voice, MLS, MTEDx, and MediaSpeech. The comparison is shown in
Table 4. The Wav2Vec2.0-based model outperformed results in the Spanish versions of
Common Voice and MediaSpeech corpora, with WERs of 4.3% and 14.5%, respectively,
with respect to the results reported in [18] for Common Voice (WER = 6.2%) and in [12]
for MediaSpeech (WER = 18.3%). We also reported state-of-the-art results for the Spanish,
Portuguese, Italian, and German versions of the MTEDx corpus (WERs of 9.4%, 12%,
11.6%, and 21.7%, respectively) with respect to the WERs of 16.2%, 20.2%, 16.4%, and 42.3%
reported in [43]. The Whisper model also achieved state-of-the-art results on the CORAA
corpus (WER = 21.7%) with respect to the results reported in [54] (WER = 21.9%), and on
the TEDLIUMv2 corpus (WER = 5.4%) compared to [13] (WER = 5.6%). Regarding MLS,
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the state-of-the-art results are still from [55]. However, notice that the results reported
here correspond to cross-corpus tests, whereas the experiments performed in [55] were on
Wav2Vec2.0 models trained and tested using MLS, thereby making the models adapted
just for such a corpus.

Table 4. WER comparison between the results reported and those from the state-of-the-art for Com-
mon Voice, MLS, and MTEDx corpora. The best result for each corpus and language is highlighted in
bold.

Corpus Reference Language
English German French Spanish Italian Portuguese Polish

[11] - 7.7 12.5 10.9 - - -
[18] - 7.2 11.2 6.2 6.5 6.1 7.6
[36] - 7.8 9.6 10.0 - - -
[25] 10.1 7.7 14.7 6.4 8.1 7.1 9.0

Common [19] - 3.6 - - - - -
Voice [56] - 9.8 - - - - -

[57] - - - - - 9.2 -
Wav2vec2.0 16.1 11.9 16.7 4.7 12.8 12.9 11.5
Whisper-large 10.0 7.1 21.7 6.2 7.9 5.4 8.9

MLS

[37] - 6.5 5.6 6.1 10.5 19.5 20.4
[40] - 7.4 10.0 6.9 12.0 15.6 9.8
[55] - 4.1 5.0 3.7 8.2 8.0 6.6
[25] - 6.6 8.9 5.4 14.3 9.2 6.6
[57] - - - - - 12.3 -
Wav2vec2.0 - 12.9 17.0 7.2 21.1 20.1 12.7
Whisper-large - 6.7 8.0 5.3 15.8 8.8 9.9

MTEDx

[43] - 42.3 19.4 16.2 16.4 20.2 -
[57] - - - - - 21.0 -
Wav2vec2.0 - 36.7 25.3 12.9 22.2 33.8 -
Whisper-large - 21.7 23.3 9.4 11.6 13.1 -

MediaSpeech
[12] - 19.2 18.3 - - - -
Wav2vec2.0 - 29.1 14.5 - - - -
Whisper-large - 35.8 15.8 - - - -

5.2. Keyword Spotting

The text transcriptions from Wav2Vec2.0 and Whisper were post-processed in order to
find the presence of the defined keywords to be spotted. The process involved transforming
the transcription to lowercase and lemmatization. Lemmatization was performed to reduce
the inflectional form of each word in order to detect all possible variations of the word
within the transcription. The lemmatization process was performed using the set of
large open dictionaries available in Spacy (https://spacy.io/usage/models accessed on 1
February 2023). The results obtained for KWS in each corpus are shown in Table 5. The
results are presented in terms of the true positive rate (TPR). This is a common metric
used in applications of this type where it is more important to avoid false-positive than
false-negative errors [58,59].

On average, the TPRs were higher using Whisper, and the results per language using
Whisper ranged from 81.5% (for Polish) to 98.4% (for Italian). Results using Wav2Vec2.0
ranged from 82.9% (for Portuguese) to 94.9% (for Spanish). Similarly to the ASR results,
the difference between Whisper and Wav2Vec2.0 was larger when considering speech
signals in uncontrolled acoustic conditions, such as the ones from the GRACE noisy corpus,
where we can guarantee the presence of the spotted keywords in every utterance. High
differences were also observed for the CORAA corpus, Common Voice, and the German
SWC. The differences between the results obtained using Wav2Vec2.0 and Whisper were
also statistically significant (see Figure 5 right) according to a Mann–Whitney test with
U = 589.0 and a p-value = 0.003.

https://spacy.io/usage/models
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Table 5. Results of KWS in different languages considering all benchmark datasets. Results in terms
of TPR (%).

