
Citation: Han, J.; Liu, Y.; Li, Z.; Liu,

Y.; Zhan, B. Safety Helmet Detection

Based on YOLOv5 Driven by

Super-Resolution Reconstruction.

Sensors 2023, 23, 1822. https://

doi.org/10.3390/s23041822

Academic Editor: Zahir M. Hussain

Received: 25 October 2022

Revised: 3 February 2023

Accepted: 4 February 2023

Published: 6 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Safety Helmet Detection Based on YOLOv5 Driven by
Super-Resolution Reconstruction
Ju Han 1, Yicheng Liu 2,*, Zhipeng Li 2, Yan Liu 2 and Bixiong Zhan 1

1 China Construction First Group Construction & Development Co., Ltd., Beijing 100102, China
2 College of Electrical Engineering, Sichuan University, Chengdu 610065, China
* Correspondence: liuyicheng@scu.edu.cn

Abstract: High-resolution image transmission is required in safety helmet detection problems in
the construction industry, which makes it difficult for existing image detection methods to achieve
high-speed detection. To overcome this problem, a novel super-resolution (SR) reconstruction module
is designed to improve the resolution of images before the detection module. In the super-resolution
reconstruction module, the multichannel attention mechanism module is used to improve the breadth
of feature capture. Furthermore, a novel CSP (Cross Stage Partial) module of YOLO (You Only Look
Once) v5 is presented to reduce information loss and gradient confusion. Experiments are performed
to validate the proposed algorithm. The PSNR (peak signal-to-noise ratio) of the proposed module
is 29.420, and the SSIM (structural similarity) reaches 0.855. These results show that the proposed
model works well for safety helmet detection in construction industries.

Keywords: deep learning; real-time detection; safety helmet detection; super-resolution reconstruc-
tion; YOLOv5

1. Introduction

The construction industry is one of the most prone to safety accidents. Therefore, it is
of great practical significance to study safety guarantees in this field. Over the past 20 years,
it has experienced a decline in accident rates [1].

Head injuries can easily lead to a disability [2]. Reducing head injuries is the primary
problem to ensure personnel security in the industry, and safety helmets are widely used to
do so. The impact resistance of safety helmets can disperse the impact of rocks. Thus, many
industrial regulations require workers to wear safety helmets during working. However,
workers do not wear safety helmets as required due to the lack of safety awareness. Because
of these reasons, safety accidents are frequent. According to relevant research statistics,
47.3% of people with head injuries in construction site accidents did not wear safety
helmets [3]. Thus, it is very important to strengthen the supervision and management of
workers. At present, the management of safety helmet wearing in most construction sites
still requires manual monitoring. However, the efficiency of manual monitoring is very
low due to the large working area and large flow of personnel. With the development
of science and technology, video surveillance has become more and more popular. It is
a vital part of safety helmet detection. Hence, the optimization of monitoring systems
is widely studied [4,5]. Traditional video surveillance is mainly used for continuous
monitoring. However, the final judgement still relies on humans’ decisions, and the degree
of automation is not enough. Intelligence algorithms are a method to enhance automation.
They are widely used in image processing, prediction, robotics and so on [6–11]. Currently,
evolutionary algorithms and deep learning are two important intelligent systems [12–14].
Among them, deep learning is widely used in image processing because of its strong
learning ability [15–17], which can be combined with video surveillance to solve the
problems of traditional methods [18].
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Slow transmission processes are caused by large image data collected by cameras.
Therefore, the obtained original images need to be compressed before transmitting them
so that the process can be accelerated. After compressed image data is transferred to
the terminal main control unit, they are input into a YOLOv5 target detection network.
Since the image compression usually reduces the image resolution, it can be restored by
super-resolution (SR) reconstruction.