Model Common MLS TED- MTEDx SWC Media Voxforge Debates Polish CORAA GRACE GRACE AVG.
Voice LIUMv2 Speech Parl Clean Noisy

English

Wav2Vec 2.0 93.3 - 95.4 - 92.5 - - 96.6 - - 94.6 79.5 92.0
Whisper 96.8 - 97.4 - 94.1 - - 97.7 - - 91.8 93.6 95.2

German

Wav2Vec 2.0 91.3 96.9 - 93.5 80.4 - 99.8 - - - 94.3 79.7 90.8
Whisper 97.8 98.8 - 97.7 97.6 99.8 - - - 97.2 90.6 97.1

French

Wav2Vec 2.0 90.6 90.1 - 94.5 - 82.8 90.7 - - - 90.5 60.1 85.6
Whisper 94.6 98.0 - 93.9 - 84.9 94.2 - - - 88.0 81.3 90.7

Spanish

Wav2Vec 2.0 96.7 98.1 - 98.1 - 96.3 100.0 - - - 97.0 78.1 94.9
Whisper 98.2 99.8 - 98.6 - 94.4 99.8 - - - 92.0 94.2 96.7

Italian

Wav2Vec 2.0 90.7 97.2 - 95.5 - - 98.9 - - - 96.1 80.9 93.2
Whisper 97.8 99.9 - 97.3 - - 99.8 - - - 98.7 96.9 98.4

Portuguese

Wav2Vec 2.0 93.1 93.4 - 94.1 - - 99.1 - - 74.3 76.8 49.5 82.9
Whisper 96.6 97.5 - 99.4 - - 100.0 - - 88.1 88.3 81.3 93.0

Polish

Wav2Vec 2.0 93.9 96.9 - - - - - - 83.3 - - - 91.4
Whisper 95.4 98.7 - - - - - - 50.3 - - - 81.5
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Figure 5. Comparison between the results obtained using Wav2Vec2.0 and Whisper for ASR (left)
and KWS (right).

5.3. Federated Learning

The FL experiment involved training the Wav2Vec2.0 system using five separate real
servers for training, and one additional node (dummy) used only to test the final model.
Each node contained data from a different dataset (only in English) in order to evaluate the
contribution from each corpus to the global aggregated model. The aim was also to cover
non-IID conditions, which have shown to be one of the most important drawbacks when
training models in an FL approach. The results are shown in Table 6. The results using
the FL training are compared to those obtained when training the system in a completely
centralized manner. Similar WERs were obtained by each node in the federated and
centralized training. The main difference is that when considering FL models, there is only
one aggregated model which covers the results of the five nodes, instead of having five
different models for the case of the centralized approach. This fact greatly reduces the time
considered to train the system, and most importantly, it is possible to take advantage of
data from different data centers to train a more robust and general model without the need
for sharing data among clients.
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Table 6. Results of the FL pilot comparing WERs from Wav2Vec2.0 models trained in a federated or
centralized way.

Node Data WER Federated WER Centralized

node-1 TED-LIUMv2 13.5 13.3
node-2 Debates 12.4 12.3
node-3 Librispeech-other 7.9 7.8
node-4 Librispeech-clean 2.8 3.2
node-5 SWC 25.7 24.3
dummy Librispeech-clean 3.6 3.8

6. Discussion

The evaluation of Wav2Vec2.0 and Whisper-based ASR systems was performed in a
large set of different scenarios, including one specifically designed for forensic applications
within the child abuse domain. On average, Whisper is more accurate than the Wav2Vec2.0-
based system. Whisper achieved WERs ranging from 11.5% to 24.9%, depending on
the language, compared with Wav2Vec2.0’s WERs of between 13.3% and 34.8%. The
difference between the two models was even larger when using languages trained with
fewer resources, such as Portuguese or Italian. Despite these differences, Wav2vec2.0
is competitive with Whisper when the number of hours for fine-tuning is large, e.g, for
English, Spanish, or French.

Results using the GRACE dataset showed relatively similar WERs between Wav2Vec2.0
and Whisper when considering the clean version of the corpus: the average WER was 22.1%
for Whisper and was 23.2% for Wav2Vec2.0. However, the difference between the two
models greatly increased with the noisy version of the corpus: the average WER was 26.3%
for Whisper and 45.1% for Wav2Vec2.0. This is a great indicator of the ability of Whisper
to perform accurate transcriptions under uncontrolled and noisy acoustic conditions, by
keeping similar WERs in the two versions of the GRACE corpus. Despite the differences
between the two types of models, there are some surprising results where Wav2Vec2.0
outperformed Whisper, and which should be considered with special attention—for in-
stance, when evaluating the GRACE clean corpus in languages such as English, French,
and Spanish. The models for these three languages were fine-tuned with more data, which
likely explains the lower WER for Wav2Vec2.0 compared to that of Whisper.