Many scholars apply deep-learning algorithms to the field of image SR reconstruction.
Convolutional neural networks were first introduced in SR reconstruction [19]. Researchers
added residual structure into the network to ensure convergence [20]. The attention mecha-
nism structure has been added to further improve the performance of reconstruction [21].
However, in the detection of safety helmets, there exist the following problems to be solved.
First, we use cameras to acquire images, and they are placed all over the construction sites.
However, the tasks of image detection need computer terminals to complete, which are
placed in the control room. Hence, image acquisition and detection are asynchronous in
construction sites. Many studies have focused on detection; however, data transmission
has not seen adequate research. In addition, previous popular datasets collected on the
web have not considered construction sites, such as COCO128 and so on. In other words,
the pictures in these datasets are taken from other environments. This problem leads to
poor detection results of the model in construction sites.

To solve those problems, a safety helmet detection model is proposed, which is driven
by an SR reconstruction network based on YOLOv5. To enhance the learning ability of
the network, the double residual channel structure [22] is applied to an SR reconstruction
network in the proposed model. PCAB and MPAB are introduced into the depth feature-
extraction module of the main channel to improve the result of overall reconstruction. In
summary, the contributions of this paper are as follows:

(1) A novel super-resolution (SR) reconstruction module is designed to improve the
resolution of the image before the detection module. Compared with existing meth-
ods [23,24], this method reduces the influence of high-resolution image transmission
on detection speed in the construction industry.

(2) A novel CSP (Cross Stage Partial) module of YOLO (You Only Look Once) v5 is
presented to reduce the information loss and the gradient confusion.

(3) Based on the proposed SR reconstruction network and YOLOv5 network, a novel
end-to-end safety helmet detection model is proposed to make the proposed model
reach an average precision (AP) of 79.1%.

(4) More than 13,000 images are collected for safety helmet detection in construction sites.

The organization of the rest of this paper is as follows. Section 2 introduces the work
related to target detection and SR reconstruction. Section 3 shows the structure and the
details of the Dual-Channel Residual SR reconstruction model and the improved YOLOv5
model. The experimental details and results are given in Section 4. The conclusions are
given in Section 5.

2. Related Work

Traditional safety helmet detection methods choose features manually for target de-
tection. They have strong subjectivity, poor generalization ability and limitations in en-
gineering applications. With the continuous development of deep-learning algorithms,
researchers are applying deep-learning algorithms to target detection and image SR recon-
struction.

2.1. Target Detection

At present, research on target detection algorithms include two-stage and one- stage
algorithms. Two-stage detection algorithms generate a series of candidate boxes as samples
and then classify samples through a convolutional neural network. This kind of detection
method has higher task accuracy but slower speed. Girshick et al. [25] proposed the region
convolutional neural network, fast regions with CNN [26] and faster regions with CNN [27]
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algorithms. A one-stage detection algorithm directly regresses the category probability
and position coordinate values of objects through a backbone network without using a
region proposal network (RPN). This kind of detection method sacrifices detection precision
but improves detection speed. In 2016, Liu et al. [28] introduced the multiscaledetection
method and proposed the SSD (single shot multibox detection) detection algorithm, which
improved the detection accuracy. Redmon et al. [29–31] proposed YOLOv1, YOLOv2
and YOLOv3. The YOLOv1 network model abstracted the target detection task into a
regression problem for the first time, which greatly sped up the target recognition speed.
The YOLOv2 network model introduced a new basic model named darknet-19 based on
YOLOv1 to realize end-to-end training. Compared with YOLOv1, the YOLOv2 network
model realizes more accurate, faster and more target categories. YOLOv3 introduced the
feature pyramid network (FPN) algorithm, promoted the new basic model darknet-53 and
integrated three feature layers of different sizes for detection tasks. It improved detection
speed and accuracy, especially the detection performance of small targets. Bochkovskiy
et al. [32] proposed YOLOv4. This detection network takes CSP darknet-53 as the backbone
network and uses the PANET path aggregation algorithm. As a result, it improved the
detection accuracy of the model. In 2020, Jocher et al. [33] proposed YOLOv5. This network
model adds a focus structure to the backbone network of YOLOv4 to obtain a balance
between detection speed and accuracy. Carion et al. [23] proposed DETR for end-to-end
object detection and brought transformers into the object detection fields. Recently, Wang
et al. [34] proposed YOLOv7, which has achieved better accuracy and speed than YOLOv5.

2.2. SR Reconstruction

The image SR reconstruction algorithm is used to recover high-resolution images from
one or more low-resolution images. Dong et al. [19] proposed SR Convolution Neural
Networks (SRCNNs). SRCNNs effectively improve the results of image SR reconstruction
compared with traditional image SR algorithms. However, the network is relatively simple,
and the convergence speed is slow during the execution of the algorithm. In subsequent
research, researchers added a residual structure to the convolution network to effectively
solve the above problems. Kim et al. [23] proposed the VDSR network and increased the
number of layers of the CNN to 20. The residual structure and CNN are embedded into
image SR reconstruction, and the image reconstruction result is improved. Li et al. [20]
proposed a multiscale residual network (MSRN). This network includes image multiscale
features in the residual structure to further improve the image reconstruction result. Zhang
et al. [35] proposed the residual channel attention network SRCAN. This network applies a
channel attention mechanism to the image SR problem and achieves a better reconstruction
effect than previous algorithms. Lu et al. [36] presented a novel recursive unit for SR recon-
struction fields to force models to learn more details by learnable up-sampling methods.
Liu et al. [37] proposed an attention-based approach to discriminate between texture areas
and smooth areas.

3. Materials and Methods

In this paper, the proposed safety helmet detection model is designed based on a
Dual-Channel Residual SR reconstruction module and an improved YOLOv5 module.
The overall architecture is given in Figure 1. ILR means the input image features and ISR
means the reconstructed image features. The two submodules in this figure are addressed
as follows.
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The shallow feature-extraction module is an ordinary convolution layer. As shown 
in Figure 2, the shallow extracted feature FL is obtained from the input original low-reso-
lution image ILR through this module. 

The depth nonlinear feature-mapping module is composed of several dual-channel 
pixel-channel attention blocks (DCPCABs). Each DCPCAB is shown in Figure 3. In this 
figure, the main channel of the DCPCAB module is composed of several pixel attention 
blocks (PABs), a channel attention (CA) block and a convolution layer. In this paper, the 
number of PABs in DCPCAB is two. The auxiliary channel is composed of two convolu-
tion layers and an adaptive structured convolution block. 

PAB

Conv

PAB

Adaptive 
Structured 
Convolution 

Block

Conv

PAB CA Concat Conv

 Main Channel

 Auxiliary Channel
 

Figure 3. The DCPCAB architecture. 

The architecture of PAB is shown in Figure 4. In this figure, Fin is the input feature, 
and it is put into three branches x, y and z. One convolution layer with a 1 × 1 kernel size 
is adopted in branch x to reduce the input feature Fin to the output feature Fx. In branch y, 
the input features are first fed into a convolution layer with a 1 × 1 kernel size for dimen-
sion reduction and then put into a convolution layer with a 3 × 3 kernel size for feature 
extraction to obtain the output feature Fy. In branch z, the input feature is first fed into a 
convolution layer for dimension reduction. The reduced dimension feature is input into 
the pixel attention (PA) mechanism network for pixel-level feature weighting. A convolu-
tion layer is adopted for feature extraction to obtain the output feature given as 𝑭 = 𝑐𝑜𝑛𝑣 × (𝑭 (𝑐𝑜𝑛𝑣 × (𝑭 ))) (1) 

where 𝑐𝑜𝑛𝑣 ×  represents the convolution operation with a 3 × 3 kernel size. FPA can be 
given by 

Figure 1. The overall architecture of the proposed module.