Our systems achieved state-of-the art results on several of the considered benchmark
corpora. We reported state-of-the-art results for some of the languages in the Common
Voice corpus. State-of-the-art results were also achieved for almost all languages ib the
MTEDx and MediaSpeech corpora. These results are good indicators if the ability of the
considered systems to accurately recognize speech under more natural and spontaneous
scenarios, closer to the expected in forensic domains.

The KWS evaluation indicated that both Wav2Vec2.0 and Whisper were accurate
enough to recognize the considered child-abuse-related keywords in the seven languages.
TPRs obtained for Wav2Vec2.0 ranged from 82.9% to 94.9%, depending on the language.
Results using Whisper ranged from 80.3% to 98.2%. The particular evaluation of KWS in
the GRACE dataset also showed that both models are equally accurate at recognizing the
selected keywords under controlled acoustic conditions. On the contrary, when considering
the noisy version of the corpus, the results for Wav2Vec2.0 were reduced by 20%, and
the results for Whisper were only reduced by 3%. This fact again indicates the ability of
Whisper to accurately process speech recordings in uncontrolled acoustic conditions.

The last experiment involved a pilot study on the use of FL to train ASR systems.
The results indicated that an ASR trained in a federated way maintains and in some cases
outperforms the performance of individual ASRs trained in a centralized manner by each
LEA. In addition to the performance, the most important aspect of FL is that the ASR
training does not involve any data sharing among LEAs, since only updates of the network
parameters are transferred to a central server in charge of aggregating the model. These
results are indicators of the potential use of FL to obtain a joint (and potentially richer)
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model combining sources of data that could not be otherwise combined. Despite the
benefits of using FL, it is important to consider external factors that may degrade the
performance and reliability of the system. For instance, there is evidence of FL attacks
that are able to retrieve speaker information from the transferred weights [60] and data
poisoning attacks inside LEA servers. Different strategies can be considered to mitigate
attacks of these kinds, such as the use of differential privacy algorithms [61] or the use of
trusted execution environments.

7. Conclusions

This paper proposed the use of speech recognition and keyword spotting technologies
to be applied in forensic scenarios, particularly in child exploitation settings. The aim is
to provide LEAs with technology to detect the presence of offensive online audiovisual
material related to child abuse. State-of-the art ASR systems based on Wav2Vec2.0 and
Whisper were considered for the addressed application. The performance of both models
was tested on a large set of open benchmark corpora from the literature. Therefore, the
results obtained can be extended to other ASR domains. We additionally created an in-
domain corpus using different open source datasets from the research community. The aim
was to test the models in more realistic and operative conditions.

The ASR and KWS models were evaluated in corpora from seven Indo-European
languages, including English, German, French, Spanish, Italian, Portuguese, and Polish.
We obtained overall WERs ranging from 11.3% to 24.9%, depending on the language. The
performance of the KWS model for the different languages ranged from 81.5% to 98.4%.
The most accurate results were obtained from models trained with more data, such as
English or German. The comparison between Wav2Vec2.0 and Whisper models indicated
that the second one was the most accurate system in the majority of cases, especially when
considering utterances in uncontrolled acoustic conditions.

We also proposed a strategy for using FL to train robust ASR systems in the context
of the addressed application. This is a suitable approach considering that collecting op-
erational data from LEAs is not possible. FL approaches allow LEAs to build a common
technological platform without the need to share their operational data. The results of the
FL pilot indicated that similar WERs were achieved when comparing the model trained in
a federated way to individual models trained in a centralized manner, even considering
non-IID conditions, which has been shown to be one of the main drawbacks in FL.

For future work, the considered approaches can be extended to other forensic applica-
tions where there is a need to monitor audiovisual material from online sources. In addition,
the considered technology can be combined with other speech processing methods, such as
speaker and language identification, age and gender recognition, and speaker diarization.
The ultimate goal is to provide LEAs with accurate tools to monitor audio from online
sources, allowing them to respond in a practical and timely manner.
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Abbreviations

ASR Automatic Speech Recognition
CTC Connectionist Temporal Classification
FL Federated Learning
KWS Keyword Spotting
LEA Law Enforcement Agency
MLS Multilingual Librispeech
SWC Spoken Wikipedia Corpus
TPR True Positive Rate
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