Sensors 2023, 23, 1822 4 of 14

3.1. Dual-Channel Residual SR Reconstruction Module

The SR reconstruction module consists of three modules: a shallow feature extraction
module, a depth nonlinear feature mapping module and an up-sampling reconstruction
module. The specific structure is shown in Figure 2.
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Figure 2. The structure of the Dual-Channel Residual SR reconstruction module.

The shallow feature-extraction module is an ordinary convolution layer. As shown in
Figure 2, the shallow extracted feature FL is obtained from the input original low-resolution
image ILR through this module.

The depth nonlinear feature-mapping module is composed of several dual-channel
pixel-channel attention blocks (DCPCABs). Each DCPCAB is shown in Figure 3. In this
figure, the main channel of the DCPCAB module is composed of several pixel attention
blocks (PABs), a channel attention (CA) block and a convolution layer. In this paper, the
number of PABs in DCPCAB is two. The auxiliary channel is composed of two convolution
layers and an adaptive structured convolution block.
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Figure 3. The DCPCAB architecture.

The architecture of PAB is shown in Figure 4. In this figure, Fin is the input feature,
and it is put into three branches x, y and z. One convolution layer with a 1 × 1 kernel
size is adopted in branch x to reduce the input feature Fin to the output feature Fx. In
branch y, the input features are first fed into a convolution layer with a 1 × 1 kernel size
for dimension reduction and then put into a convolution layer with a 3 × 3 kernel size
for feature extraction to obtain the output feature Fy. In branch z, the input feature is first
fed into a convolution layer for dimension reduction. The reduced dimension feature is
input into the pixel attention (PA) mechanism network for pixel-level feature weighting. A
convolution layer is adopted for feature extraction to obtain the output feature given as

Fz = conv3×3(FPA(conv1×1(Fin))) (1)

where conv3×3 represents the convolution operation with a 3 × 3 kernel size. FPA can be
given by

FPA(conv(Fin)) = conv1×1(conv1×1(Fin)) ∗ δ(conv1×1(conv1×1(Fin))) (2)

where δ is the sigmoid activation function.
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The output features of the three branches are combined through a concat operation
given by

Fo = conv1×1
(
concat

(
Fx, Fy, Fz

))
+ Fin (3)

where concat means the operation of channel merging, which is used to merge the three
features.

There are multiple PAB blocks in a DCPCAB module in Figure 3. The output Fon of
each PAB can be iteratively calculated as

Fon = conv1×1
(
concat

(
Fxn + Fyn + Fzn

))
+ Fo(n−1) (4)

FCA in Figure 3 is the CA output and is obtained by Equation (5). The output of CA
can be given by

FCA = conv1×1(Fon)⊗ sigmoid(conv1×1(FGAP(Fon))) (5)

where FGAP stands for the global average pooling operation and ⊗means the pointwise
multiplication operation.

The main channel output Fv in Figure 3 can be obtained by

Fv = conv1×1(concat(FCA + FIN)) (6)

where FIN is the input of the DCPCAB.
The SR reconstruction operation always makes the edge information of the original

images blurred or even deformed. The auxiliary channel module is introduced to broaden
the width of the whole network to solve these problems. Adaptive structured convolution
blocks are added in the auxiliary channel. The modules are adaptive to different expansion
rates according to different image sizes. They can make the whole depth nonlinear feature-
mapping submodule focus on the extraction of high-frequency features of the image. The
operation of the auxiliary channel is given by

FA = conv(FDC(conv(FIN), rate)) (7)

where FDC refers to the expansion convolution operation and rate refers to the expansion rate.
The final output FD in Figure 3 is given by

FD = FA ⊗ Fv (8)

The output of module Fout in Figure 2 can be calculated by

Fout = conv(FDN) + FL (9)

where FDN means the output of the final DCPCAB.
The up-sampling reconstruction module in Figure 2 can be given by

ISR = conv
(
Fup(Fout)

)
(10)
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where Fup represents the up-sampling operation and ISR represents the results of the up-
sampling reconstruction module.

To optimize the proposed SR reconstruction network, a loss function is adopted as

L1 =
1
k

k

∑
i=1
||ISR − IHR||1 (11)

where || ||1 means an L1 norm, k represents the number of training pictures and IHR
represents the corresponding high-resolution image of the ISR. In this paper, the final
loss of the best results is 0.0034, and the meaning of it is the MAE of the resolution of the
reconstructed image and high resolution image.

The receptive field and the speed of the SR reconstruction models can be improved by
the dual-channel residual structure. The number of parameters in the SR reconstruction
model can be reduced by the PCAB structure. In other words, the PCAB structure can make
the model more lightweight.

Remark 1: Here, the proposed Dual-Channel Residual SR reconstruction model is
compared with SRCNN and SRGAN. Neither of these models consider the receptive field
or the speed of the SR reconstruction model. SRCNN effectively improves the results of
image SR reconstruction compared with traditional image SR algorithms. However, the
network is relatively simple, and the convergence speed is slow during the execution of the
algorithm. SRGAN [38] considers restoring fine-grained texture details. To improve the
receptive field and the speed of the SR reconstruction model, the dual-channel is used in the
proposed model. The number of parameters in the SR reconstruction model can be reduced
by the PCAB structure. When other architectures were used instead of the dual-channel
structure, the number of parameters we need to train must be the product of multiple
dimensions. But the dual-channel can halve the number of parameters by introducing dual
channels. In other words, the PCAB structure can make the model more lightweight.

3.2. The Improved YOLOv5 Module

YOLOv5 is an improved version algorithm based on YOLOv4 proposed by the Ul-
tralytics LLC company. It is a network with excellent detection accuracy and speed in a
single-stage detection network. YOLOv5 has a good detection effect on Pascal visual object
classes (Pascal VOC) and common objects in context (COCO) target detection tasks, so
YOLOv5 is selected as the detection network.

The YOLOv5 network structure is divided into four parts: the input port, backbone
network, neck part and prediction part. The structure is shown in Figure 5 [33].
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of YOLOv5 can lead to problems such as information loss and gradient confusion. There-
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and the 3 × 3 depth space convolution layer. The LSandGlass is different from the bottle-
neck structure with deep spatial convolution in China construction, 3 × 3 deep space con-
volution Dwise layers are moved to both ends of the residual path with high dimensional 
representation and the CBL blocks are stated in the mid. Two-deep convolution can en-
code more spatial information and make more gradients propagate across multiple layers, 
thus reducing information loss. 
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The input port is used to mosaic random images to enrich the datasets, calculate
the adaptive anchor frame and zoom images adaptively. The backbone mainly adopts a
focus structure and cross-stage partial (CSP) structure to obtain features. The focus in the
backbone is used to slice the input image data. The structure combining three multiscale
pooling layers is used to improve the receptive field of the network while minimizing
the loss of speed. It is helpful for the network to extract the important image features,
reduce the image loss caused by early image processing and further improve the detection
accuracy of the model. The structures of CSP and CBL are shown in Figure 6.
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The CSP1_X module is improved in two parts in Figure 7. The original CSP structure of
YOLOv5 can lead to problems such as information loss and gradient confusion. Therefore,
we use the LSandGlass module to replace the Res unit residual module in YOLOv5 and
the 3 × 3 depth space convolution layer. The LSandGlass is different from the bottleneck
structure with deep spatial convolution in China construction, 3 × 3 deep space convo-
lution Dwise layers are moved to both ends of the residual path with high dimensional
representation and the CBL blocks are stated in the mid. Two-deep convolution can encode
more spatial information and make more gradients propagate across multiple layers, thus
reducing information loss.
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Dwconv is moved to both ends of the residual path with high-dimensional repre-
sentation to realize gradient propagation across multiple layers and reduce the loss of
information. Considering such processing can increase the overall computation, the Ghost
module is used to replace the CBL module of the bottleneck module in CSP. This scheme
is adopted to reduce the computation and to compress the model size compared with the
original 3 × 3 standard convolution.

The neck module of YOLOv5 uses the structure of feature pyramid networks (FPN)
and pyramid attention networks (PAN). The prediction module contains the bounding
box loss function and the non-maximum suppression (NMS) function. YOLOv5 uses the
binary cross entropy loss function to calculate the loss of category probability and target
confidence score. In the experiment, CIOU loss is selected as the bounding box loss function.
The related formulas are given as [39]
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CIOU Loss = 1−
(

IOU − d1
2

d22 − βθ

)
(12)

β =
θ

(1− IOU) + θ
(13)

θ =
4

π2

(
tan−1 Wg

hg − tan−1 W
h

)2
(14)

where d1 represents the Euclidean distance between the prediction box and the centre point
of the target box and d2 represents the diagonal distance of the minimum circumscribed
matrix. Wg

hg represents the aspect ratio of the target frame, and W
h represents the aspect ratio

of the predicted frame.
Remark 2: Here, the improved YOLOv5 model is compared with the original YOLOv5

model. The original YOLOv5 model did not consider problems such as information loss
and gradient confusion. The proposed YOLOv5 model uses the LSandGlass module to
replace the Res unit residual module in YOLOv5 to solve these problems. Considering that
such processing can increase the overall computation, the Ghost module is used to replace
the CBL module to solve it.

4. Results
4.1. Experimental Setup

First, we collected the image datasets by ourselves, which all come from construction
sites and depict safety helmets. We first obtained the videos from construction sites and
then used the VOTT to get images from the videos. The time of each video is about 14s,
and we cropped at 7 frames per second to obtain the experimental images. The number of
the images in the datasets is about 13,000, and the resolution of each image is 610 × 480.
Then, we used pure interpolation to resize the input images to get 2× low-resolution.

To realize fast and reliable results, the entire method was implemented on a worksta-
tion equipped with two NVIDIA TITANRTX GPUs and an Intel i9 CPU.

All coding work was based on Python 3.7 and PyTorch 1.7.
The initial learning rates of the SR and detection were 0.0001 and 0.01, respectively.
The training epoch times of SR and detection were all 100.
The prediction times of SR and detection were all 100.
The kernels of the SRCNN were 1 × 1, 5 × 5 and 9 × 9.
The number of residual block layers for the generator in SRGAN was 16, and the

weights of the loss function for SRGAN was given as 1, 1 and 1.
The Adam optimizer was applied with a momentum of 0.9, and the batch size was 32.
The training and test datasets were collected by CSCEC-2020Z-10.

4.2. Metrics

The structural similarity values (SSIM) and the peak signal-to-noise ratio (PSNR) are
used to measure the quality of the reconstructed images. Among them, the former is
adopted to measure the difference between the original image and the SR reconstructed
image. The latter is used to measure the difference between the original image and the SR
reconstructed image.

PSNR is given by

PSNR = 10log10
255

1
3 ∑(MSE)C

(15)

where MSE is the indicator of the square error for the image.
SSIM is defined as

SSIM(I0, I1) =
(2m0m1 + c1)(2σ0σ1 + c2)(

m2
0 + m2

1 + c1
)(

σ2
0 + σ2

1 + c2
) (16)
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where I0 and I1 are the original and the reconstructed high-resolution images. m is the
indicator of the mean, and σ is the variance. c1 and c2 are both constants. In this paper, c1
is set as 0.01× 2552, and c2 is set as 0.03× 2552.

Precision (P), Recall (R) and Average Precision (AP) are used to measure the detection
tasks. Among them, Precision is used to describe the ratio of predicted positive examples
to all positive examples, and it is calculated by

P =
TP

TP + FP
× 100% (17)

where P, TP and FP indicate the precision, true positives and false positives, respectively.
Recall is used to describe how many of the positive samples were detected in the

prediction, and it is given by

R =
TP

TP + FN
× 100% (18)

where FN indicates false negatives.
Average Precision synthesizes P and R, which is calculated from the area under the

precision–recall curve and can be given by

AP =
TP + TN

TP + FP + TN + FN
× 100% (19)

where TN indicates true negatives.

4.3. SR Reconstruction Experiments

The SR reconstruction experiments are trained on approximately 80% of the 13,000
original images. They are validated on about 10% of the images and tested on the remaining
10%. Examples of the input images are shown in Figure 8. The right three subfigures show
the low-resolution input images, and the left three subfigures are the output images.
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9. It can be observed that the PSNR of the proposed method improved by 16.22% com-
pared with SRCNN and by 5.36% compared with SRGAN. This means that the recon-
structed images using the proposed method are closer to the original images. The SSIM of 
the proposed method improved by 9.76% compared with SRCNN and by 4.27% compared 
with SRGAN. These results mean that the proposed method can extract more image-struc-
tural information for human eyes. 

Table 1. The difference of the three SR reconstruction methods. 

Model Structure 
SRCNN [19] Three parts: input, non-linear mapping and output 
SRGAN [35] Two parts: generator network and discriminator network 

Dual-Channel Residual SR 
Reconstruction model Three parts: input, Dual-channel module and output 

Table 2. The results achieved by different SR reconstruction methods. 
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Metrics 

SRCNN [19] SRGAN [35] Dual-Channel Residual SR 
Reconstruction Model 

PSNR 25.313 27.923 29.420 
SSIM 0.779 0.820 0.855 

Parameters’ number 7,235,377 73,478,945 3,525,431 

Figure 8. Examples of input images in the SR reconstruction module. (a) The output of the training
datasets; (b) the input of the training datasets.
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The different super-resolution reconstruction structures are shown in Table 1, and the
experiments’ results are shown in Table 2. Examples of the results are shown in Figure 9. It
can be observed that the PSNR of the proposed method improved by 16.22% compared
with SRCNN and by 5.36% compared with SRGAN. This means that the reconstructed
images using the proposed method are closer to the original images. The SSIM of the
proposed method improved by 9.76% compared with SRCNN and by 4.27% compared with
SRGAN. These results mean that the proposed method can extract more image-structural
information for human eyes.

Table 1. The difference of the three SR reconstruction methods.

Model Structure

SRCNN [19] Three parts: input, non-linear mapping and output
SRGAN [35] Two parts: generator network and discriminator network

Dual-Channel Residual SR
Reconstruction model Three parts: input, Dual-channel module and output

Table 2. The results achieved by different SR reconstruction methods.

SRCNN [19] SRGAN [35] Dual-Channel Residual
SR Reconstruction ModelMetrics

Model

PSNR 25.313 27.923 29.420
SSIM 0.779 0.820 0.855

Parameters’ number 7,235,377 73,478,945 3,525,431
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SRGAN+improved YOLOv5 84.3 60.3 72.4 
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Figure 9. Examples of the results. (a) The input of the SR reconstruction module; (b) the output of
SRCNN; (c) the output of SRGAN; (d) the output of the Dual-Channel Residual SR reconstruction
module.

4.4. Safety Helmet Detection Experiments

To verify the advantage of the proposed model in safety helmet detection, we compare
the Precision, Recall and AP with those of other models. Each model employs the improved
YOLOv5 and the original YOLOv5. The datasets are trained by different SR reconstruction
methods first and different YOLO methods second.
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From Table 3, it can be observed that the proposed model obtains a larger value of
Precision compared with other models. This means that the proposed model has a better
ability to identify safety helmets. It can also be observed that the proposed model obtains
the largest values of Recall compared with the other models. This means the proposed
model’s ability to find all the safety helmets is the best. The AP value of the proposed
model compared with SRCNN+YOLOv5 improved by 25.96% and by 11.10% compared
with SRGAN+YOLOv5. Furthermore, when both use the Dual-Channel Residual SR recon-
struction module, the AP value of the improved YOLOv5 is approximately 0.64% higher
than that of YOLOv5. It is obvious that the LSandGlass module can realize better detection
results than the res module. Moreover, the original YOLOv5 is more affected by image
resolution. The proposed SR reconstruction module with improved YOLOv5 improved
by 23.07% compared with SRCNN with improved YOLOv5 and by 9.25% compared with
SRGAN with improved YOLOv5. The proposed SR reconstruction module with the original
YOLOv5 improved by 25.16% compared with SRCNN with the original YOLOv5 and by
10.39% compared with SRGAN with the original YOLOv5. These results show that the
improved YOLOv5 has better robustness in detection tasks.

Table 3. Comparison with other models in safety helmet detection.

Precision (%) Recall (%) AP (%)
Metrics

Model

SRCNN [19]+YOLOv5 73.2 55.1 62.8
SRCNN+improved YOLOv5 74.1 58.3 64.3

SRGAN [35]+YOLOv5 81.3 61.1 71.2
SRGAN+improved YOLOv5 84.3 60.3 72.4

Dual-Channel Residual SR reconstruction
module+YOLOv5 88.4 71.5 78.6

Dual-Channel Residual SR reconstruction
module+improved YOLOv5 88.6 71.5 79.1

As shown in Figure 10, when the features of safety helmets are obvious in the image,
the proposed model has very good recognition of the safety helmets. Comparing (b) with
(d) and (f), these results are obtained by the same detection method and different SR
reconstruction methods. The number of valid detection boxes in (b) is much greater than
that in (d) and (f). The Precision in (b) is also larger than those in (d) and (f). These results
mean that the proposed SR reconstruction method obtains better performance than SRCNN
and SRGAN. Comparing (a) with (b), (c) and (d), (e) and (f), the valid detection boxes
in (b), (d) and (f) are more than those in (a), (c) and (e). The above results show that the
improved YOLOv5 achieves a higher recognition ratio of safety helmets; furthermore, the
proposed method can obtain more accurate positioning and higher recognition precision for
safety helmet detection. This means that the improved YOLOv5 is superior to the original
YOLOv5. The above results indicate that the proposed model can achieve better detection
results than other models.
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Figure 10. Target detection results obtained using different methods. (a) The result obtained using the
proposed SR resolution module with the original YOLOv5 network; (b) the result obtained using the
proposed SR resolution module with the improved YOLOv5 network; (c) the result obtained using
SRGAN with the original YOLOv5 network; (d) the result obtained using SRGAN with the improved
YOLOv5 network; (e) the result obtained using SRCNN with the original YOLOv5 network; and
(f) the result obtained using SRCNN with the improved YOLOv5 network.

5. Discussion and Conclusions

A novel safety helmet detection model is presented to implement super-resolution
reconstruction-driven safety helmet detection. At construction sites, the images collected
need to be transmitted to the terminal for detection. The resolution of images is lowered
to make it faster. This can lead to a reduction in the detection accuracy. A novel detection
model is proposed to overcome this problem. It consists of two modules. First, the SR
reconstruction module is used to improve the image quality. Then, to finish the helmet
detection, a novel YOLOv5 module is used as the detection module. They are trained
separately but tested by the proposed datasets together. The experimental results show
that the proposed SR module can increase the PSNR value while maintaining a consistent
SSIM value compared with some existing SR reconstruction methods. It demonstrates the
superiority of the proposed model. Based on the current results, the proposed model is a
feasible tool for safety helmet detection. It can be easily used in construction monitoring or
traffic safety monitoring. This paper mainly uses the individual models on specific tasks
and combines the models to achieve the whole task. In the future, we will continue to realize
the integrated design of SR reconstruction and YOLOv5 to reduce design redundancy. At
the same time, we will implement a lightweight model and improve the computational
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effectiveness. Besides that, we will consider the noise in images coming from industrial
sites in the future research.
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